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It is well known that the concept of spin temperature may not be used to describe a

statistical ensemble if the off-diagonal elements of the density matrix are not zero. This

concept does not provide a valid description of masers, lasers, or conventional NMR or

electron-spin resonance (ESR). It may be used to characterize transient behavior in a spin

system "prepared" by sudden reversal of the magnetic field or a saturating pulse. Spin

temperature, in such cases, is well defined after a time T2. In nuclear-spin systems this is

generally much shorter than the time T& required to reach thermal equilibrium with the

lattice. The thermodynamics of irreversible processes provides an alternate and more

comprehensive theoretical model for the description of spin systems. Examples are given

where it may be used when the off-diagonal elements of the density matrix are not zero.

The advantages and limitations of the spin-temperature formalism have been experimen-

tally studied, primarily by means of the techniques of NMR. It is suggested that the pre-

dictions of irreversible thermodynamics be tested by observing the steady-state heat capa-

city of a maser at low temperature or the rate of evaporation of liquid helium in a tran-

sient experiment on a nuclear-spin system in which heat is being delivered irreversibly to

the bath.

INTRODUCTION

The concept of spin temperature, which links

nuclear magnetism and thermodynamics, has been

used to provide a theoretical description of systems

not in thermostatic equilibrium for about 30
years. ' In some instances such a description is

rigorously justifiable on theoretical grounds, and it
has been successful in the interpretation of a
variety of experiments. In other cases, the concept
is introduced only as a convenience and is not a
valid thermodynamic coordinate.

The development of the thermodynamics of ir-

reversible processes antedates the spin-temperature

concept by about 15 years. It has been used to ex-

tend the ideas of thermodynamics from the

description of a closed system in which all macro-

scopic quantities remain time invariant to an open
system in which there is a steady-state flux from
the environment. The thermodynamics of irrever-
sible processes has been applied primarily to the
thermoelectric effect, molecular diffusion, chemical
reactions, and similar processes. However, a few

papers have been written about systems which have
also been described using spin temperature.

It is the purpose of this paper to treat several ex-

amples of spin systems in which both approaches
are used to predict or interpret the physical

behavior. We will consider thermostatic proto-

types which are limiting cases of steady state and
transient systems. In each example treated, we will

derive the thermodynamic properties in both the
spin-temperature and irreversible-thermodynamics

language. We will not derive the underlying for-
malism used, but rather use the results of general

arguments from the literature to critique the dis-

cussion. We will relate some of the results to actu-
al experimental situations and suggest observation-
al tests of the theory.

CASE 1. SPIN-
2

SYSTEM

Consider N identical particles of spin —,A' and

magnetic moment in a static magnetic field Hp
which may or may not be in thermostatic equilibri-

um with a heat reservoir at temperature TL. The
system could be protons each of magnetic moment
p=2. 79efi/2Mc =1.41)&10 erg G ' or a non-

degenerate electron gas each with magnetic mo-
ment @=equi/2mc =9.27&(10 ' erg 0

Let us imagine that the spin system is isolated
from its environment and is characterized by its
own temperature Tz. This spin temperature is de-
fined by means of the fundamental thermodynamic
relationship
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with

TsdS =dE+MdH, The entropy may now be written explicitly as a
function of E and H,

1 ds
Ts dE

In general

(2)

S= Nk—gp; Inp;
l

N
I p I

Ho —E N
I p IHo —E= —k ln

2
I p I

Ho 2N
I p I

Ho

S = —Nk Trp lnp, (3)

where p is the spin-density matrix. Let us assume
the off-diagonal elements of p are zero, without
which no meaningful definition of temperature ex-
ists. It is easy to construct the diagonal values of
p in the energy representation. They are just the
relative population numbers of the eigenstates of
the Hamiltonian

N
I p I

Ho+E N
I p IHo+E

+ ln
2lplHo 2N lplHo

Using the definition of spin temperature (2), we
have

2
I p IHo

Ts
k lnp)/pp

(10)

~0 p HO ~

whose eigenvalues are

ei= —
I p IHo

(4)

n, 2lplHo
kT,n2

Equivalently, the ratio of the occupation numbers

n;=N . (6)

See Fig. 1. The energy of the system

E= ne;. (7)

Hence

and

N lp IHo —E
2N lplHo

p I
Ho+E

2N lplHo

lp IHo

That is p; =n; /N i =1,2, where the n; are the oc-
cupation numbers of the two states such that

It is clear from (8) and (10) that the spin tempera-
ture ranges from 0 to + oo to —0 depending on E.

N
I p I

Ho p& = I p2=0 and ~s =0. If E
is negative, but

I

E
I

&N
I p I

Ho, p& &p2, and

Ts&0. If E=0, pi
——p2 and Ts=+ao. If

0 E&&N p I Ho, p~ &p2 and Ts &0. Finally if
E=N

I p Ho, p2 I, p~ ——0, an——d Tq ———0.
In the vast majority of thermodynamic systems,

the temperature is positive. This is because the en-

ergy involves the particle kinetic energy, for which,
in principle, there is no upper limit. The corre-
sponding entropy increases monotonically with en-

ergy, guaranteeing a positive slope for dS/dE for
which T & 0. In the spin system on the other
hand, the energy is bounded below and above. The
entropy starts at zero, goes through a maximum at
E =0 and returns to zero as E approaches its
upper limit.

