
PHYSICAL REVIEW A VOLUME 25, NUMBER 1 JANUARY 1982

Numerical properties of a new translation formula for

exponential-type functions and its application to
one-electron multicenter integrals

Harit P. Trivedi and E. Otto Steinborn*
Institut fiir Physikalische und Theoretische Chemic, Unioersitat Regensburg, D 8400-Regensburg,

Federal Republic of Germany

(Received 17 April 1981)

Hitherto known formulas for the translation of exponential-type functions (ETF's)

from one center to another (i.e., addition theorems) encounter serious difficulties of one

kind or another in practical applications. In contrast, the recently derived new addition

theorem of A functions appears to be free of many of those difficulties. The A functions

are a special class of ETF's, defined by a product of an exponential, a Laguerre function,

and a regular solid spherical harmonic:

A„i(r, 6,$)=23' N(n, l)e 'L„' 'i 'i(2r)(2r)'Yt (8,$).

We have examined the new one-range addition theorem for its applicability to quantum-

mechanical multicenter problems from the computational point of view and found it very

useful. Test calculations on molecular multicenter one-electron integrals are reported.

Under term-by-term integration, accuracy of 10 could be achieved for all these integrals

with an acceptable number of expansion terms.

I. INTRODUCTION

In many problems of molecular physics, addition

theorems which express an exponential-type func-

tion (ETF) in terms of ETF's shifted to a different

center are often desired. Barnett and Coulson'

were the first to develop a method for achieving

this goal with Slater-type orbitals (STO's). Their
success was limited in that they were unable to ob-

tain the expansion coefficients in a closed form.
Moreover, their method requires the introduction

and evaluation of a multitude of special functions

and becomes unwieldy very rapidly as the quantum

numbers as well as the number of centers of the
STO's increase.

Smeyers and later Guseinov ' developed anoth-

er method to express an STO in terms of shifted
STO's and have applied it to the calculation of
multicenter integrals keeping only a small number

of terms (8—10) in the expansion. We shall show

in Sec. VI that many more terms (up to 80) may be
required at times to compute two-center nuclear at-
traction and overlap integrals with a not unreason-

able absolute accuracy of 10 . As we shall see in

Sec. III, there are strong mathematical reasons to
suspect that this method would be beset with in-

tolerably large cancellation errors as more terms

We call a function of the form

4„I(r)=e 'p„(r)9'I (r), (2.1)

are kept in the expansion.
New addition theorems for ETF's were recently

reported frotn this laboratory (Ref. 5 is hereafter
referred to as I). These offer intriguing, new possi-
bilities. In particular, the addition theorem for the
complete, orthonormal set of so-called A functions
(defined in Sec. II) appears to be very economical.
The expansion coefficients are themselves ex-
pressed in terms of A functions and appear in a
closed form. Moreover, the A addition theorem
does not divide space into different regions —an
important factor in the evaluation of molecular
multicenter integrals.

We define A functions and describe their rela-
tionships with other ETF s in Sec. II. The A addi-
tion theorem is itself described and discussed in
Sec. III. In Sec. IV we consider some of its nu-

merical aspects, in particular, its pointwise conver-

gence. We apply the theorem to the problem of
one-electron multicenter integrals in Sec. V. Re-
sults described in Sec. VI show its behavior under

term-by-term integration. An overall assessment is
presented in Sec. VII.

II. DEFINITIONS AND BASIC FORMULAS
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where pn(r) is an arbitrary polynomial of order n,
an exponential-type function (ETF). The regular
solid spherical harmonic %t (r ) is given by the
product r'Yt (r ), where r specifies the direction
(8,$) of the local vector r defined by spherical
coordinates r, 8,$ F. or the surface spherical har-
monics Yt (8,$) of order I with z projection m we
use the definition of Condon and Shortley.

Various ETF's can be obtained by different de-

finitions ofp„(r). In this paper, we restrict our-
selves to the discussion of STO's and lambda func-

tions. A well-established set of ETF's is given by
the system of Slater-type functions (or orbitals,
STO's). The unnormalized STO's are defined by

X„i(ar)=(ar)" 'e "Yt (r) . (2.2)

The STO's form a complete but nonorthogonal
basis set. By a simple linear transformation given
in Eq. (2.7), the STO's are closely related to the
so-called lambda functions, which were introduced
in I. In these functions, defined by

A„t(ar)=(2a) i N(n, l}e "L„' t i(2ar)(2ar) Yt (r),
with the normalization factor

N(n, I)= [(n —I —1)!I(n +I+1)!]'
the polynomial p„(r) is essentially given by the associated Laguerre polynomial

n+a ( 1)p
Pl —P p I

The A functions so defined satisfy the orthonormality relation

(2.3a)

(2.3b)

(2.4)

( Agbtb( r}
~ Agktk( r }) ( nbIbtnb i nkikntk ) 5gbnkbtbtkbggbfgb

Later on, as in Eq. (2.5), the subscripts b and k shall be used to denote the bra state and the ket state,
respectively.

