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Mean spherical model for the D-dimensional v-component classical plasma
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The mean spherical model with continuous pair functions is solved exactly, in the limit of strong coupling, for a v-
component classical plasma with the D-dimensional Coulomb interaction. Exact lower bounds for the one-
component plasma correlation energy, which are very effective for arbitrary coupling, are derived.

In this report the relation between the structure
and the equation of state of strongly coupled
D-dimensional v-component classical plasmas
(with the D-dimensional Coulomb potential) is
discussed, and an exact solution of the mean
spherical model (MSM) with continuous pair func-
tions is presented. The explicit solution (for ar-
bitrary D and )8) in the limit of infinitely strong
coupling also provides a formal exact solution for
arbitrary coupling. The function describing the
interaction energy between two uniformly charged
D-dimensional spheres at distance r plays a key
role for strongly coupled plasmas (similar to that
of the Debye-Kuckel screened Coulomb potential
for weak coupling) and provides the correct ana-
lytic form for the MSM direct correlation func-
tions. When utilized in the Ewald hybrid expres-
sion, in conjunction with Mermin's inequality for
the structure factor, it provides an exact lower
bound for the one-component-plasma (OCP} cor-
relation energy that interpolates between the
Debye and ionsphere bounds and is very effective
for arbitrary coupling.

Consider a D-dimensional v-component system
of charges Q, g, with concentrations g„ total num-
ber density a=N/V, at a given temperature
P = (ksT) ', imbedded in a uniform neutralizing
background of charge density -pk = -se(Q) (the
notation is (Q') =p,x,Qf}, and interacting via the
Coulomb potentials u, &(r}= QQ&e' (~t)(r), where

j sgn(D —2}y' D, D 82 2
(l)[-ln(r), D = 2

is the solution of the D-dimensional Poisson equa-
tion

~pdd(r) = ( I D —21+ 5»)(8),5,(r),
@ (k) =(o (l D —2l+5, )/k',

and

u) a = 2va~'/Z'(D/2)

is the surface of a D-dimensional unit sphere.
Unified approaches to such plasmas have been
given by several authors. ' ' The thermodynamic
state of the OCP is characterized by the coupling
parameter yD =Pe'u~s, a~s=[D/(runs}] ~ being

the "ion-sphere" (Wigner-Seitz} radius. The cor-
relation energy U, given in general by

U

N
= 2n ~ x,x, h, &($)[e'Q, Qpdd(r})dr

i,f (2)

8 (2 ) Qx, Je„(k}dl[, (4)

Wk(ge 8) = gn gx, x, g„(r}[8„.(~)
if

+Pe'Q, Q, Q~(~)jdr, (5)

W, (8, 8) =-,' (28) P (xx;) fs,(e (2)[-88e (k)]8k. (8)
if

A judicious choice of the functions 8,&(r) for which
W, (g, 8) & 0 and W, (S, 8) & 0 will provide a lower
bound via the structure independent term, PU/N
& B[8]. A more physical approach'd 8 is based on
Onsager's idea to replace the point charges with
"smeared" charge distributions, p, (l r l ), of total
charge Q, 8, confined within D-dimensional "balls"
of radii (r, [5 ((x, ) denoted the type f ball].

For strongly coupled plasmas we expect that
PU/N= B[c] [the generali—zed MSM (Ref. 7)], where
c,&(r) denotes the Ornstein-Zernike (OZ) direct
correlation functions. Those Ewald auxiliary

is governed, in the strong-coupling regime (y~» 1}, by a Madelung behavior pU/N = aDoyn, where
nD is some structure-dependent constant. Here,
h, (r}=g„.(r) —l are the total correlation functions
related to the structure factors by

S,&(k) = 5[q +n(x&x&)' 'h„(k),
and the tilde denotes Fourier transforms.

Exact lower bounds for PU/N that will be effec-
tive in the strong coupling regime (in the sense
of being close to the energy of the most stable
Wigner lattice) have been sought by essentially
two closely related approaches. The formal ap-
proach' is based on the Ewald hybrid expression
valid for any auxiliary function 8,&(r) for which
8,&(k) exists:

PU/N = B[8)+ Wk(g, 8) +Wk(S8 8),
}8[8)==,'xgx&xef [88(e)+de Q&()ed (e}')d)'
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functions, 8(((r), that provide an exact bound
which is effective in the strong coupling regime
should have many features in common with the
c(((r}'s, providing a link between the thermody-
namics and structure of strongly coupled plasmas.
A special role is played by the auxiliary functions
that correspond to the approach by Onsager.

Let (l)Iv()(r) be the electrostatic interaction ener-
gy between the j and j balls with center to center
distance y:

()P~)(r) f dxf d7'pg(l&l))b(l(
b(ng ) (t(0(g )

x yv([ x-y() .