In the thermodynamics of irreversible processes,
one basic assumption is that the Gibbs relation

TL dS =dE +MdH —g p;dn; (12)

is valid when the system is not in thermostatic
equilibrium. W'e use TL here to denote the tem-
perature of the heat reservoir or lattice, in which
the spin system is embedded. The chemical poten-
tials

FIG. 1. Energy level diagram for spin- —system.

ds
Pi

———TI.
i EHn +n;

(13)
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are the key parameters in this formulation of the

problem. We construct the entropy as a function

of E, H (or the e; and the n;) R.ewriting (9),

S= Nk—gp;lnp;

=Nk lnN —k g n; inn; — g n; e; +1 E

and

M =— lnZ =N
I p I

tanh
N I p I

Ho

P dH kT

S=Nk (lnZ +PC)

=Nk [ln(e" +e ")—x tanhx],

(21)

(22)

From (13) and (14)

p, =kTL(1+inn, )+e; .

(14)

(15)

ds
CH ——T

dT
=Nkx sech x .dE

dT H

(23)

ni (pl AM2)+2 I p I
Ho

=exp
kTI

Now the ratio of occupation numbers is

(16)

It is clear that limCH ——0 as T~O or as T~ oo.

CH is finite and positive for all other values of T.
It is easy to show that CH is a maximum at
x =1.20, for which

Tl
Ts

1+(p'I p2) i2
I p I

Ho
(17)

By comparing (11) and (16) we have a formal link

between the spin temperature and the lattice tem-

perature,

(C ),„=0.439Nk . (24)

It is well known that this heat capacity is very

large indeed compared to the lattice heat capacity.
If we take a moderate magnetic field Hp =3000
gauss,

If p&
——p2, the system is in thermostatic equilibri-

um: T~ ——TI ——T. If pi &p2, the spin system is

colder than the lattice 0 & Tq & Tl. . If
p'2 pl 2 plHo "t=n2 «T.=+~
pz —p» 2 p I

Ho, there is population inversion,

np)ni or T, &0.
We now outline the thermostatic properties of

this system. They will be useful in the discussion

of more complex physical situations. Starting with

(16) or (11),with p& ——p2, T~ ——TL ——T the relative

occupation numbers are

eZ
pi = „„p2.=

e +e
e

—Z

e"+e
(18)

The partition function of the canonical distribution

is

1.68X10 ' K for electrons,

2.55 X 10 K for protons,

The low-temperature lattice heat capacity corre-

sponding to the Debye model is

4 3

C,='" Nk
'

5 e,
with

8 =250 K.
Comparing CH and Cv at T,„,we find

CH 6. 19X10 for electrons,

1.76X 10' for protons .

(25)

(26)

(27)

with

Z z+e —z

x=Plp, lHo, P—:(kT)

(19)

Roughly 1 g of an electron paramagnetic salt or 3

p of a nuclear paramagnetic solid has the heat
capacity of 6 tons of diamagnetic material. At
these low temperatures, an appropriate spin system,
rather than the lattice, must be taken as the heat

reservoir.
The energy E, magnetization M, entropy S, and

heat capacity CH may now be found from Z:

E = N lnZ = N—
I p I

Ho tanh-a I p I
Ho

a kT

(20)

CASE 2. SPIN-
2

SYSTEM

Transient behavior

The spin- —, system described in case 1 is allowed

to come to thermostatic equilibrium in a static
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magnetic field so that

Ni y„fiHp

N2 kT
(28)

and

n2 ——N
e —2t/T)

z +e ' tanhx
+e —Z

(33)

n ]/2~n 1/2 (29)

is

dn& dn2

dt
= —n )co)2+n2c02( =-

dt
(30)

Here Tz is the lattice temperature, y„=p„/—,fi is a
positive nuclear gyromagnetic ratio. We use capi-
tal N; to denote equilibrium occupation numbers
and lower case n; for the transient values.

In a time ht && T~, the spin lattice relaxation
time, we reverse the direction of the magnetic
field. In this process no transitions are induced
and the population of the energy levels remains un-

changed. It is an adiabatic transformation in the
Ehrenfest sense. The rate equation describing the
chemical reaction

with x defined by (19). This solution satisfies the
boundary conditions at t =0 and t = oo.

The limiting case T =0 is of interest. At this
temperature x~ ~ and

—2t/T)
n] ——N(1 —e ')

(34)
—2t/Ti

n2 ——
¹

At t =0, n
&
——0, n2 ——N. As t~ oo, n

~

——N, n2 ——0.
Equating n

~
=nq in (34), we find that t =(T~ I

2}ln2 is the time lapse for the two populations to
become equal to N/2.

Given the occupation numbers, the other tran-
sient thermodynamic quantities, E, M, S, and CH,
are readily found:

where n &+n2 ——N. In thermostatic equilibrium,
the rate equation is zero and

—2t/TiE = NpHp tan—hx[1 —2e ] . (35)

r.~p
=exp

n2 N2 cgi2 kT
(31}

At t~~ and t =0

E = —NpHp tanhx and +NpHp tanhx, (36)

We assume that the ratio of the thermal relaxation
rates remains constant for all values of the n;. The

equilibrium states of the n; s occur after a time in-

terval ht &~ T&. The co,j and the relaxation time
T] are related,

respectively.

2t/T
M = (n ~ nq )p =—Np tanhx [1 2e '] . —

{37)
N~2+N2~

T]
2

At t =0, immediately after reversal, n
&
——N2,

n2 ——N&. We solve (30) for n ~ and n2..