Now it can be shown that

(2.5)

n —I —1 n+1 +1
AJ(ar) =(2a) N(n, l) g ( —2) 2 (p!) ' „ I 1 X&xiii, t(ar)

p=0

and, conversely,

n —I —1 n+l+1
X„t(ar)=(n —I —1}!2 (2a) g ( —1P „ I 1

N '(p+I+1, l)A&+i+i t(ar) .
p=0

(2.6)

(2.7)

Hence, any STO is given by a simple linear combination of A functions and vice versa. A similar two-way
relation also exists between A's and reduced Bessel functions (RBF's) defined by

B„t(ar)=k„ iiz(ar Nar) Yt (r)[(2n +21)!!]

(2n p 1) p p

, (p —1)!(n —p)!
They are

(2.8a)

(2.8b)

A„ t(ar) =a g b,"' B, t t(ar ),
t =1+1

b,"' = ( —1)' ' '2'+'iz(n +t)![(t—I —1)!(n —t)!(2t + 1)!!] 'N(n, l)(2n + 1)

and, conversely,

(2.9a)

(2.9b)

B„+ii(ar)=(2a) i ni!2[(2n 2+I 2+)!!] ' g ( —1}i'
p=0

2n +2l +3
N '(p+I + 1,l)A~+t+i i(aP .

(2.10)
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For the representation of physical orbitals any of these basis sets can be used because the transformation for-
mulas [Eqs. (2.6) —(2.10)] are nuinerically safe for lower values of the principal quantum nuinber n. Howev-

er, it should be noted that in the case of high principal quantum numbers n —which occur in expansions-
the transformation formulas [Eqs. (2.6}—(2.10)] are numerically no longer stable.

In this paper we shall only consider A functions and their addition theorem as a prototype of ETF's.

III. ADDITION THEOREMS FOR THE REDUCTION OF MULTICENTER INTEGRALS

The matrix elements which have to be calculated in the LCAO(-MO) scheme are in the general case mul-
ticenter one- and two-electron integrals. The most complicated one-electron integral which may occur is the
three-center nuclear attraction integral

(3.1)

Here X stands for an atomic orbital (AO), a and P stand for the sets of quantum numbers required to specify
3the atomic orbitals. The vectors A, B, and CESF are position vectors of the centers under consideration.

The most complicated two-electron integral is the general four-center exchange integral

f f P'(ri —A)Xp(r2 —B) Jz(ri —C)Js(rz —D)dridr2. (3.2)

The main difficulty associated with the evaluation of these multicenter integrals arises from the fact that the
orbitals contain shifted vectors as arguments; i.e., the orbitals are defined with respect to different centers.
This difficulty can be tackled with the help of so-called addition theorems which are analytical representa-
tions of shifted functions where one or more variables are separated. If an addition theorem is available and
applied to a multicenter integral, the number of centers can possibly be reduced because an orbital (i.e., a
function in three-dimensional space) which is defined with respect to a certain origin can be shifted to anoth-
er origin. As some of the variables can also then be separated, the integral ususally becomes easier to evalu-
ate.

The best known examples of addition theorems are the Laplace expansion of the Coulomb potential

00 I

=4' g (21+1) ' g r&r& 'YP (r)Yt (R),
I
r —R

I t=o m= —I

and the Green's function expansion of the Yukawa potential

e
—al r —R oo I

4n g g—jt(iar )ht "(iar )Yt (r)Yt (R) .
Ir —RI t=om= t—

(3.3)

(3.4)

The equivalence of an addition theorem and a
translation formula is obvious from the Laplace ex-
pansion [Eq. (3.3)) as it expresses the Coulomb po-
tential field of a unit point charge shifted by R
from the origin 0 by a superposition of functions
(the potential fields of multipoles) centered on O.

A typical feature of these addition theorems is
the fact that two different regions of space have to
be distinguished between: r (R and r g R. We
shall, therefore, ca11 this kind of addition theorem
two-range addition theorem. Similar two-range ad-
dition theorems are also known for the RBF's and
STO's. ' However, the two-range structure of
these addition theorems causes serious problems
with the radial integration as it requires the

I

knowledge of indefinte integrals of special func-
tions. In the case of two-electron integrals where
two nested radial integrations are to be performed,
this problem is further exacerbated. Barnett and
Coulson' tried to evaluate molecular integrals over
STO's using such addition theorems in connection
with numerical integration of the radial integrals
and complicated (and possibly unstab1e) multidi-
mensional recurrence schemes. This approach
could not compete with integral packages using
Gaussians as atomic orbitals.

For certain classes of functions, e.g., Gaussians
and spherical Bessel functions, one-range addition
theorems are known. ' The one-range addition
theorems are expansions where the variables r and
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l((r —R)= g C„P„(r) . (3.5)

The coefficients C„are given by the two-center
overlap integral

C„=I (()„'(r)l((r —R)dr .

From the last equation it can be seen that the
dependence with respect to R is completly con-

(3.6)

R are completely separated, i.e., space need no
longer be divided into regions according as whether
r &R or r&R.

