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Pretransitional behavior of the density of the nematic phase
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Volume and temperature studies on pentylcyanobiphenyl, in a single-capillary dilatome-

ter capable of a sensitivity in density of 2X 10 g/cm in a constant-temperature bath

stable to +0.2 mK, are reported. The data in the nematic-phase pretransitional region

have been fit by an equation of the form V =a +bT +c
~

I —T/Tsp
~

', where Tsp

represents the limit of mechanical stability of the nematic phase (where dp/d V=O), and

the "pretransition exponent" e=0.50+0.01. To this accuracy, the nematic volume near

the transition has the square-root behavior also suggested earlier by experimental results

on N-(p-methoxybenzylidene)-p-butylaniline (MBBA) and other compounds. A new ther-

modynamic mean-field understanding of this behavior is presented and discussed. Tricri-

ticality of a particular kind is also discussed.

The densities of nematic liquid-crystalline phases
show strong pretransitional decrease as the
transition to the isotropic phase is approached.
Press and Arrott, ' Chang, Armitage and Price,
and others have determined the changes of
volume with temperature for MBBA, alkyl

cyanobiphenyls, and 4,4'-azoxyanisole (PAA)
among other nematics. These authors reached no
definite conclusion as to the value of the "critical
exponent" although a square-root behavior was

strongly suggested for various, sometimes
unrelated, reasons. We present here, volume-

temperature data obtained on pentylcyanobiphenyl
(5CB) in a nematic phase. As we discuss below,
points in the two-phase region must be excluded
from the data set used for finding the
"pretransitional exponent. "

We have used our dilatometric apparatus for de-

tailed measurements on 5CB, reading 86 points
spaced at about 50-mK intervals (or less) in a ther-
mostatted bath stable to +0.2 mK. The TNi of the
sample as observed by microscopy was 37.5'C.
The dilatometer consisted of a glass bulb 7 cm in

volume topped with a glass capillary of 1-mm

internal diameter. The heights were read to 0.02
mm with the aid of a Wild cathetometer (Switzer-
land). Such measurements correspond to a sensi-

tivity in density of 2X 10 g/cm .
The behavior expected from the mean-field

theory is shown in Figs. 1(a) and 1(b). As the tem-
perature is raised, the order parameter S, deter-
mined by BG/OS=0, decreases to its lowest possi-

ble value at the point L in Fig. 1(a), where the

mean-field free energy G has a horizontal inflec-

tion,

For higher temperatures only isotropic solutions,

S=O, are possible. Our earlier calculations, now

confirmed by the full solution of the Onsager in-

tegral equations, show that the isotherm p =p (p)
of the mesophase would have a slope of negative

infinity at L, that is, Bp/Bp= —00 meaning L
marks the limit of orientational stability. Here, p
is the pressure and p is the number density. More-

over, before orientational instability limit at L
could be reached, the "spinodal" point, marked SP
in Fig. 1(b), would have to be crossed. Because at
SP Bp/Op=0 the nematic phase becomes mechani-

cally unstable with respect to isotropic phase, but,
is still orientationally stable because [see Fig. 1(a)]
9 6/BS is positive. At SP the isotropic density

fluctuations would be infinite since the isothermal

bulk compressibility is infinite. At constant pres-

sure this limit of mechanical stability of the
nematic phase would correspond to some tempera-

ture Tsp, presumably higher than the true equili-

brium transition temperature TNi. The tempera-
ture T** corresponding to L, the ultimate limit of
the orientational stability of the mesophase, would

probably be higher still. The low temperature limit

for isoiropic phase existence will be reached at T*,
when, for S still zero, 9 G/ijS =0. This limit, ex-
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FIG. 1. (a) Mean-field free energy as function of the order parameter. The mesophase occurs at T(T. (b) The
pressure-density isotherm calculated in Ref. 8. Before L is reached the nematic becomes mechanically unstable at SP,
where dp/d V=O. The dashed line is the inaccessible locus of maxima in the free energy which joins the isotherm of
the isotropic phase at the bifurcation point B.

(p —psp) = ( V —Vsp)
Bp

+2 2
(V VSP) +a'p

BV

At the spinodal point, SP, (dp/dp) =(dp/d V) =0,
and we see immediately that the isotherm behaves
like ( V —Vsp), that is quadratically. This means
(dp/d V) =const(V —Vsp). Since

d V (Bp/BT)v
dT (Bp/BV)p

'

and assuming further that the numerator of (2) is

(2)

pected to be below TNi, was introduced in early

mean-field theories and its existence is indirectly

supported, for example, by bire-fringence data.
Temperature T' corresponds to the bifurcation

point B in Fig. 1. These four temperatures, T',
TNi Tsp and T", can be discerned within the
mean-field theory of the first-order nematic isotro-

pic transition. Pursuing the consequences of the
mean-field theory, let us concentrate on the proper-
ties of the right-hand side of the lower isotherm in