(32)

At taboo and t =0

M —Np tanhx and —Np tanhx,

n] ——N
eX

ez+ e —x

—2t/Ti—e ' tanhx
respectively.

S=Nk lnN—
eX

eZ+e

—2t/T,—e ' tanhx lnN
eX

eZ+e

—2t/Ti—e tanhx

e " —2t/T,+e ' tanhx lnN
ez+ e —z

—2t/Ti+e ' tanhx
ex+ e

—z (38)

At t =0 and t~ oo, the entropy has the same value,

S=Nk lnN—
eX ¹"

1
ez+e " ez+e

e
1

e
—x N

—x

e +e " e +e
{39)
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At both limiting times, as T~O, S~O. At t = —,T& ln2. S =Nk ln2. S also has this maximum value when

either T~ ao or H =0 for which x =0:

CH ——T ds
dT

(40)

with n&(t) and n2(t) given by (33). At tab oo and at t =0,

CH-——Nkx sech x .
—2t/T& —2t/T,

At T~O, x =0, ni ——N(1 —e ), n2 ——Ne . In this limit

Ca =o

This holds for all values of t, which is a remarkable confirmation of the third law of thermodynamics.

Equation (40) is valid for T& independent of T.
From the expressions derived, especially those for the transient values of n;, we may now examine the

"spin temperature" and irreversible thermodynamic descriptions of this system.
Using (10),

(41)

(42)

Ts
2 [p [H o

e" —2t/T) —2t!T)
k ln — —e ' tanhx —ln „—e ' tanhx

ez+ e
—z e"+e

(43)

At t=m, T~=TL. At t=O, T~= —TL. At

TL ——0, Tz ——+0. These limiting results are expect-

ed. The decay of Tq to the lattice temperature TI
does not have a simple functional dependence. We

may write

(44)

and equate this to (35). There the factor

1 —2e ' is not part of the argument of the hy-

perbolic tangent. If we take both pH/kTL and

pH/kTq « 1, then by equating (35) and (44) we

have

(45)

This describes a simple exponential approach of Tz

to T through negative values as t progresses from 0
to several spin lattice relaxation times.

We construct the chemical potentials from (15)
and (33),

These expressions are consistent with (16) and

with (40), where we note that the heat capacity
may also be found from

dE dn;

dT H, . ' dT
(47)

d;S
dt

(48)

The advantage of the approach used by irreversible

thermodynamics is that it gives the same results as
the spin-temperature description at any instant of
time. In addition it provides a temporal descrip-
tion of the way the system approaches thermostatic
equilibrium, most graphically by means of the rate
of internal entropy production.

In this system, the irreversible process
n ~/2~n ~/2 describes the nuclear spin flips in

which energy is taken from or delivered to the lat-

tice.
The internal entropy production' is d;S/dT,

pi ——ei+kT+kT lnN
—2t/T,—e tanhxe"+e

where the chemical affinity

and

e —2t/Ti
p2 ——e2+kT+kT lnN +e tanhx

+e —z

(46)

n)
A =—p2 —p) ——AH —kTL ln

n2

and the degree of advancement per unit time

dg/dt is

(49)
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dn) —2t/T, 2N= —n, a)„+n,a„=e ' tanhx .
dt T] 4/p, H —4t/~,

dt Tl kTL

d;S
TL

2N PHo=e tanh
L

n l
2pHo —kTL ln

n2

is the total heat delivered to the lattice as the spin
system returns to thermostatic equilibrium by the
irreversible relaxation process.

At t =0, n&
——Ne "/e"+e ", nz ——Ne"/e" +e

inn l /n2 ———2pHo/kTL, and

dS 8NpHo pHo
dt T& 0

d;S
TL

4NpHo pHo
tanh e ' . (53)

TJ TL

And at «= ~,
Ne" Ne

n)=, n2=
ex+e —x ex+ e

—x

ni 2pHo
ln

n2 kTL

As t increases, the entropy production decreases.
1

At t = —, T& ln2, n
&

——n2 ——N/2, and

CASE 3. SPIN- —, SYSTEM

Consider N rnolecules of NaC1 in a single crys-
tal" placed in a static magnetic field Ho at a lat-
tice temperature T. The two abundant isotopes

Na and Cl have a spin I= —,. We take

y„fiHo/kTL g~ 1 and consider three different phy-
sical situations: (a) thermostatic equilibrium, (b)
transient behavior just when the system is irradiat-
ed with an ultrasonic wave at a frequency
co=2y„IIO,(c) the steady-state behavior while the
ultrasonic saturating "pump" is still on.

In thermostatic equilibrium

nt.

n;+&

Thus

d;S
TL ——0.

dt

This is the thermostatic equilibrium condition.
It is constructive to evaluate the total heat

delivered to the "lattice, "

(54)

n;=N (60)

5= =, i=123.e r~o
kT kT

Here the spin temperature and the lattice tempera-
ture coincide. Inasmuch as

it is very easy to construct the equilibrium n; for

In the high-temperature limit, where

pHo/kT =x gg1,

—2t/Tl1+x —xe
n&

——N
2

-2t/Ti
1 —x +xe

n2 ——N
2

(56)

n; =—(1+m;5) .
4

See Fig. 2. The energy E and magnetization I are

5N (X.RVo)

4 kT

and

M= 5X r'+&0
4 kT

The power absorbed in a nuclear magnetic reso-



1098 WILLIAM A. BARKER 25

m; t"f = -m.
f

n4
-3

2 n4 C
3
2

n3
1

2
fl 3 1 t

2

n2 fl 2 1
C

2

n1 3—C

2

FIG. 2. Energy level diagram for spin-
2

system.