For all functions which can be used as atomic
orbitals, i.e., elements of the Hilbert space Lq(~ ),
such one-range addition theorems must exist. Let
us assume that I i)}„(r) j „" o is a complete orthonor-

mal basis in L2(9F ). Then the following expan-
sion exists for any function 1( EL2(% ):

tained in the coefficients C„, i.e., we have

C„=C„(R). It can be shown that the coefficients

C„(R) themselves are elements of the same Hilbert

space L2(9P ). Thus, for any functions QCLq(9P )

the following double expansion exists:

1((r—R)= g y „t)} (R)P„(r) .
m, n

(3.7)

No functional dependence upon r and R is con-

tained in the coefficients y „. The choice of the
basis [(t)„]„"o of the Hibert space L2(% ) is, in

principle, arbitrary, but for the expansion of
exponential-type atomic orbitals (ETO's) the use of
the A functions which were introduced recently in
I appears to be most advantageous. For RBF's
and the A functions themselves the following one-

range addition theorems were also derived in I
(Ref. 11):

B„ i (a(r —R))=a ggg (l, m, ~13mi —m2 ~12m2)( —1) 'gga„,'i' ' '
A„,i '(ar)A„, i (aR),

l3 l2 2 n2 n3

(3.8)

A„,i (a(r —R))=a g g g(lim, ~13m i
—mq ~12m2)( —1) ' g g T„ I

' ' 'A„,i '(ar)A„, i (aR),
l3 l2 m2 n2

(3.9a)

l2+1&n2& ~,
max(13+1,

~
n, n2

~

——1) &n3&ni+nq+1 .

(3.9b)

(3.9c)

Both these series expansions are convergent not
only with respect to the norm of L2(A' ) but also
in a pointwise sense. Here, (Iimi

~
limq ~12m2)

are the Gaunt coefficients

(Yi, '(r")
~ Yi, '(r")

~ Yi, '(r")} .

The coefficients

n )11'n2 12

Tn3l3

of the series expansion [Eq. (3.9a)] were defined in
I and will be discussed in more detail in Sec. IV.
It is important to note that for each value of n2,
the n3 summation is limited to at most 2n ~+3
terms and does not increase with increasing sum-
mation index n2. Since n

&
refers to a physical or-

bital, in practice it involves very few terms, e.g., 11
terms for 4f orbitals. This compact result is due
to the fact that the two-center overlap integrals
[Eq. (3.6)] were themselves expressed in terms of A
functions.

The idea of deriving one-range addition theorems

I

with the help of a complete orthonormal basis of
L2(A' ) is not new. Already in 1966 Smeyers in-
vestigated the evaluation of two- and three-center
integrals over STO's by shifting one orbital from
its center to another center and by using an expan-
sion of the shifted function in terms of A functions.
The two-center integrals remaining in the formula
for the reduction of a three-center integral, were
then evaluated in elliptical coordinates. In 1978
and 1980 Guseinov ' independently suggested
making the same expansion and arrived at some-
what formidable expressions for the integrals.

The method proposed by Smeyers and Guseinov
suffers from several drawbacks. A typical feature
of this method is the evaluation of the expansion
coefficients C„(R)—which are themselves overlap
integrals between A functions and STO's—as a
linear combination of overlap integrals over STO's.
However, the representation of a set of orthonor-
mal functions as a linear combination of STO's
leads to serious numerical difficulties. It is well
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known that Eq. (2.6) cannot be used for the com-
putation of Laguerre polynomials of higher orders
because of unavoidable cancellation errors. This
numerical problem persists after term-by-term in-
tegration. Another disadvantage of this approach
is the fact that the number of pure STO-overlap
integrals which are required for an expansion coef-
ficient in the sense of Smeyers and Guseinov is
proportional to the summation index. Therefore,
when the infinite series representing the shifted
STO is truncated after n2'" terms, the number of
STO-overlap integrals required is proportional to
(n 2

'"), i.e., the evaluation becomes increasingly
time consuming. However, in the case of the new
addition theorems, Eqs. (3.8) and (3.9), the total
number of A functions required increases only
linearly with n2'". Moreover, it is not demonstrat-
ed that the overlap integrals over STO's can be
safely evaluated in the case of higher quantum
numbers. As will be shown in Sec. VI, in some
cases up to 80 terms of the n

2'" summation are re-
quired in order to obtain satisfactory accuracy.
Such extended expansions are certainly not
manageable if the overlap integrals between A
functions and STO's are expressed as linear combi-
nations of overlap integrals over STO's. We doubt
that the accuracy of the numerical results present-
ed in Table I of Guseinov can readily be improved
by increasing the number of terms. Due to the
transformation formula, Eq. (2.9), between the A
functions and the RBF's, it would be trivial to ex-

press overlap integrals over A functions in terms of
overlap integrals over RBF's, which possess a
much more compact structure' than overlap in-

tegrals over STO's. However, we discovered that
this approach suffered from the same numerical
inadequacies as that of Smeyers and Guseinov. In
fact, this was one of the main reasons for the
derivation of Eq. {3.9) which, as will be shown

later, is numerically stable even for such high sum-

mation limits as 12'"——20 and n2'" ——150.
The recently derived one-range addition theo-

rems have certain advantages over the hitherto
known two-range addition theorems, as the integra-
tion can be performed much more easily due to the
complete separation of integration variables. How-
ever, a comparison of the one-range and two-range
formulas shows that the one-range formulas con-
tain one infinite summation for the radial part
where the two-range formulas contain only a finite
sum. This is the price one has to pay in order to
be able to perform the radial integrations analyti-
cally.

Our aim in the rest of this paper is to investigate
the usefulness of the recently derived one-range ad-
dition theorem [Eq. (3.9)] for computational pur-
poses, e.g., the rate of convergence, the numerical
stability, etc. To this end we have also investigated
all molecular one-electron integrals with ETF's
which can occur in an LCAO(-MO) calculation.
Results of test calculations with various parameters
are presented.

