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It is shown that the interplay between chemical reactions and thermodynamic stability gives rise to some novel

phenomena manifested in a slowing down of the chemical reaction and in changes in the critical behavior of
transport processes. In an n-component fluid, when all the components participate in the reaction, the rate vanishes

near the critical point T, as [(T —T, )/T, )~, where y -1.25. When one of the components does not participate in the

reaction, the rate vanishes, in general, as [(T —T, )/T, ], where a-0.12. If more than one component is

nonreactive the rate of the reaction is not sensitive to the approach to T, . Reactive binary mixtures are treated in

detail on the basis of a mode-coupling theory. In contrast to nonreactive mixtures, the shear viscosity has no

divergence near the critical point. In addition, the diffusion coefficient has a different temperature and wave-vector

dependence.

I. INTRODUCTION

A -=— v, p. &.

Here p, , are the chemical potentials and v, are the

stoichiometric coefficients in the reaction. For
the reaction considered here A = 2p~ —p~ . De-

2
fining the extent of advancement of the reaction

$ according to v, d $ = dN „where N, are the num-

ber of particles of the ith species, we thus have

d$—=rA
dt

(1 2)

for small deviations of $ from equilibrium. r is a
proportionality constant which contains micro-
scopic information. Since the affinity vanishes at
equilibrium, ' we expand A in $ and get, for con-

The aim of this paper is to investigate the criti-
cal behavior of dynamical phenomena that occur in

chemically reactive fluid systems near the ther-
modynamic critical points. Of prime interest to
us is the possibility of the slowing down of chemi-
cal reactions in such systems; however, the in-
fluence of the existence of a chemical reaction on

the critical behavior of transport processes (dif-
fusion, viscosity, etc. ) is also interesting.

'The fact that a critical slowing down of chemi-
cal reactions should be expected, can be esta-
blished using a simple argument based on the
"conventional theory" of slowing down. ' Consider
an example of a binary mixture of dimers and

monomers in which the reaction B, 2B takes
place. As is well known, ' for small deviations
from equilibrium the observed reaction rate (i.e. ,
the net difference between the forward and back-
ward reactions) is proportional to the affinity A
defined by

stant thermodynamic parameters,

d( (dA (1.3)

to linear order. The subscript eq reminds us that

the thermodynamic derivative is calculated in

equilibrium. The crux of our argument is that
the thermodynamic derivative in Eq. (1.3}van-
ishes near the critical point of a system like this
B„Bbinary mixture. In fact, we shall show be-
low that the derivative BA/d( vanishes at the crit-
ical point of any system of n components, in

which all n (or n —1) components participate in

the same reaction. 'Thus, assuming that r has no

critical anomaly, slowing down of the reaction
can be predicted. An interesting point is that the

way in which the slowing down is manifested is
expected to be universal. Independently of the
nature of the chemical constituents, when all of
them participate in the chemical reaction, the
derivative (BA/B() vanishes in the same way,
i.e. , (BA/B $)~ [(T -T,)/T, ]"where y is a critical
index (y- 1.25}, T is the temperature, and T, is
the critical temperature. When n —1 components
react and one component is nonreactive, the rate
of reaction vanishes generally as [(T —T,)/T,],
where n is another critical index (n 0.12). -

Evidently, the relation embodied in Eq. (1.2)
rests on linear theory. It thus becomes very
important to assess the role of the nonlinearities
and how they affect the relaxation times. This is
one of the major aims of this paper.

In fact, it seems that the phenomena of critical
slowing down of chemical reactions had been ob-
served experimentally many years ago by Kri-
chevskii and co-workers. ' Two experiments were
reported; in the first, a mixture of CO, and I,
was irradiated with light to dissociate the I, into
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atoms, and the recombination rate was measured.
In the second, pure Cl, was used and a similar
experiment performed. In both cases it was
found that the recombination rate was dramatically
slowed (one to two orders of magnitude) when the
system was kept near its critical (liquid-gas)
point.