&=y„%Ho,~; ———m

FIG. 3. Energy level diagram for spin- —, system

showing saturating acoustic pumps: n
~

——n~, n2 ——n4.

nance experiment is

3

P = g (n; n;+—f)ficoW~ ——

(64)

where 8'N is the radiative induced transition pro-
bability for a conventional NMR signal and

co=r Hp is the nuclear Larmor frequency.
The entropy can be readily calculated from

behavior for T2 && t && T&, where T2 is the
nuclear-spin-spin relaxation time and T~ the
nuclear-spin-lattice relaxation time.

In nuclear-spin systems in solids T2 may be of
the order of 10's of microseconds and T& of the
order of minutes. The nuclear dipole-dipole in-

teraction is much stronger than the nuclear-spin-
lattice relaxation time.

The dipole-dipole interaction includes energy
conserving reactions of the form

4
S= Nk gp;1n—p;, (65) m+ m' —]~ m —]+ m' (69)

where the p; are given by

p;= —= —,(1+m;5) .

Then

(66)

It is precisely this mechanism' which rearranges
the population distribution corresponding to the
most probable distribution of populations among
the levels consistent with conservation of the initial

energy E. This is the Boltzmann population distri-
bution with temperature Ts,

'2

S=Nk ln4 ——5 m~0
4 kT

(67)
ni

n;+&

r.~o
=exp

kTs
(70)

and the heat capacity
'2

CH ——
2 Nk
5 r~0

(68)

From (70) n~/n2 ——n2/n3 ——n3/n4 and from the
acoustic saturation n&

——n3, n2 ——n4. Hence

N
n) ——n2 ——n3 ——n4 ———and Ts ——00 .

4
This result is not consistent with the third law of
thermodynamics because it is obtained for the
high-temperature limit. Nuclei of spin I & —, have

nuclear quadrupole moments. If these spins are in

a crystalline environment with an electric field,
they can respond to acoustic signals inducing tran-
sitions hm =+2. In NaC1 the internal stark field
does not appreciably disturb the equality of the
Zeeman splitting.

We consider the system shown in Fig. 3 shortly
after the acoustic signals have been switched on.
More precisely we are interested in the system's

M„=O.

No power will be absorbed in an NMR experiment:

P,„=O. (72)

The entropy reaches its expected maximum

Given the transient (tr) occupation numbers it is
easy to see that

E~r =0

(71)
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S„=Nkln4,

and the heat capacity
2

CH ——lim 4 Nk
s r„~o =0.

Ts kTs

(73)

(74)

and

P2 —P&-

The occupation numbers are now

n;

n;+&

pi pi+2+26
kT,

Note that Cz is calculated from (dE/dTS)H be-

cause Ts is the only temperature defined in the
spin-temperature formalism.

If we look at the transient behavior from the
chemical potential point of view, we write

and

n3

n4

y„AHp
=exp

n i y„AHp

n2

(83)

and (75) n& ——n3, n2 ——n4 ~

n;

ni+i

pi pi+1+&
kT;

Since n& ——n3 and n2 ——n4 by virtue of the acoustic
pumps

p&
—p3=p2 —p4= —2E' . (76)

P] P2 —P2 P3 —P3 P4 ~ (77)

If we combine the constraint (76) with the equili-
brium reaction equations (77), we find that

pi —pi+)= —6, l =1~2,3 .

When this is inserted into (75), we have

(78)

n] —n2 —n3 —n4 — ~

4
(79)

The reversible reaction induced by the flip-flop
dipole-dipole interaction comes to equilibrium in a
time T2 &t « T&. This means that

nm

nm

&m -i —&m
=exp

Ts
(84)

with a single value of Ts for all m. This criterion
is met only for those times t such that
T2 « t « T&, i.e., the transient case.

The energy, magnetization, entropy, NMR
power absorbed, and heat capacity for the steady
state may be readily found from the occupation
numbers, which we write in the high T limit,

See Fig. 3.
The spin-temperature point of view is no longer

valid. If it were used there would be two such
temperatures. The temperature characterizing the
ratio n

& /n3 and n2/n4 would be by Ts ——00 as in
the transient case. The spin temperature character-
izing the ratio ni/n2 and n3/n4 would be Ts ——TL.
It is well recognized in spin temperature theory'
that

Now we find that the transient values of the ener-

gy, magnetization, and NMR power absorbed are
all zero as in the spin-temperature description.
The entropy has the same maximum value. The
heat capacity Cz is again zero, but for a different
reason,

and

N 5
n

&

———1+—=n3
4 2

N
n =—1 ——=n3 1 —4 ~

4 2

(85)

ds
CH=TL =0.

L
(80) Thus

Now S is independent of the lattice temperature
and TL is finite.