IV. NUMERICAL PROPERTIES OF THE A FUNCTION ADDITION THEOREM

Any application of the A functions addition theorem [Eq. (3.9)] (e.g., evaluation of multicenter integrals)
typically involves a string (or strings) of T coefficients. Whether the theoretical advantages of using a one-
range addition theorem can be realized, in practice, depends upon the relative sizes of the (T) coefficients in
the string(s). Large variations in their relative sizes would inevitably lead to large cancellations and, hence,
to unacceptably large round-off errors. We have computed T coefficients involved in the expansion of phy-
sical orbitals up to 4f and found them to be typically of the order 10 ' to 10+' for all values of the expan-
sion indices (as high as n2 & 150 and l2 &20 were tried). Such a narrow spread in magnitude is unlikely to
produce appreciable round-off errors.

We have used the formulas given in I for computing T coefficients. They are reproduced below for the
sake of completeness. For n ~, n2 & n3,

T'' ''=
( —1)' ' N '(n313)

3 3 3& 3

hn3

tl ——min(t& )

tl

b
n

l
I

1

t2 —tl +n
1

t&
——min(t2)

(t2+ n 3
—l3 —1)!(2t2+2n 3+ 1)!!

(t2+ 2n 3+ 1)!(2t2)!!

max(p) ~I3

~n3+n2+p
( 1v' b

p =min(p)
(4.1a)
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Here

Ln3 ——ni+n2+n3+1,

hl, =(I, + I2 —I, )/2,
(4.1b)

TABLE I. Accuracy of computed T coeAicients from

the relation

and the summation limits are n& n3 I 5n&n2 —RHs I

min(ti ) =max(O, hn3 —n2+l2+ 1 —hl3),

inin(t2 )=max(0, I i +1+t i n —
i ),

min(p) =max(0, hn 3
—n2+ 12+ 1 —t ~ ),

max(p) =min(b/3, hn3 ti ), —

(4.1c)

n
& l&, n&l2 n

&
l&, n313

n3l3 n212
(4.2a}

(1)2T3322
1

(4.2b)

—
( 1)2T 22' ''

n313 (4.2c)

in conjunction with Eq. (4.1},all required T coeffi-

cients were computed.

where the b coefficients (already encountered in
Sec. II) are given by Eq. (2.9b). Using the symme-

try relations

1

70
1

70
1

70
1

70
2

70
2

70
2

70
2

70
3

70
4

70

4X10-"
5X10
5X10
2X 10
2X10-'4
3X 10-"
9X10-"
2X10-"
3X10—24

1X10-"
2X10-"
3X10
2X 10-"
7X 10-"
5X10
4X10-"
1X10
5X 10-"
2X 10-"
3X 10-"

W„ I,(ar)

n2

(4.3)

As the A functions form a complete orthonormal

basis set, we may equate the coefficients of
A„'l (ar) on both sides to obtain

n2

The sum over n2 is restricted by the condition

(4.4)

max(1,
I ni —n3

I

—1)&n2&ni+n3+1 . (4.5)

As at least one set of n's in the T's correspond to
a physical orbital, it is convenient to choose n ~l~ to
correspond to this physical state in view of the
condition ni, n2&n3 of Eq. (4.1). In Table I the

A. Accuracy of computed T coefFicients

This is an appropriate stage to discuss the accu-

racy of the computed T coefficients. A partial test
is furnished by setting R=O in Eq. (3.9). We then

get

results of inserting coinputed T 's (obtained using

26 digit arithmetic} in the right-hand side of Eq.
(4.4) are shown. While ni li are confined to physi-
cal orbitals up to 4f, n& is a summation index

which was allowed to go up to 70. The deviation

of test results from 5„„shows a uniform trend
I 3

with respect to both n
~

and n3, and remains ac-

ceptably small ( & 10 '
) throughout the range of

expansion.

B. Pointwise convergence

In order to check the pointwise convergence of
the translation formula [Eq. (3.9)], we apply it to a
1s function. In Table II we tabulate (4m. )'
X Aio(r —R) for fixed R=1.0z, and r =0.0
through 2.0 in steps of 0.1, also along the z direc-
tion, computed with the help of the translation for-
mula. A~o(r —R) is symmetric about R and the
function values computed using the expansion re-
flect this. The expansion in l2 was terminated in
each case after the value (for n

2'" ——60}had stabil-
ized to five figures. A comparison of the values
calculated with Eq. (3.9) (columns 2 and 3) with
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TABLE II. Pointwise application of A addition theorem to the 1s function A~p(r —R).
Here R=1.0z (fixed), r=0 0(.0 1).2.08, and n&'* 6——0 V. alue at the cusp (r=R) is always

underestimated.

f
r —R[ r&R

(4m. )' Aip( r —R)
Addition theorem

r)R Exact

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0

0.207 55
0.229 37
0.253 52
0.28028
0.30940
0.341 83
0.379 12
0.42001
0.458 70
0.486 80
0.497 29

0.208 93
0.229 86
0.252 47
0.277 89
0.307 57
0.342 50
0.382 14
0.423 52
0.46109
0.487 78
0.497 29