Fig. 1(b), describing the compression of the meso-

phase. Considering a Taylor's expansion about a
point psp Vsp at constant pressure, we have

well behaved and smooth, we can integrate Eq. (2)
between two states at the same pressure, to con-
clude that the volume will vary as (Tsp T)'~ and-
that the thermal expansion dV/dT will diverge as

(Tsp —T) . The constant pressure curve
V= V(T) should look like the dashed line shown in

Fig. 2 for a hypothetical absolutely pure substance.
Integrating Eq. (2) and allowing for a linear back-
ground term, we obtain

V =a +bT+c
~

1 —T/Tsp
~

', (3)

with e=0.5. Similar equations have been used in
Refs. 1 and 3, but with a different explanation of
the origin of the exponent and the position of the

asymptote to the d V/dT vs T curve. Here the ex-
ponent is —,, simply because the isotherm p-V is
quadratic, as derived above. One might expect the
experiment to deviate from this prediction. The
experimental pattern, as shown by the solid line in
Fig. 2, is complicated by the fact that no ideally
pure liquid crystal exists so that the single clearing
point TNi in reality splits into two temperatures T'
and T" delimiting the two-phase region. The
latter region must be excluded from the analysis
since in that region dV/dT is due to the changing
proportion of the two phases as well.

Figure 3 shows the deviations from experiment
obtained using Eq. (3) with the constants

a =241.6808 cm mol
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e =0.50+0.01 .

FIG. 2. Volume as a function of temperature of the
nematic two-phase and isotropic regions for a substance
which is not absolutely pure. At T' the first drop of the
isotropic phase appears and at T" the last drop of the
nematic disappears. Tsp is above T'. The nematic was

extrapolated about T' and has a cusp at Tsp correspond-

ing to a volume Vsp.

b =0.144436 cm ('C) 'mol

c= —0.470472 cm'('C) ~mol

Tsi =37 5554 c+0.000

Therefore, the compressibility divergence expon-

ent is equal to its mean-field value e = —,. This is

our principal result. It is not really understood be-

cause if the transition is simply first order the
mean-field reasoning requires a continuation into a
region of metastable states up to the divergence of
the isothermal compressibility of the nematic and

that can hardly be accepted, except provisionally.

The same path at the liquid-vapor critical isotherm

corresponds to the exponent delta, but here, we are
on an isotherm which can be likened to the liquid

isotherm well below the critical point.
Recently Keyes' has suggested that tricritical

values may be assigned to exponents related to
orientational instability of the isotropic phase at T.
Priest and Lubensky" have applied renormal-

ization-group theory to orientational ordering of
liquid crystals but not to the mechanical instability

of the nematic, which governs the thermal expan-

sion divergence. Recent specific-hest measure-

ments of Anisimov et al. ' support this idea of a
tricritical behavior. Let us examine what tricritical
behavior could mean in our context. %e can see

from Fig. 1(a) that a tricritical point in the G-S re-

lationship corresponds to the disappearance of the
(unstable) 8 apart con-taining maxima of 6 vs S,
thus to the merging of points 8 and I.. If 8 is dis-
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FKJ. 3. The deviation plot of our experimental results and Eq. (1) in arbitrary units. Roughly 1 on the graph

corresponds to 1x10 % change in the total volume.
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tinct from I., the transition is first order, and if
only B appears and Qo I, thc transition is second
order. However, a closer examination of the isoth-
erm, Fig. 1(b), shows that the relationship between
6 and S represents only a part of the picture.
Even after L has come closer to B and then disap-
peared from the diagram, the transition may still
be first order if the isotherIn of the mesophase
starts from B with a negative slope, dp/dp (0.
The points between B and SP will still be unstable
and the transition, first order. The transition be-
comes second order with dp/dp ~ 0 at B both for
the isotropic and for the mesophase only after SP
has merged with B. %e had such a case in our cal-
culations' for a two-dimensional system where a
tricritical point of the kind has been found. There,
the changeover from a first-order to a second-order
transition occurred in relation to the slope of the
p-p isotherm, whereas the G-S relationship predict-
ed a second-ordci transition ln all cases. Such a
tricritical point has a horizontal slope, dp/dp=0
at B. Moreover, for dp/dp gO the transition be-
comes first order. Near such a tricritical point, the

tricritical point is the same point as B and the spi-
nodal point, Eq. (1) also applies. Thus our results

are explained by a proximity to the spinodal point
which may, in fact, be a tricritical point, This is

perhaps a more satisfactory statement since a spi-

nodal point is never accessible experimentally while
such a tricritical point might be. It remains to
await for a deeper explanation as to why a tricriti-
cal behavior should be expected at all. To date
there is no theory molecular or otherwise which
would produce such a point, with a possible excep-
tion of Ref. 13 which, however, deals only with
d =2.
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