The steady state comes about after a time t & T~
when the reactions

NkTL y„fgHp
2

Ess ———
8 kTL

N (r.&)'
~ss =— ~o

8 kTL

(86)

(87)

3/2~n1/2

and n ~/2mn3/2 come to equilibrium. Then

(81)
'2

1 r„~o
Sss=Nk ln4 ——

4 kTL
(88)
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and

N (r.~o)'
~ss=—

4 kT,

ds
CH ——T

dTL

2
Nk Xn@PO

2 kTL

(89)

(90)

dn Ny AH

dt 4kTL

—2t/Ti
A =y„ape

(97)

and

dn1

dt
= —n 1C012+n 26021

dn3

dt
n 3C034 +n 4C043

(91)

(92)

At t=0, n, =n2—-n3—-n4=N/4. At t=~,
n1 ——n3 ——(N/4)(1+5/2) and n2 ——n4 ——(N/4)
X(1—5/2). The solution is

We note that (dE/dTI )H (Nk——/S)(y„WHO/kTL, )

is not CH because there is a contribution from
—g,. p;dn; in the Gibbs relation.

The connecting link between the transient and

the steady-state behavior is provided by solving the

rate equations and by studying the internal entropy

production,

Hence

dt 2 kTL

At t=O,

dS Nk y~p
dt 2T1 kTL

(98)

(99)

is a maximum. As t~ oo d;S/dt~O, as it should

for the steady state. The total amount of heat
delivered to the lattice as the system proceeds from
the transient to the steady state is

'2

Q; =NkTL
yahoo

L

N 5 5 —2t/T,
n1 ———1+———e ' =n3

4 2 2
CASE 4. THE THREE-LEVEL MASER

OR LASER STEADY STATE

and (93)

N 5 5
n2 ———1 ——+—e ' =n4.

4 2 2

The internal entropy productiondS, dn;dL. dt
(94)

where j denotes the two irreversible chemical reac-
tions. The chemical affinities and the degrees of
enhancement for the two reactions are equal:

In this example we consider a quantum-mechan-

ical amplifier or oscillator operating CW (in the

steady state) with a pump and compare this
behavior with the system when quiescent (in ther-

mostatic equilibrium). See Fig. 4.
A typical maser is one in which the signal wave

length k=21 cm. It is operated cold to minimize

the noise: T=4 K. The level spacing is not equal
because of competition between the internal electric
field and the external magnetic field. It is the

d S dni
TL ——2A (95)

h3

where

From

ni
IM2 p1 p3 p4 y ~0—kT ln

n2

(96)

h2

FIG. 4. Energy level diagram for a three-level maser
or laser with and without a pump.
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mixing of Zeeman and Stark wave functions which
makes it possible to pump between levels 1 and 3.
For this maser hv/kT=1. 71&(10 . Thus we can
linearize this Boltzmann factor.

A typical laser might have an operating wave
length A. =500 mp. If we take the temperature at
300 K, then hv/kT =96. Here we need to use the
exact Boltzmann factor.

In thermostatic equilibrium, the occupation
numbers are

n2

—h, /kT=e (106)

In thermostatic equilibrium

n2

h, /kT=e (107)

This system should not be described by spin
temperature; although it has become customary, '

as a matter of convenience, to refer to the 2-1 lev-
els by means of a negative spin temperature,

n1 ——N N
1

25+6
1+e-'+e -d-' Thus

e N 5
n2 ——N

1+e—5+e —d —5 3 3 3

v32
TS = — TL

V21
(108)

and

Here

n3 ——N

(100)

e N 2A 5
1+e—5+e —d —5 3 3 3

Logically, the three-level system has two additional
spin temperatures. Between levels 3 and 1, there is
an infinite spin temperature. Between levels 3 and
2, the spin temperature is the lattice temperature.
It is ludicrous to have

Ts(21)= — TL,
v21

h V21 h v32

kTL
' kT (101)

and

Ts(31)= (x) (109)

In the steady state when the pump is on,
n1 ——n3. We can immediately write the steady-
state occupation numbers by recognizing that the
pump acts as a constraint so that

p] p3 — kTL (5+6)=— hv3~—

This follows from

(102)

n1

n3

(p1 —p3)+ h v31
=exp =1.

kTL
(103)

n2

n3

(P2 —P3)+"
=exp =ed.

kTL
(104)

Using the normalization condition g, , n; =N, we
have

N N
n1 ——n3 —— ——1 ——

2+e

and

At the same time we see that the relaxation process
connecting levels 3 and 2 comes to equilibrium,
such that JM3

——p2. Hence

Ts(32)=TI .

Here temperature loses its thermodynamic mean-
ing. It is well known that this description is not
rigorous. The physical reasons are significant. In
a three-level system, where the spacing is unequal,
there is generally no fast spin-spin, energy conserv-
ing process which can bring the system to internal
equilibrium as in the case of NaCl.

Ruby (Cr + doped A1203) has been used both as
a maser and as a laser. ' In this system, as in oth-
er paramagnetic systems where the paramagnetism
is electronic (not nuclear) T2- T1. In the NaCl
case, the nuclear T2 && T1.