0.207 55
0.229 38
0.253 51
0.280 17
0.309 63
0.34220
0.378 19
0.417 96
0.461 92
0.51050
0.564 19

the exact values calculated directly (column 4) re-
veals that the expansion results more or less
preserve the symmetry. They are seen to deviate
from the exact results in an oscillatory fashion.
For fixed r and R the results were also found to
show an oscillatory behavior as a function of the
upper limit n2'" on the sum over n2, The ampli-
tude of oscillations diminishes as the summation
limit n2'" is raised. This trend is presented in
Table III for fixed r =2.0z and R=1.0z. Column
1 lists the upper limit n2'" on the n2 sum and
column 4 lists the lowest upper limit l2'" on the lq

summation for which the results (columns 2 and 3)

have stabilized to five figures. We observe that
lmax

(
mRx)]/2

The oscillatory deviations in Tables II and III
prove to be no bar to highly accurate evaluation of
integrals since integration is a smoothing opera-
tion. We shall amply back up this claim with nu-

merical results in Sec. VI.

C. Miscellaneous remarks

Although the infinite expansion in Eq. (3.9) is
symmetric under the interchange (n212m2)
~(n313m3), it is imperative when using it in a

TABLE III. Pointwise application of A addition theorem to the 1s and 2s functions
(4n)'~'Aio(r —R) and (4ir)'~ Azs(r —R). Here r =2.0z, R=1.0z (fixed), n&

'" ——10(5)30,
30(10)60. 12'" is the lowest limit of the l2 sum for which the results (columns 2 and 3) have

stabilized to five figures. Empirically, l2
'" ~ (n z

ax )'

max
n2

(4r)' A ( r —R)
( =0.207 55)

(4') A2p( r —R)
( =0.11983) l max

2

60
50
40

30
25

20
15
10

0.208 93
0.208 04
0.205 94

0.203 50
0.203 12

0.205 32
0.21147
0.222 90

0.123 71
0.121 17

0.11531
0.108 65

0.107 84
0.11409
0.13096
0.160 10

14
13
11
12
10
9

10
9
8

6
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truncated form (i.e., n2 & n 2'",t2 & I, '") to allow

n313m3 to take on all values for which

n ) I l, n2l2
Tn313

does not vanish identically; i.e.,

~l) —l2
~

&13&1~+12, l, +12+l3 even,

max(13+1,
~

n~ n2
~

——1) &n3 &n~+n2+1 .

Failure to ensure this produces meaningless numer-

ical results.
Expansion (3.9) is also symmetric under the in-

terchange r~R and truncating it introduces only a
very slight asymmetry. By far the largest effect of
interchanging r and R is observed on the rate of
convergence. Which choice proves more profitable

depends on the particular application. We shall

make further references to this point in the Secs. V

and VI on multicenter integrals.

V. MULTICENTER ONE-ELECTRON
INTEGRALS WITH A ADDITION

THEOREM

We now consider the application of the A addi-

tion theorem to the evaluation of multicenter one-

electron integrals which occur in molecular calcu-

lations. Since integrals over STO's or RBF's
which occur in LCAO(-MO) calculations (i.e., with

lower quantum numbers) can be readily expressed

by a linear combination of integrals over A func-

tions with the help of Eqs. (2.6) to (2.10) we con-

sider integrals over A functions only. Our aim in

this section will be to express them in terms of
one-center integrals which can be evaluated analyt-

ically. This is achieved by successive applications
of the A addition theorem which makes it possible

to reduce the number of centers in the integrand by
one with each application.

A. Three-center nuclear attraction integral

The most general one-electron integral is the three-center nuclear attraction integral

&nblb b b I
'I «««0 «&=&A.,I, ( ( —Rb»l 'IA.«i«(@r —R«))& (5.1)

where the bra, the ket, and the nuclear attraction operator are centered on Rb, Rk, and the origin, respec-

tively. As the first step towards evaluation, we shift one of the two basis functions —for example, the bra-
to the center of attraction in order to obtain a series of two-nuclear attraction integrals:

&nblbmbaRb
~

r '
~
n«l«m«PR«)

I I

=a ggg &lbmb
~

l3mb —m2 ~l2m2 &( —1) 'gA, I, (aRb)
1 I 1

l3 l2 rn 2
ll p

I I
nb lb, n 2 I

2X QT„,I, &n3l3mb —m2a
~

r
~

n«l«m«l3R«& .
I

This series is doubly infinite (in variables n2 and 12) since

0 &12 & ~, 12 + 1 & n & & ~,
while the summation limits over n 3 and I3 are determined by nb, lb, n2, and l2 and are finite:

max(
~

lb —lp ~, ~
mb —m2

~

) &13 &lb+lq, lb+12+13 even,

max(13 + 1,
~

nb n2
~

—1—) & n 3 & nb + n 2 + 1 .