Surprisingly, these findings were never proper-
ly interpreted in the context of modern theories of
critical phenomena. Originally, Krichevskii et
al. attributed the effect to slowing down in diffu-
sion. 'This view has been criticized by Leonto-
vich, ' who, however, did not suggest a proper
counter explanation. In a recent communication'
we have attempted an explanation which is based
on the above-mentioned relation between reaction
rates and thermodynamic quantities. In this paper
we elaborate on this theory and supplement it with
a discussion on the influence of chemical reactions
on transport processes.

In Sec. II of this paper we present the thermo-
dynamic considerations which establish the fact
that BA/8$- 0 at the critical point. In Sec. III we
present a linear hydrodynamic theory of a reac-
tive binary mixture, with the aim of showing that
in the vicinity of a critical point the composition
mode indeed slows down with an eigenvalue pro-
portional to (BA/8$)~ r (where P and T are the
pressure and the temperature). In Sec. IV we de-
part from linear approximations and consider a
mode-coupling theory"' of the problem. It is
shown there that the critical slowing down of the
chemical reaction is not affected by the mode-
coupling nonlinearities. On the other hand we
argue that the transport coefficients are affected
by the existence of the chemical reaction, and that
the weak divergence of the viscosity, which is ob-
served' ' in nonreactive binary mixtures, is pre-
dicted to disappear in this case. 'The effects on
the diffusion constant are also calculated. In Sec.
V we offer a summary of the novel findings, a
discussion of the physics of the phenomenon, and
some concluding remarks.

II. THERMODYNAMIC ANALYSIS

In this section we show that the thermodynamic
derivative (BA/8$}~ r [or (BA/8$)~ r „]vanishes
at the critical point of any multicomponent mix-
ture in which all components (or all but one) par-
ticipate in a chemical reaction. In all cases we
consider a single uniform phase and the approach
to a critical point (or critical line) where the uni-
form phase becomes unstable. Thus the vanishing
of (BA/8()~ r [or (BA/8()~ r „]will be seen to sig-
nal the loss of stability. "" The case in which all
components participate in the reaction is simpler
and would be treated first.

A. All components participate in the reaction

Consider the Gibbs free energy G(P, T,N, . . .N„)
and its differential which is written generally as

n

dG = -SdT+ VdP+ g p, , dN, (2.1)

for an n-component system. Since all components
participate in the reaction (written symbolically
as Q v, M, = 0), the differentials dN, are all rela-
ted to the extent of reaction $ via v, d(=dX, .
Since A = -g& v&p, we have

dG = -SdT+ VdP -Ad) . (2.2)

'The condition for a stable equilibrium is that G
is a minimum at constant P and T. 'Thus the con-
ditions

A(P, T,-()= 0,(
8G

~& ~.r
(2.3)

8$', eg
(2 4)

e$, 8$'~ (2.5)

'The critical indices will be those of a pure fluid,
namely,

eA. (T-T, &

(2.6)

where y is a critical index (y- 1.25).
In addition to the temperature dependence of

(BA/8$), we shall need below the temperature de-
pendence of the specific heats of a reactive mix-
ture. One has to distinguish between the specific
heat at constant concentration, C~ „and the
specific heat at chemical equilibrium, C».,
'These two quantities are related by the thermo-
dynamic formula

h'
9AT—
8$ ~~

(2.7)

are the necessary and sufficient conditions for
stability at constant P and T. It can be shown on
general grounds that Eq. (2.4) determines, in
fact, the stability of the system. The breakdown
of this condition appears always before the loss
of stability due to other types of perturbations (say
for constant V, S etc.).'

Equation (2.3}determines $ as a function of the
thermodynamic parameters. Thus the number of
degrees of freedom in this system is the same as
in a pure one-component fluid. Such a system
would have an isolated critical point, which, be-
ing at the boundary of stability, is determined by
the relations' "
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Here h is the heat of reaction at constant T and P.
In Eq. (2.7) and hereafter we write C~ „for
C

A standard thermodynamic argument leads to
the conclusion that

(2.13)

In this case, again, the temperature dependence
of the derivative (BA/8$)~ r „ is determined by

the strong singularity'" ':
eP ~ (~$ T,

(2.8)
(2.14)

On the other hand, Cp &
has a weaker singularity:

The derivative (BA/8$)~ r „vanishes according
to the weak dependence'""

where u is a critical index (n = 0.12).