Furthermore in the CW laser or maser, it is
clear that the off-diagonal elements of the density
matrix are not zero. ' Spin temperature is not well
defined' unless p,j -0, i'

From the point of view of irreversible thermo-
dynamics we can describe the steady state proper-
ties (SS) and compare them with the equilibrium
(eq) properties of this three-level system:

Nh
Ess d (v13+e v12)2+e

Ne 2h
n2 —— —1+2+ed (105) Nh v)gA 2v126

3
13+v12

3
+

3
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and

E
q
——

~ ~ (v13e +v12e )
—~—s —s

1+e +e

(CH )eq=
Nk (1+e ~+e ~)(5 e ~)

( 1 + —5+ —k)2

(114')
Nh

13+v12 ( v13 v12)
3

5
( v13+v12)

3

at T~O, 4~oo, 5~+),

Ess =Nh v12 and Eeq =0

at T~oo, 6~0, 5~0,
Nh

ESS Eeq (v13+v12) 'eq

At all intermediate temperatures it is clear that

Ess )Eeq At those TL values for which 5 and 5
are small compared to one,

Nh
+SS +eq [~iv13+3v121+@v13+v121]eq

(112)

The entropy S = Nkg, p; 1—np;. In .the steady

state

As TL ~ Oo, all levels are equally occupied and
both values of C~~O. At TL ——0, in the equilibri-
um state n; ~N. But in this limit n2~N in the
steady state. These are both states of perfect order
for which we have found S~O. The heat capaci-
ties also go to zero, as they should, to be in keep-

ing with the third law of thermodynamics. The
heat capacity for the steady state has one Schottky
peak, ' but the heat capacity for the quiescent state
has two Schottky peaks. At 0& TL & m, we expect

(Cz)ss and (CH),q
to cross twice. We note that

both heat capacities remain positive for TL &0.
The steady-state three-level maser has some

striking similarities with the three-level degenerate
system whose splitting is due to the interaction of
the nuclear quadrupole moment with the internal
Stark field. We note that n1 ——(2+e )

n2 ——e /2+e, and n3 ——(2+e )
' in both cases.

The maser is steady state, the nuclear spin I = 1 is
in thermostatic equilibrium. As a result the two
entropy expressions and the two heat capacity ex-
pressions are identical. However, we note that

and

me~
Sss ——Nk ln(e +2)—

e +2

S,q Nk In(1+e——s+e

Se '+i~+S-ie s-
+ 1+e

—5+e
—h, —5

(113)

(114)

Nk
maser g (V13+V12e

2+e
whereas

2Nk v12
E„ark 2+e

(115)

(116)

2Nk 52e~
H SS=

(2 h')2
(113')

and

At TL 0, both Sss arid Seq 0. As TL ~ ap,

Sss ——S,q ——Nk ln3. At all intermediate values of
TL, Sss &S,q. In the case of the maser when

5 Lsk « 1 Seq Sss is second order in h v/k TL .
To find CH, we must use T(dS/dTL)H for

(CH )ss but we may use (dE/dTL )0 for (CH )eq.

The reason is that the —g,. p;dn; term makes a

contribution in the steady state. However, in ther-

mostatic equilibrium p1
——p2

——p3 ——IM. Thus
—g,. p; dn; = pN which is temp—erature indepen-

dent:

CASE 5. NUCLEAR CALORIMETRY

Single crystals of LiF of high purity make ideal
samples for the study of nuclear calorimetry.
Fluorine has a spin I'= —, and a magnetic moment
p'=2. 6273eh/2Mc. Lithium has a spin I"= —,

and a magnetic moment p"=3.256eh'/2Mc. Both
spin systems' have a T2-5ps and a T1 -2—5

min. These values are just right for the establish-
rnent of spin temperatures Tz and Ts'.

We have alread~ studied the thermostatic prop-
erties of spin I= —, and I= —, systems. In the

spin-temperature formalism, all we need do is re-
place the lattice TL by Tq. We take the Boltz-
mann factor to be small compared to unity.

Thus
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N' ( YA') Ho „5N"(y R) Ho

4 kT' 4 kT' '

(117)

E' = —M'Hp E = —M Ho (118)
'2

N'k Xn~o
CH

4 kT,'

2

, , 5N"k 'Vn ~p
4 kT:

(119)

The number of Li nuclei is less than the number

of ' F nuclei because the isotopic abundance of the
former is 92.57% and of the latter is 100%%uo. We
ignore Li in this discussion.

The magnetization may be thought of as a ther-

mostatic property. A positive magnetization corre-

sponds to Tq )0, a zero magnetization implies that

T~ ——oo, and a negative magnetization is a measure
of a negative T&.

In our study of M &0 in case 2, the negative
magnetization was achieved by a sudden reversal

of the magnetic field Hp. In nuclear calorimetry
we wish the spin species in the sample to have dif-
ferent initial temperatures. A field reversal would

give Li and F the same negative T~. The experi-
mental technique of preparing the two species is
well known. ' A positive T~ is obtained by allow-

ing the species in question to rest several relaxation
times in a strong field. An infinite T~ is obtained

by modulating the field over the resonance value,

thereby saturating the species in question. A nega-

tive Tz is obtained by fast passage. The two spin
systems which are prepared to have different Tq
values are isolated from one another by the dif-
ferent spacing of their energy levels in the same

strong field.

Mixing of the two spin systems is achieved by
lowering the field until the Zeeman spacings over-

lap. This occurs at about 75 gauss for LiF. The
spin systems exchange heat and come to a common
equilibrium temperature Tz after a time T2. Mea-
surement of M' and M" after mixing provides an
observational test of this formalism.

The thermal equilibrium temperature may be
calculated by equating the heat exchange in the
system to zero:

Ts Tsf, CHdT+ J, , Ctt'dT=O.
l l

Therefore,

(120)

N'y'„'
[N'y„'+5N"y'„']

Ts

(121)

and

1

Ts
(122)

where

N "y" I"(I"+ 1)
N'y'2I'(I'+ 1)

(123)

In Table I, we list the results of eight nuclear
calorimetry experiments performed' with LiF.
The magnetization and temperatures are given be-

fore mixing. The theoretical temperature and mag-
netization values after mixing are listed next to the
observed magnetization values.