(5.2b)

(5.2c)

(5.2d)

B. Two-center nuclear attraction and overlap integrals

Two types of two-center nuclear attraction integrals occur in molecular calculations. In one type, the bra
and the ket share a common center while the nuclear attraction operator has a different center. Evaluation
of such integrals does not involve the use of the A addition theorem and will not be discussed here. The
other type,



25 NUMERICAL PROPERTIES OF A NEW TRANSLATION FORMULA. . . 121

(nblbmba
~

r '
~ nblkmbpRk),

where the Coulomb operator of nuclear attraction and the bra (or the ket) state have a common center, was
encountered in the series expansion [Eq. (5.2)] of Sec. VA. To evaluate it we shift the ket from Rk to the
common center of nuclear attraction and the bra. The result

(nblbmba
I
r '

~
nkl/cmkl3Rk )

=p g (lbmb
I lbmb

I 12mb mb)—( —1) 'QA„ i (Wb)
12 1l2

X g (nblbmba
~

r '
~
nilbmbp) T„,i,

" (5.3a)

12+ 1 & n2 & ~, max(lb+ 1,
~
n2 nk

~

——1) & n3 & nk+n2+ 1 (5.3b)

is an infinite sum (over n3) of one-center nuclear attraction integrals. The sum over 12 is restricted by the
Gaunt coeAicients to only a few permissible values. In arriving at Eq. (5.3) we have used the symmetry
property [Eq. (4.2a)]

n &1&,n212 n
& 1&,n313

T„ 1 =T~ 13 3 2 2

of the T coefficients to interchange n212 with n313 in Eq. (3.9). The infinite series [Eqs. (3.9) and (5.3)]
remain unaltered by this operation (see Sec. IV), but their convergence rate is now altered to our advantage
in Eq. (5.3).

Next in this section we consider the general overlap integral (nblbmba
~
nklkmk pRk ), where the bra and

the ket are situated on different centers. To be specific, we have considered the case of the bra at the origin
and the ket at Rk without any loss of generality. This integral is readily expressed in terms of an infinite
series of one-center overlap integrals. Following the steps which lead us from Eq. (3.9) to Eq. (5.3), we ob-
tain

(nblbmba
~
nklbmbpRk )

=p g (lkmb
~

lbmb
~

12mb —mb)( —1) ' gA„"i (pRb) g(nblbmba
~
n3lbmbp) T„ i"

83

(5.4a)

12+1 &n2 & 00, max(lb+1,
~

nk n2
~

—1) &n3 —&nk+nz+1 . (5.4b)

C. Kinetic energy integrals

We turn now to the kinetic energy integrals

(nblbmba
~

—( —, )6
~

nf, lkmbpRp ) .

Their evaluation is greatly facilitated by making use of the relations'

n

EAg(ar)=a g c,"'Aii(ar) ci"'A/+i i(ar)l—(ar)
r =1+1

(S.sa)

where

c,"=(1+1)N(n, l)N(t, l)[(21 +3)!!1!]'2' [(2n +1)(l +t)!N (n, l)(t!)
—(2t+1)(1+n)!(n!) 'N (t, l)] for t &1,

ci" ——2 [N(n, l)(2n +21)!!] ' for t =1,
N(n, l) =[(n —1 —I)!/(n +1+1)!]'~

(5.5b)

(5.5c)
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Thus we have that
2

(nblbmba
I

——,~
I
nklkmkWk l

2 erb (lb+ llbmba
I
r '

I nklkmk~k }

lib
nb lb

c, (rlbmba
I nklkmkpRk }

t =lb+1
(5.6}

D. One-center nuclear attraction and overlap integrals

As evidenced from Eqs. (5.2), (5.3), (5.4), and (5.6) multicenter one-electron integrals reduce ultimately to
expressions involving as their basic ingredients one-center nuclear attraction and overlap integrals. Of the

two, the latter is readily evaluated:

lb +3/2 lk +3/2
(nblbmba I nklkmkp} =(2a) N(nb, lb)(2p) N(nk, lk)5~ I„5~ ~

( P) 2lb+2 (2lb+2) (2lk+2)
e + 'r L„~ I(2ar)L„„ I I(2Pr)dr . (5.7}

For the only surviving case, viz. , l~ ——lk, the definite radial integral above is known. ' After some manipula-

tion of the hypergeometric functions 2F1 the overlap integral is most conveniently written as

(nblbmba I
nklkmk) =5~,~„5I ~„{[2(ap) /(a+p)] [(a—p)/(a+@)] (nb+nk)!

X [(nb —lb —1)!(nb+lb+1)!(nk —lk —1)!(nk+lk+1}!]

X,F, ( (nb lb —1), ——(nb+—lb+1};—(nb+nk};(a+p}'/(4ap)) j . (5.8)

In the limit a—+P the curly bracket may be shown to approach 5„„.The hypergeometric function ter-

minates after (nb —lb } terms and its argument, (a+p) /(4ap), is never singular.

The two-center nuclear attraction integral is evaluated in a similar manner after using the relation

Lg '(x}= yLp "(x)
p=0

(5.9)

twice —once for the bra and once for the ket. The result is a finite double sum over an expression similar to

Eq. (5.8). Explicitly,

(nblbmba I
r '

I nklkmkp}

=5~b~k5ibIk(4ap)' [(nb lb —1}!(nk——lk —1)!/[(nb+lb+1)!(nk+lk+1}!]j'
&lb nk

X g g I (nb +lb )!(nk+ 1k )!/[(nb —lb —1)!(nk —lk —1)!]j
'

b
——lb+1 teak

——1k+ 1

I

X j [2(ap)' /(a+p)] [(a—p)/(a+p)] '(nb +nk —1)!

X [(nb —lb —1)!(nb + lb )!(nk —lk —1)!(nk +1k )!]