B. n-1 components participate in the reaction

0 P,Tgf ~ PyT ~ N

(2.10a)

In this case we separate the nonreactive com-
ponent and designate it with a subscript zero:

dG SdT + Vdp + &0 CKO Ad $

where again we used the fact that dN, =v, d$ for
the reactive components. The additional. degree
of freedom N, leads to the existence of a critical
line rather than an isolated critical point.

From the general theory of bilinear forms it
follows that the stability conditions in this case
are""

(2.15)

Notice that in this case, contrary to the previ-
ous one, there are two distinct thermodynamic
derivatives (BA/8$}. Later we shall argue that al-
though (BA/8$)~ r „determines the boundary of

stability, it is (BA/8$)~ » which determines the

chemical reaction time scale. Thus in the case
of (n —1) reactive components we expect a weaker

slowing down of the reaction. In the more general
case of (n —2) or more nonreactive components,
no critical slowing down of the chemical reaction
is expected. There the chemical rate is related
to (BA/8$)~ r „„and such a derivative is ex-
pected to be finite near the boundary of stabili-

ty 1 ly 12

III. LINEAR HYDRODYNAMICS

(BN,)
~ 0. (2.10b)

The conditions (2.10) can be simplified, however,

by using the thermodynamic relation

8A

8& p~,„e P~N ego
eN,

(2.11)

Using Eq. (2.11) and the fact that (ay, /8 ()= (aA/

BNO), the determinant (2.10b) can be written as

(2.12)

The latter condition is met only if (BA/8$)~ r „
&0. By comparing Eqs. (2.10), (2.11), and (2.12),
it is seen that this condition is violated before
either of the conditions (2.10a}. Thus the boundary

of stability is determined by the vanishing of

(BA/8$}~ r „.At the critical line

In this section we utilize the information gained

in the previous section to study the mode struc-
ture of a reactive fluid mixture near its critical
point. Firstly, we limit the discussion to a binary
mixture. The major aim is to show that near the

critical point the composition relaxes as a mode

with a characteristic time that diverges like

[(T —T,)/T, ] ". At the end of the section we dis-
cuss briefly the slowing down in the case of ter-
nary mixtures.

A. Linearized equations of motion in binary systems

'The linearized hydrodynamic equations can be
obtained as a straightforward generalization of the

equations of motion of a nonreactive binary mix-
ture. In fact, the quantity p, , defined by, say,
Landau and Lifshitz" as p, /m, —p, /m, where

m, and m2 are the molecular masses of the com-
ponents, would be exactly proportional to the af-
finity in this case. The reason is that whatever

the reaction between two components is, the

stoichiometric coefficients are inversely propor-
tional to the molecul. ar masses of the species.
Thus we may choose the mass fraction of one

component as the progress variable (to be denoted

again by t') and write"
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ep + pvev= 0 pet

eV ~ v
p = —VP+(-q+q )V' V ~ v,et V

=D—V~)+ —V2T+ —V2P ~+ rA,kr kz
et T P )

(3 1)

(3.2)

(3.3)

Constructing the equation of motion for 5$ from
(3.4) and (3.3), Fourier transforming the resulting
equations, and using the definitions (3.7), one gets
a four by four matrix denoted by K(k) such that

=K(k)(P.(t)j (3.8)

v*r+——
I

fv g+ —v «)
as ~ Dk eA't & kP
at pT T e])P, ~ P

+ — D v'(+ —v'P+ —V2T .es kP 2 kr
a)Pq P T

(3.4)

Here p, v, g, g„, D, X, and k~ are the density,
velocity field, shear and bulk viscosities, diffu-
sion constant [D =—o.'(BA/8$)z r], heat conductivity,
and the thermodiffusion constant, respectively.
The quantity kp/P is thermodynamic and equals
(BA/BP), , /(BA/8 [),

Notice that the chemistry term xA appears only
in (3.3) and not in (3.4). The reason is that the
chemical reaction contributes only quadratic
terms to the entropy production. ' Since A vanishes
at equilibrium, we expand A in P, T and $:

c
a] ~l 1/2

p ~g p~g
1 1/2 w]7 Z', P~Z' ~Z', P

CFr, P

c ~-'
4 gBP

C,7'~'P C,T'~'P ~„C
P, g

where

(3.9)