Observe' that with the choice 8,((r) = -p]l)(('(r),
the Ewald hybrid expression (2) becomes identical,
term by term, with the expression resulting from
the Onsager scheme: (iV/p)W (g -p(}](v)) is the
interaction energy between the point charges min-
us that between the smeared charges; the first
term in Eq. (4} for (A'/p)B[-p(l)( )] is the interac-
tion between the point charges and the background
minus that between the smeared charges and the
background, while the second term in Eq. (4)
corresponds to the self energy of the smeared
charges. In particular, (ff/p)vie, (S, P]l)'v-') ) 0
since it is the total electrostatic energy of' the
smeared charges plus the background. The de-
sired bound now has the following decoupled form:

B[ P]I)' -'] = pbp Z (((B([p('(

b&p] fa-x ai P, (l&l) (--, ](.(I&-Vl)-a~o(~-»(a(*) .1 p((iyi) &

~(~~) 1(~i) Pa )

The "best" smearing p, ( ~
x ~) is found by variation

»(P] 0
8p, (ix t)

to be constant, p, (~x~) =p, . With the overbar de-
noting the best quantities we thus obtain that

]l)(('(r} is the interaction energy between two uni-
formly charged D-dimensional balls of charge
density pb and radii a( and ((&, where a =a~s(Q /
(Q))' '(v Since' W (g p]I)(a))) 0—, an exact lower
bound for the correlation energy is given by'

ll(l/~ B= .r.(e-)-' "&e") (10)

corresponding to a one-fluid model with both the
charge averaging and Madelung constant of the
ion-sphere model. 9

The unification of the Ewald and Onsager
schemes above enables us (i) to obtain an exact
lower bound for the OCP's which is very effective
for all values of the coupling parameter, and (ii)
to uncover basic relations between the pair struc-
ture and the thermodynamics of dense plasmas
as featured by the MSM.

Consider the OCP's and let (l)(~P(r, d) be the in-
teraction energy between two identical uniformly
charged D-dimensional balls of radius d and unit
total charge. Using the Ewald hybrid scheme and
a generalization"o of Mermin's inequality, "

S(k) ~ S„„(k)=.[1+((yv(k)]-', (11)

one obtains the following exact lower bound:

(PU/N}(&cp )Bop(yD, d) =B[- /) P](~(pdr)]

+W,(S„,„, -Py('), (r, d)), (12)

which can be optimized via sB,&/sd = 0 to obtain
db«, (yv). ]l)'~'~ (r, d) has the scaled form"
d'

]l)(() '(r/d) for D a 2, and Ind+(I)', '(r/d) for D = 2.
The leading asymptotic large y~ behavior is

I
bP(y()) db«t } +DrD

the MSM can be formulated variationally by the
following equations":

c(((r) = -Pe'q(q(4v(r), r )d(( (14)

8S[c] =0, r&d, ~. (15)
5c)g t'

The matrix (c),( =(((x(x()'~'c(((k) is related to the
matrix of structure factors (S)((=S(((k) by the OZ
relations, S=(1-c) ', where (1)((=6(( is the
unit matrix and det denotes the determinant.
The MSM as modified" to treat soft (without hard-
core) potentials, by the additional requirement
that the pair functions be continuous (which fixes
the otherwise free parameters d,(), has been dis-

B„(yv,d b„,) interpolates between the Debye-Huekel
(i.e. , RPA} bound to which it equals for yn«1
and the ion-sphere bound for y~» 1, providing an
exact and very effective lower bound for the OCP
energies (it improves upon the bounds given in
Ref. 3 also due to the formal reason given in Ref.
12} that will be particularly useful as a check on
other approximations.

Using the RPA free-energy functional

b']c] =aft]+l(2»'f d&)gtb(L)-~(&)1], (»)
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cussed" and termed "SMSA". If there is a solu-

tion to the SMSA equations for the plasma, which

is continuous in yn for yn & 0, then 0[c] is pre-
cisely the excess free energy per particle via the

energy equation of state. " To solve the SMSA we

may either impose" sB[c]/ad„=0 on the solution

of Eqs. (14) and (15), or consider continuous

functions ct~(r) that satisfy (14} and solve (15).
A physically acceptable solution of the SMSA in

the strong coupling limit should feature a Made-

lung-type correlation energy

This can be obtained if the c,&'s saturate in the

sense that limz „c,~(r) =ca~'(r} becomes propor-
tional to yn ancPthus also lim„„P[c' '] To.
solve the SMSA in this asymptotic limit we re-
place Eq. .(15}by the following equations:

5B[c'"') /5cJ''(r) = 0, r & d,'q" '

det(1-c' ')~ 0.

(16)

(17)

A general way to write a continous function c,&(r)
that has the saturation property and satisfies Eqs.
(14) and (17) is" c,~(r) = Pgtf'(-r}, which sets
d,'~"'=a, +ct~. Equation (16}then becomes equiva-

lent to Eq. (9), and the asymptotic SMSA problem
is mapped on the "best bound" problem considered
above. We thus immediately obtain the limiting
behavior of the SMSA for plasmas:

lim c„(r)= Py-(~'(r),
y

-+ oo
D

lim (PV/N) =B, (18b)
~ eo

(18a)

(18c}lim d&&=a, +a&.
f~~ 00

The MSM was solved exactly for the 3D one- and

two-component plasmas" "(v = 1, 2). The result-
ing SMSA solution obtained by imposing directly
the continuity of the pair functions, when taken in

the limit y~- ~, is identical to our results given

by Eqs. (18). The explicit exact solution for the

asymptotic (yn ~) behavior of the SMSA also
provides a formal exact solution for decreasing
values of y~, as long as there is no change in the

analytic form of c;&(r&d,&). Equations (15) then

provides a set of algebraic equations for the un-

known coefficients. Indeed, the explicit analytic
solution available in 3D maintains the same form
(fifth-degree polynomials, as g",)) for all values
of y„and the same pattern is expected for all D.
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