X2F&(( nb —lb —1),—(nb+lb); —(nb+nk —1)—;(a+p) /(4ap)) j . (5.10)

Again the hypergeometric function terminates after (nb —lb) terms. Details of the evaluation of Eqs. (5.9)
and (5.10) will be presented elsewhere.
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VI. RESULTS OF ONE-ELECTRON
INTEGRALS

Since the scope for application of the A addition
theorem to multicenter integrals is potentially quite
large, we discuss at some length the results ob-
tained for them.

A. Two-center integrals

The rate of convergence for the series expansions
of two-center nuclear attraction and overlap in-
tegrals, Eqs. (5.3) and (5.4), depends primarily
upon the ratio of the two orbital exponents a and
P, or more precisely, upon the quantity
(a+P) /(4aP). For a=P, (a+P) /(4aP) =1, the
series terminate after n2 ——nb+nk and
n2 ——nb+nk+1, respectively. More terms are
needed as (a+P) /(4aP) increases from unity.
This is illustrated in greater detail in Table IV.
Each entry in the table corresponds to

(nslsms ——»a
I

&
l
nklkmk =0,P=1,Rk ),

6'=1 or r

corresponding to the overlap integral or the nuclear
attraction integral. All permutations involving 1s,
2s, and 2p states are considered. In columns 4
through 7 the vector Rk remains fixed at 2.0z,
while a takes on the values 5.0., 10.0, 15.0, and
20.0. In columns 8 and 9, Rk takes on the values
5.0z and 10.0z while a remains fixed at 10.0.
Every entry is in two parts: The real number is
the converged value of the integral [Eqs. (5.3) and
(5.4) after n2 ——85], the incertainty in the last digit
being (2; the integer number below it is the small-

est value of n2 after which the integral had con-
verged to within six digits after the decimal point
(i.e., the converged value had an absolute uncer-

tainty of & 10 ). The table thus provides infor-
mation about both relative and absolute measures
of convergence obtained. The rate of convergence
for fixed Rk (columns 4 through 7) appears to
show no predictable trend with respect to different
states, however. Comparison of columns 5, 8, and
9 throws light on the behavior of these integrals
with respect to variation in the internuclear dis-
tance Rk for fixed a ( =10.0) and P ( = 1.0).
Fewer terms are needed in the sum over n2 to
achieve the same absolute uncertainty ( —10 ) as
Rk rises. This comes about, largely because the in-
tegrals themselves become small. There appears to
be a slight deterioration in the relatiue uncertainty

with rising Rk, but this is of no importance in
molecular calculations. In brief, then, it appears to
be possible to keep the absolute error below 10
for a wide range of parameters by summing Eqs.
(5.3) and (5.4) up to n2 ——80.

The results presented in Table IV were obtained
by translating the ket to the bra. It would be
equally legitimate to translate the bra to the ket, to
compute the overlap integrals in Table IV. This
was done and both sets of results were found to
agree.

A point of some considerable interest which
emerged from these calculations was the fact that
the rate of convergence was much better when the
more diffuse function was expanded about the
sharper one. It can be understood in terms of the
fact that Rk, the distance of translation, is smaller
in relation to the "spread" of the diffuse function
as compared to the sharper function. The impor-
tance of always expanding the more diffuse func-
tion for better convergence cannot be overestressed
for programing purposes.

Before leaving the topic of two-center integrals it
is legitimate to turn to the question of their accura-
cy. We have compared an arbitrary selection of
our results with published results' and found them
to be in agreement. The results so far published in
the literature, however, have very few significant
digits (typically four) and do not provide a useful
measure of accuracy. Recently two-center nuclear
attraction and overlap integrals have been comput-
ed close to machine accuracy by using the RBF's
and their convolution theorem in this laboratory. '

A comparison with these results —which also pro-
vides an independent check—enables us to safely
claim an accuracy of at least 7 significant figures
(relative) in the converged results and often more
than that.

B. Three-center nuclear attraction integral

The three-center nuclear attraction integrals are
much more complicated than the two-center ones.
Two basis functions were shifted to the center of
attraction, resulting in infinite sums (over the in-
dices n 3, nz, and l2) in Eq. (5.2). Understandably,
the three-center integrals exhibit a slower conver-
gence rate than two-center ones.

In Table V we present the results of our calcula-
tions for a variety of cases. The relative sizes of
the orbital exponents, or the quantity (a+P)2/
(4aP), again appears to determine the rate of con-
vergence. Neither the geometry nor the choice of
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mb Nlk
TABLE V. Three-center nuclear attraction integrals (A„"~ (a(r —Rk))

~

r '
~ A„,'I, (p(r —Rk))), Ink 0™kfor

various states, geometries, and orbital exponents. (+n) denotes the uncertainty in the last digit.

nblb

Rb
(Rb, ob )

Rk
(~k ~k) max

n2 Imsx
2 Integral

1s 1s (2.0,60')

(120')

1.0 (2.0,0') 1.0 30
150
40

150

6
20
6

20

0.294 5(+3)
0.294 562(+ 1 )

0.152 5(+2)
0.152 366(+1)

1s (1.5,0 )

(2.5,0')

(0.5,180')

(0')

30
150
30

150

6
20

6
20

0.449 9(+1)
0.449 956(+ 1)'
0.341 06(+4)
0.341 022(+ 1)'

(2.0,60')
(120')
(180')

1.0 (2.0,0') 1.0 150
150
150

20
20
20

0.112456(+ 1)
0.076 185(+1)
0.082 631(+1)

2p 1s (2.0,60') (2.0,0') 55
85

12
12

0.057 975(+2)
0.057 976(+1)

1s 1s (0.5,60')

(120')
(180')

1.0 (1.5,0') 5.0 30
150
150
30
70

6
20
20

6
8

0.132 3(+1)
0.132 313(+0)
0.085 929(+—1)
0.071 7(+ 1)
0.071 72(+2)

'These two geometries can be worked out from Hirschfelder et al. (Ref. 17). Their values were 0.449956 and 0.341022,
respectively.

the particular state (i.e., whether 1s, 2s, 2p, etc., are
chosen) appear to have any appreciable influence
on it.