CP, g-CP
CPef

The matrix K(k) is given in Ref. 14 and is not
reproduced here. For studying critical phenomena
we are interested only in the small-k limit of
K(k}. Asymptotically close to the critical point,
the correlation length $-. Therefore we first
study the case k= $ '-0. Then the matrix K sim-
plifies to a 3 x 3 matrix:

p ))J2
PB(t) =

i
5SI (t ),

Pef ]

p eA Q2

Pq(t)=
k &T e ~h&(t),

(3.7a)

(3.7b)

xA =r — 5(+x — 5T+r — 5P .
(3.5)

By using obvious thermodynamic identities Eq.
(3.5) can be written in the form"

rA = — 6$ ——
~

5T —— 5P, (3.6)
1

" 8)1 e$
Tze P eT)P g eP ze

where 7'r ~= (1/r)(BA—/8()r'z
Equations (3.1)-(3.4) are written in terms of

variables that are not statistically independent.
For studying critical behavior it is advantageous
to work with variables that are both normalized
and statistically independent in the sense of static
correlation functions. We thus construct a set of
variables (P) such that (P~P ~)= 5,&. The variables
are"

eT,„pC,, eP, ,„'
C

BA&

p 8$)p, r
~

8$ a,T 8(.BT ~ pC, BP

(3.10}

where et~= (lip)(8 p—/BT)~ „and }(z &
= (1/p)(Bp/

BP}~ (
By solving the cubic equation for the eigenvalues

of the matrix (3.9}one can easily find that in this
case the eigenvalues are proportional to [(T —T,}/
T,j", [(T —T,)/T J", and to unity, respectively.
However, for most experimentally accessible sit-
uations, $ is never greater than, say, 10 ' cm.
Thus we need to study the regime k~ 10' cm '.
The analytic evaluation of the eigenvalues of K
with its full k dependence is cumbersome. We
thus limit the analysis to cases where the follow-
ing conditions are met:

x
Pg~(t) =

k y'T (V v)~(t),
B

and in Eq. (3.7a),

(3.7c)

(3.7d)

and

pc ~o 8
P, f

—(-q+ ri„)k'«kC„,
(3.11)

OS= OS —— 5$ . (3.7e)
7'~, p&& kC

where C ' = (BP /8 p) z &.

(3.12)
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The conditions (3.11}are always met for k's of
the order of $ '. The condition (3.12}, however,
means that the chemical reaction cannot be too
fast. As shown before, '4 the eigenvalues can be
now obtained by factorizing K into two blocks.
'The variables Pg and P„couple to yield two propa-
gating modes that decay on the time scale of
sound. 'Thus these are immaterial for critical
dynamics. The two variables P-„and P-„couple to

d
dt

I=-K

it can be easily shown that"

yield two nonpropagating modes. Writing

(3.13)

k +~r'ri p
P p, (

1 8A
k~D ~C ~] k -yz' ~z, p8

(3.14)

kz D
TC 8$

k —&spy'
pre PyT

Dk'+ 7'q' p

B. Separation into heat and composition modes
for k

One simple case can be immediately investiga-
ted. This is the case of a thermoneutral reaction.
Here h of Eq. (2.7) is zero and. , respectively,
@~=0. Near the critical point the remaining part
of the off-diagonal elements of K vanish propor-
tionally to [(T —T,)/T, j""' ' '. Thus the com-
position becomes a normal mode and relaxes like

&-(DHtrr ~) t((0)

More generally, when @~4 0, the term proportion-
al to k' in the nondiagonal terms is asymptotical-
ly negligible compared to v'~'py~' which is propor-
tional to [(T —T,)/T, ]'"~ ' '.