The theoretical and experimental results disagree

by as much as 30% in some cases. This is due, as

TABLE I. Magnetization and spin temperatures of fluorine and lithium nuclei before and
after mixing.

Expt.

Before mixing
Fluorine Lithium
M', T M", T;"

After mixing: Theory
Fluorine and Lithium

Ts~M

Observation
Fluorine Lithium

(a)
(b)

(c)
(d)

(e)

(fl

(g)
(h)

Mp, 300
Mp, 300

0, 00
Mp, 300

—Mp, —300
0, 00

—Mp, —300
—Mp, —300

Mp, 300
0, 00

Mp, 300
—Mp, 300
Mp, 300

—Mp, —300
0, 00

—Mp, —300

300, Mp
537, 0.56Mp
680, 0.44Mp

2554, 0.12Mp
—2554, —0. 12Mp

—680, —44Mp
—537, —0.56Mp

—300, —Mp

0.95Mp
0.42M p

0.42Mp
0.27Mp
0.05Mp

—0.16Mp
—0.29Mp
—0.71Mp

0.95Mp
0.51Mp
0.43M p

0.20Mp
O.OOMp

—0.17Mp
—0.34Mp
—0.72Mp
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n; I;—I;+i+r.~p
kT;

(124)

Here p~
——p;+& only when the spin system is in

equilibrium with the lattice. If we use the linear

approximation to the Boltzmann factor,

n;

n;+&

where

=1+a,

(125)

Abragam points out, to the finite relaxation time

Ti of both ' F and Li and to the ratio of the mix-

ing time v to t& at the various field strengths in

which mixing takes place.
In any case this experiment in nuclear calorime-

try is impressive. This experiment (and the ul-

trasonic experiment on NaCl) were characterized

by Abragam and Proctor as explainable only by

utilizing the concept of spin temperature. '

I disagree. The thermodynamics of irreversible
processes, employing chemical potentials, provides
an alternate and more inclusive explanation.

The basic relationship we use to start this dis-

cussion is the ratio of occupation numbers in adja-
cent Zeeman levels,

Now we write the magnetization and energy for
fluorine and lithium nuclei.

N',
~ 7~~0+(Pi —P2)

M — y„fi (126)

5N", , Yn ~o+ (Pt Pt+ t )M"= Y'„'th'

(127)

and

E' = —M'Hp, E"=——M "Hp

When the two spin systems are mixed, there is
no heat exchange by virtue of a difference in tem-
perature. The process is isothermal. Rather there
is a chemical reaction which takes place by virtue
of the spin-spin interaction. The chemical affini-
ties (p; —p;+~) for F and Li become equal. This
brings about a change in the occupation numbers.
We can find the equilibrium chemical affinity by
setting the total change in energy equal to zero:

Pr Pi+ i+ Xn™0
kTL

E —Eg+E;" —EI' ——0 .

Using (127)

(128)

N', ~ (P P +i)+Y ~''o 5N", , ~ (P lt +i)+'Y '~'o
4 V 0 kT +

4 7 0 kT
J

N', ~ (iJ A+i) +—Y ~o 5N" „~(P 9+i) +'Y ~—o

4 7 0 kT +
4 V 0 (129)

TABLE II. Chemical affinities of fluorine and lithi-
um nuclei before and after mixing.

This expression is seen to be precisely (121) if we
make the formal substitution

Before mixing
Expt. Fluorine Lithium

After mixing
Fluorine and Lithium

Pi —Pi+1
Ts=TL 1+

AHy„AH p

(a)
(b)

(c)
(d)
(e)

(fl
(g)
(h)

0
0

—y„'AH p

0
2y„'AH p

—y„'AH p—2y„'AH p
—2y„'AH p

0
I r—y„AH p
0

—2y„''
AH p

0
—2y„''AHp
—y„''

AH p
—2y„''

AH p

(P P +~) (P —pl+1) y„AH p

0
—0.44
—0.56
—0.88
—1.12
—1.44
—1.56
—2.00

This is essentially (17). This establishes the
equivalence between the two theories. They both
say the same thing about the initial and final mag-
netization. They differ in the thermodynamic
parameter used to describe these initial and final
states.

In the accompanying Table, we write the initial
and final chemical affinities corresponding to the
various experiments given above.

The predictions using chemical potentials agree
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with those using spin temperature. Agreement

with observation could be improved by means of a

transient treatment incorporating Ti into the for-

mulation. The procedure for doing this is worked

out in case 2.

(M, ) = , y—fd&(rr,) = , y—fiN(p» p—z2) .

(135)

The quantities pi i and p22 are the relative popula-
tions of levels 1 and 2, normalized such that

p~l+pq2 ——1. It follows from (131) and (135}that

CASE 6. STEADY STATE MAGNETIC
RESONANCE FOR A SYSTEM OF SPIN=

2

ACO0 1

2 4kT 1+y T, T2Hf
(136)

where T2 and T& are the transverse and longitudi-

nal relaxation times and i, j, k are the unit vectors
in the laboratory frame of reference.

The steady-state solutions for M, and M„+iM~
are

M0
M~= 21+y T)T2H)

M +iM& ——+iyMDT2H, exp(+indoor} .

In the absence of a time varying field

1Vy fPHo
z 0 4kT

(131)

(132)

(133)

Here the separation between spin levels yfiH0 is to
be taken small compared to kT.