Absolute accuracy of 10 was achieved with
sums over n2, n2 extended to 150 and that over l2
to 20 for equal orbital exponents a =P. No signs
of numerical instability were encountered even for
such large indices. It may be pointed out that the
convergence rate of the three-center integral is ex-
pected to show substantial dependence on the par-
ticular strategy chosen to evaluate it. For example,
alternative strategies could involve one application
of the A addition theorem (to shift the bra to the
ket or vice versa) and one application of the La-
place expansion of

~

r —R
~

'. We shall not pur-
sue this point any further in this paper. Instead,
we shall content ourselves with having demonstrat-
ed that the A addition theorem can be used for ac-
curate evaluation of three-center nuclear attraction
integrals without encountering numerical instability

even for indices as high as n 2
'"——150,l2'" ——20.

(We have not tried to go higher!)

VII. SUMMARY AND DISCUSSION

The A addition theorem promises to be a very
useful computational tool as seen in Secs. IV. and
VI. It is demonstrably free of numerical instability
even when a large number of terms are kept in the
expansion. For n2 up to 150 and l2 up to 20, no
difficulties were encountered. Longer expansions
were not tried.

In pointwise applications [i.e., evaluation of
A„'& (r —R) by means of its expansion Eq. (3.9)],
the following points emerged. For fixed R and
summation limits n2'", l2'" on n2 and I2, respec-
tively, the deviation from the true function value as
a function of r is oscillatory. For fixed r, R, and
n2'", the function value computed with the help of
the addition theorem "saturates" rapidly with
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respect to l2. That is, raising the l2 sum beyond a
certain limit l2 does not alter the computed func-

tion value to within given precision. In fact, we

empirically found that 12'" ~ (nq '")'~ . The devia-

tion of the saturated value from the true function
value as a function of n2" is again oscillatory.
The amplitude of these oscillations diminishes as
the summation limit n2'" is raised.

Under term-by-term integration the A addition
theorem is likely to find a wide range of applica-
tions. Not unreasonably high absolute accuracy of
10 can be safely demanded. In addition, the
method suffers from none of the disadvantages of
Barnett and Coulson's method or the method of
Smeyers and Guseinov. In particular, physical
states with higher quantum numbers (e.g., 4f) are
just as simply and effectively treated as those with
the lowest quantum numbers (e.g., ls). Lengthen-

ing the expansion (as, for example, to increase ac-
curacy) also does not create numerical difficulties.
The rate of convergence depends upon particular
applications and is generally found to be quite
good. For given separation R, the addition
theorem works better with a diffuse function than
with a sharper one. In the evaluation of integrals,
therefore, which A function is expanded can
strongly influence the rate of convergence.

It is easy to obtain a rough estimate of the in-

tegral with very few terms in the expansion. Gen-

erally speaking, the cost per gain in accuracy rises
with the accuracy demanded. Accuracy of three to
four digits can be readily had with quite small ex-

pansions (Table V). Accuracy of six digits requires
considerably larger though manageable expansions.

Apart from this, different stategies (a strategy
refers to a particular simplification of a multicenter

integral) also would exhibit quite different overall

convergence rates. For the restricted scope of this

paper, viz. , to investigate the feasibility of perform-

ing calculations with the help of the A addition
theorem, we have limited our study of each type of
integral to a single strategy —that of obtaining
analytical formulas, not necessarily the best one
from a computational point of view. With this

proviso, the time taken to evaluate typical two-

center overlap and attraction integrals in Table IV
was about 3 and 12 seconds, respectively. As a
measure of the speed of our computer, a square-

root operation takes 0.43 msec. For the three-

center attraction integrals in Table V, with the
smallest of the expansions (Iq

'" 6,——n 2
'"——30), it

took about 60 seconds. With a medium sized one

(12
'"——12,n 2

'"——80) it took 130 seconds, and with

the largest expansions (I2
'" 20——,n 2

'"——150) it
took 280 sec. As about 80—90% of the time goes
in reading the T coefficients into the core, a
machine with the ability to transfer data rapidly

(not a strong point of our machine) would take
much less time. Scope for further improvement

also exists, as mentioned above, in the development

of strategies which maximize the computation effi-

ciency. Work in this direction is in progress.
It is clear that the A addition theorem can be

applied to the evaluation of multicenter molecular
integrals. It was found to be possible to calculate
all one-electron multicenter integrals with an abso-

lute accuracy of 10 with a reasonable number of
terms (nq'" &80 for two-center, nz'" &150 and
12'" & 20 for three-center integrals) in the expan-

sion. Even longer expansions (for higher accuracy,
for instance) are not expected to meet with any nu-

merical diificulties.
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