Taking this into account, one can establish'4
that for k values that obey

(X/pC~ ) D)rr ~)- (3.15)

the eigenvalues can be again approximated by the
diagonal terms of Eq. (3.14}. Analyzing the quan-
tities appearing in Eq. (3.15) one sees that the
critical divergencies cancel in the right-hand side
of the inequality. We thus estimate the range of
k values which obey Eq. (3.15) at noncritical con-
ditions. Picking X/pC~

&

- 10 ' cm'/sec, yr - 0(l),
D«X/pC~ &, and v'r ~-10 6 sec, we find that k's
that are greater than 10' cm ' obey this inequality.
As argued before, k is rarely smaller than 10'
cm ', and therefore this condition is easily satis-
fied. If, on the other hand, the chemical reaction
time scale is extremely fast (i.e. , much faster
than a microsecond) the condition (3.12) can be
violated and then the previous analysis (k- 0)
should be applied.

In conclusion, for a wide spectrum of problems

we can assume that the composition mode in a
reactive binary mixture slows down according to
the index y near the critical point. For the ana-
lysis of the mode-coupl. ing theory we shalt. write

(~. (t)~.&= "' '."'«.~ ,) ~. (3.16)

C. Ternary and multicomponent mixtures

As an example for systems in which not all
components participate in the reaction, we men-
tion here a ternary mixture in which two compo-
nents react. 'The linearized hydrodynamic equa-
tion can be written similarly to the case of binary
mixtures. " The major difference is that the
characteristic time for the chemical. reaction is"

1

t
(3.17)

e1 y
P~T ~N~p N2 ~ ~

(3.18)

According to the general theory of singularities in
many-component systems, such a derivative has
no anomaly near the critical surface. ""

'The above discussion of the critical behavior of
chemical relaxation times is not applicable to
some special. cases. Near special points of phase

Only this "chemicaV' time can appear in the eigen-
values of the hydrodynamic matrix. Indeed, for
some limiting cases (dilute nonreactive or dilute
two-reactive species) it can be shown analytically
that the chemical relaxation time appears in the
eigenvalues. 'Therefore, any slowing down of the
chemical reaction can appear only with the rather
weak singularity according to Eq. (2.15).

As mentioned before, if more than one compo-
nent does not react, the characteristic "chemical"
time will be of the form
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diagrams such as azeotropes or extremal points
on the cx itical line, the singularities are stronger
and special considerations are called for. '""

erage, we define the following corxelation func-
tion:

IV. MODE-COUPLING ANALYSIS

In this section we assess the nonlinear mode-
coupl. ing contributions to the critical dynamics.
The three quantities under investigation here are
r, the microscopic part of the chemical relaxa-
tion time [rr + =r(8A/8$)~ r], D, the diffusion
constant, and g, the shear viscosity. %'e wish to
see whether r has any nonlinear cx itical anomaly
and what the implications of the chemistry are on
the usually calculated' ' divergencies in a [D
=a(BA/8$)~, r] and q. We start the analysis with
some microscopic considerations and then proceed
to actual calculations.

(4.5)PqGk=-&Gk8 „-)(8k8;) '8k,

and j-„ is any variabl. e; iS is the Liouvillian.
It is now straightforward to write down the

microscopic definitions of the quantities D, q,
and r""

D=llm dt g t gg Xg, (4 6)

g=lUQ df
g

f g g
0' «g~~ (4.V)

where P~ is the projection opex'ator onto the space
of the '*slow" variables 8~,

A. Microscopic considerations y = lim dt&yk(t)y~&~,
4~0 0

(4.8)

Microscopically, the variable of most interest
in this problem is the number density of one of
the components, say component n':

n — e"'» (4.1)

where No is the number of molecules of species
n at some instant. The equation of motion of
~(t) is

—~(f)=—~ v e' '4+y-(f)8 N ik
at m

ik=—'
gk (f)+yk(f) (4.2)

The quantity yk(t) arises from the rate of change
of N due to the chemical reaction. It cannot be
written in a model. -independent form. " We shall
not need, however, its explicit form but only its
symmetry properties.

Guided by the analysis of the previous section,
we shall neglect some of the variables that, gen-
eral1.y speaking, should be taken into account.
Thus we shall. neglect the total number density
and the l.ongitudinal component of momentum den-
sity, since these couple to give rise to sound
modes that decay rapidly. We limit ourselves to
conditions that meet the discussion of Sec. IIIB
and we omit the energy density, as is most com-
monly done. Thus the only variables to be con-
sidered, besides ~ (t), are the transverse com-
ponents of the momentum density gk(t),

~(f) Q v elk'1g
gs]

Choosing k to be parallel to the z axis, we are
then concerned with gj(f) and gl(t).

Denoting now by &) an equilibrium ensemble av-

Xk=&~n „-&. (4.9)

In the mode-coupling theory, one recognizes
that"w, hile (I -P~)jk(f) is orthogonal to 8k in the
sense that (&I P~ j)„(-t)A1&=0, we may form a set
of bilineax variables At+&A~ which do not have to
be orthogonal to (I -P~)I k- Since A.k is slowly
varying for small k, A-„,~A;, wiH also be slowly
varying if k and k' are sufficiently small. Thus
we may write"

(I-P )I'.=[(I-P )I.j "
&(1-Pz, )izaak-k 8t &8..8
((8 8 )2&

khaki 4i &

(4.10)
~t

where k, is a cutoff vector such that 8g+~,8 ~ is no
longer slowly varying for k'& k,. In Eq. (4.10) we

ignore trilinear and higher nonlinear contribu-
tions. The quantity f(1-P~)jk]'" is the micro-
scopic or rapidly decaying part of (1-P~)j~ and

it gives rise to the "bare" transport coefficients.
Equation (4.10) can be used in Eqs. (4.6) to (4.8) to
assess the mode-coupling contributions to the
transport coefficients.

B. The chemical rate r

Using Eq. (4.2) we see that the quantity yk, be it
as it may, must be odd under time reversal. This
is an immediate consequence of the fact that n-„ is
even under time reversal. In addition, it must be
even under parity. " These two propexties mean
that its correl. ation function with any of our dynam-
ical variables, which are eithex even or odd si-
multaneously under both symmetries, must vanish.
In addition, every multilinear combination of the
dynamical variables is either even or odd under
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both symmetries simultaneously. Therefore, r
has no mode-coupling corrections. In the sense
of Eq. (4.10), we can write

(4.11}

Notice that this result would not change if we add
other conserved dynamical variables besides n„-

and g„-. In the context of the mode-coupling theory
it is exact to all orders. From Eq. (4.8) we can
thus conclude that the quantity rX„=', which for
k-0 is proportional to r(BA/8$)v r, has no mode-
coupling corrections.

C. The diffusion constant D

The evaluation of this quantity follows the ideas
that were developed for the nonreactive case.' '

g (r) =n'(r)g(r)/n(r) . (4.12}

Working to bilinear order, Eq. (4.12} can be re-
written as

n'(r) g(r) 6n(r) (4.13)

Since we ignore the density here, we approximate
g (r} by the first term in Eq. (4.13}; thus g f is
itself a bilinear quantity. Using this result in

(4.10) and then in (4.6), one gets a modified form
of the familiar mode-coupling result for D:

Firstly, one realizes that g „- can be written as a
bilinear quantity. This stems from the fact that
n (r)g(r) equals n(r)g (r) where n(r) =P;,6(r —r;).
Equivalently,

p(2 )', ,
""

X; k'q(k)+(k-g)'D(k-g)+ X. ., (4.14)

In deriving Eq. (4.14) use has been made of the
fact that q parallels z, and of the linear forms of
the time-correlation function:

dt(n-(t)n. )= (4.16}

r dt( s(t)g& )
(8k' -k)( k s)

k'r}(k)
(4.16)

where e~ is a unit vector parallel to k. In addition,
the standard approximation ' of four-point-corre-
lation functions by a product of two two-point-

correlation functions has been made. We general-
ized &~' ~ to r X in the spirit of the previous sub-
section. D (q) in Eq. (4.14) is the microscopic or
"bare" contribution to D(q). The only difference
with previous calculations is the appearance of
r X,' in the denominator of Eq. (4.14). We shall
see that this modification is significant.

D. The viscosity q

The calculation of this quantity again follows
the usual arguments and we therefore omit all
details. The final result is

oo

ri(q}=go(q) +, s„, dk k4 de sin~&X", X~ I
0

(y 1 2

X;; k'D(k} t (q —k)'D(Q —k) + r X=,
' + r X.'- ' (4.17)

where again the only difference with the usual re-
sult of the nonreactive case appears as the factors
of r X=' in the denominator of Eq. (4.17).

aD = (K(X) -()~X() )),k~TK ( X
p6 gX, y

where

(4.18}

E. Self-consistent calculation of D and q

In the calculation of D and g we neglect the criti-
cal index q (not to be confused with the viscosity}.
Thus we assume the Ornstein-Zernike form for
the susceptibility X„=(k'+ (')-'. This approxima-
tion does not affect the qualitative conclusion of
the analysis, but it simplifies the algebra enor-
mously.

The calculation of nD —=D(k) D0(k) is presen-ted
in the Appendix. The final result is

X —= k$, P-=v/(I+ v),

v = r/)7, y =—[v/(1 + v+ X)] ' ~'X .
The function K(x) is

K(x}=-,' [(1+x')+(x'-x-') tan-'x].
One can see that if g diverges, than v -0 and, re-
spectively, p-0 and then one gets the usual re-
sults ' for 4D in a system without a chemical.
reaction. However, the calculation of g in the
Appendix shows that g does not diverge in this
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case and therefore Eq. (4.1$) is a novel result
that shows the influence of the chemical reaction
on the diffusion constant.

Two limits of Eq. (4.18) are easily calcuiated:
(a) For q «v K(X) X2, K(y}-y~, then

8 x
(1 Pi/2) (4.19)

&rgp
Qne sees that the usual result, i.e., that the prod-
uct 4Dg vanishes like f-', is recaptured. How-

ever, the coefficient is renormalized. Remem-
bering that D = n(8A/8))~, r, we conclude that
since g is not diverging in this case (cf. Appendix),
n diverges like E.

(b) q»g K(X)--', xX, K(y)- —,vy'. Now

SD - ~ q.kgr (4.20)16q+x p
Again, this result is similar to the case of a non-
reactive binary mixture, except for the renormal-
ization of the coeffi.cient of q.

The limiting forms (4.19}and (4.20) are used in
the Appendix to shorn that q indeed not diverge. It
is shomn there that the most dangerous contribu-
tion to 6g is an integral of the form

c dye
(k'+rk') '

The lower limit of the integral vanishes at the
critical point (~ =-$-'}. When there is no reaction
(i.e. , r =0) this integra, l diverges logarithmically
and bq -ln). (In fact, it is known that a more
careful, calculation of hq leads to a weak-power-
law divergence rather than a logarithmic diver-
gence. 8'9} However, when rv0 the integral is
protected and does not diverge. Notice that if x
is extremely small (i.e. , extremely slow reac-
tion) then q would grow as z -0, but its growth
mould be terminated once ~3-r~ . For a reason-
ably fast reaction, Eq. (4.21) predicts the elimin-
ation of the divergence of g.

(4.21)

V. DISCUSSION

Let us begin by summarizing the novel findings
with regards to the dynamic critical phenomena in
reactive mixtures, as the critical. point is ap-
proached:

(a) A chemical reaction which occurs in a multi-
component ft.uid is expected to slow down if all the
components, or all. but one, participate in the
same reaction.

(b) When all the components participate in the
reaction, it is expected to slow down like
[(7—T,)/T, I

". When one component is nonreac-
tive, the rate should slow down like [(T —&,)/T, ] .
When tmo or more species do not react, me ex-
pect no slowing down of the reaction. A special.
situation can be the case where the reactive or

the nonreactive components are very dilute. In
such a ca,se it is possible that the reaction time
moul. d diverge more strongly. As far as binary
reactive mixtures are concerned, me have found:

(c) The viscosity remains finite as T-T,.
(d) The diffusion constant vanishes like E

' -T.his
result might be modified slightly if the small crit-
ical, exponent Tt is taken into account.

The results (c) and (d) are based on a mode-
coupling calculation. The same calculation shows
that the micxoscopic part of the chemical rate, r,
is not affected by the reversible nonlinearities.

An important point to be stressed here is that
the "sloming down of the chemical reaction" does
not imply that forward or backward reactions are
slowed domn. It is the measured rate, which is
the net difference between the forward and back-
ward reactions, which is affected by the critical-
ity. In fact, the condition (8A/8$)~ r =0 means
that the system becomes indifferent to changes in
the species concentration. In equil. ibrium, when
A =0, the reaction is balanced and the measured
rate is zero. Usually, a change of $ from $~
builds up an affinity which acts as a driving force
to restore the equilibrium. When (8A/8$)~ r
=(8 A/8$')~, r =0, a change in $ does not create
a restoring force (i.e. , affinity) and the reaction
continues to be balanced although E w E, . The net
rate continues to be zero.

Evidently, there is a limit to the size of the
disturbance which lends itself to the above anal-
ysis. In the limit where only reactants exist, say,
the measured rate is not proportional to the affin-
ity at all. In the reaction 82 = 28, say, if the con-
centration of 8 is zero, the rate is simply
k ft)gwiyg Cg ) where C g2 is the concentration of 82 ~orwar

Thus in any relaxation experiment near the criti-
cal point one might see tmo regions: a rapid decay
into the "scaling region" and then a slow decay ac-
cording to the analysis presented above. In fact,
in Fig. 5 of Ref. 3(b}, one can see these two re-
gions in the recombination kinetics of 2Cl, Cl2.

Consequently, an experimental investigation of
the phenomena discussed above might best be con-
ducted in an unperturbed system. Noise experi-
ments (bke electrical noise, best measureable in
systems mith charged species like metal. -ammonia
solutions) or sound attenuation experiments might
be ideally suitable. A theoretical discussion of
these possibilities will be given later.

APPENDIX: THE CALCULATION
OF MP(q) AND Aq(q)

Firstly, we notice that in Eq. (4.14) the terms
containing D in the denominator can be safely
neglected. Adopting the Qrnstein-Zernike form
for ~ and denoting g =—& ', me write
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4D= 2(q +v } d8 sin'8p(2v)' «(q' —2qk cos8+ k'+ z') [k'q+ r(q' —2qk cos8+k'+ z') ]
'

Using the change of variables t =cos8, X=q(, v=r/r), we get

ksTK(X +1) k'dk
P(2v} 'q (X' —2Xkt+k'+1)[k'+ v(X' —2Xkt+k'+1)] '

(A1)

(A2)

(A3)

This result is broken up into two integrals:

where the quantity k $ is again denoted as k.
We notice that the boundaries of the integral can be changed to 0 to 1 in the t integral and -~ to ~ in the

k integral. Denoting p=- v/(1+ v) we get

k&Tz(1+X ) k'dk
P(2v) r)(1+v) „(k'—2X kf+X' +1)[k 2+P(-2Xtk+X«+I)] '

ksTK(1+X )
dt(1 —fp(2 )'q ' „k' —RXtk+X'+1, k —RXtlPk+PX'+P)

—P df 1 —f' (A4}

We now use the integrals

dk
k«+ P( 2XfK+].+X ) P~~~[1+X (1 —Pf )]~~2

(A5)

r
f«1+X»&«

dt 2
= [X-'+(X-' X ') ta-n 'X-]-X', 2

1+X'
(AS)

to arrive at the final form

where again the Ornstein- Zernike form has been
used. The 8 integration is trivial, and performing
it we get

kgT dkk'
(A11)" Sov' (k'+ «')'[k'D(k) + r(k'+ ~') ]

The cutoff k, is introduced as usual to eliminate
spurious (noncritical) divergencies. The integral
is separated into two parts:

k~TK X'
LQ) =

6 ~2 K(X) —p —,K(y)
~p6mqX Y j

where

(A7)
In the first integral we use the limiting form
k'D(k) -zk' and see that it vanishes like y when
z-0. In the second integral we use k'D(k)-k' to
find

K(X) = —'[(1+X ) +X -X ') tan X],
1/2

&+ &+X j' X ~

(AS)

(A9)

The limiting forms of hD(q) for large and small q
are given in Egs. (4.19) and (4.20).

We show now that Aq(q) does not diverge. It is
sufficient to consider the limit q-0 of Eq. (4.17},
since this limit reveals the most divergent part,
if it exists. Thus,

c dkk
(k'+ ~k') (A12}
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