The elements of the density matrix

Pi i Pi2

P21 P22

Consider N nuclei or electrons of spin —, in a

magnetic field: H=H0k+H, ~ where the sinusoidal

field is at right angles to the static field. It is con-
venient for this discussion to take the angular fre-

quency of the time varying field at resonance, i.e.,
co0——yH0. The steady state solution to this prob-
lem is very well known. Bloch's phenomenologi-

cal theory will be used here as a point of departure.
The macroscopic magnetization M satisfies the

equation

M„i+M&j M, —M0
=yMXH — " — k,

dt T, T,

(130)

1 ~o 1

2 4kT 1+y T, T2H)
(137)

and

M+ =M»+i' —— (o+ )= p2i, (138}
2 + 2

M =M —iM&
—— (o ) = p|2 . (139)

The off-diagonal elements of the density matrix
can be obtained from (132) and (138) and (139).
They are

—l COpf fiCO0

p2i ——ie 7HiT kT '2kT

l Calpf Scop
pi2

———ie yHi T2 ——p2kT

(140)

(141)

In principle, since p2i and pi2 are not zero, a
spin temperature may not be used to describe this

system. If T2 is very small compared to Ti, p2i
and pi2 are almost zero. In this case a spin tem-

perature may be used as a thermodynamic parame-

ter. This means that internal equilibrium in the

spin system is established long before the system
comes into equilibrium with the lattice. Such a
temperature is appropriate for nuclear spin systems

but is not for the conduction electrons in a metal

where T2-T, .
The concept of spin temperature may once again

be entirely avoided by using the thermodynamics

of irreversible processes.
We start with the Gibbs relation (12) and the ex-

pression for the chemical potential of the ith ener-

gy level (15)

may not be explicitly constructed. In this formal-
isrn the predicted value of any observable 6' of a
statistical ensemble of N identical systems of spin I
is given by the equation.

p;=kT(1+inn;)+e;, i =1,2

where

1

E'g ——
2 ACOp, 62 —

2 ANp .

(142)

(8') =Tr(PP') .

Thus

(134)
A nucleus or an electron of spin —may flip

1

from the state m i ——+ —, to the state m2 ——+ —, by

the radiative induced reversible reaction
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at the rate

ny H]
W = g (F00),

2

with

dgt]

dt
=( —n]+n2)W,

or by the irreversible process

(143)

(144)

The expressions for M+ and M immediately fol-
low.

This example shows that the thermodynamics of
irreversible processes may readily be used in con-
junction with quantum mechanical perturbation
theory and the Kramers-Kronig relations to obtain
the familiar Bloch equations for NMR and ESR.
However, the spin-temperature formalism does not
possess this versatility. The conditions under
which it may be used are not generally satisfied in
this case.

EXPERIMENTAL APPROACHES
in which thermal energy is exchanged with the lat-
tice at the rate T] '. By this process

dk]R

dt
= —n ] co ]2+n 2602] (145)

The co;J are the spin lattice relaxation rates [see
(31) and (32)]. The chemical affinity

n23 =pz —p] ——kTln +flop .
n]

(146)

The energy lost due to internal entropy production

by the relaxation process (144) is

d;S = (p2 —p] )(n 2N2] —n ]co]2) .
dt

(147)

In the steady state this is just balanced by the
isothermal rate of increase of internal energy by ra-
diation —Ad gR /dt.

Equating these contributions leads to the fami-
liar rate equation

—n]co]2+npcop]+(n2 —n] ) W =0 . (148)

M, = (n, —n, ), (149)

and

P = ( ]]] —]]2 )flti)p W = 2u)OX H ]

Here 7" is the imaginary part of the complex sus-
ceptibility. The real part of the complex suscepti-
bility X' may be obtained by means of the
Kramers-Kronig relations, but for co =cop it is zero.

From (148) and the normalization condition
n]+n2 ——N, the steady-state occupation numbers
may be found. These are functions of N, Hp, T,
and the rates T] ' and W. If we take the absorp-
tion line shape at resonance to be g(cop) = T2/~, we
may readily calculate the z component of magneti-
zation and the power absorbed

This paper is devoted primarily to the theoretical
models which are used to describe spin systems. It
is quite natural that the techniques of magnetic res-
onance, both steady state and transient, are more
frequently used in experimental investigations.
These have demonstrated the validity and the limi-
tations of the spin-temperature concept.

Measurements of a different type might be con-
sidered to study the range of validity of the ther-
modynamics of irreversible processes as applied to
spin systems. In particular it would be interesting
to study the steady-state heat capacity and magnet-
ic susceptibility. In addition transient properties
could be studied for those cases where the experi-
mental measurement time is small compared to the
spin lattice relaxation time. The theory of irrever-
sible processes does predict that heat will be de-
livered to the lattice at a certain rate. This could
be observed at low temperatures by monitoring the
increased rate at which liquid helium is vaporized
in a transient or steady-state experiment as com-
pared to the quiescent rate.

CONCLUSION

The concept of spin temperatures may be used
to describe a temperature different from the lattice
temperature if the off-diagonal elements of the
deiisity matrix are zero. This precludes such a
description for a steady state NMR or ESR experi-
ment or for a maser or laser. However, an rf field
may be used to "prepare" a spin system and the
spin-temperature concept may be used to describe
its behavior several T2's after the field is turned
off. This concept is certainly useful in describing
nuclear spin calorimetry.

The thermodynamics of irreversible processes
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appears, for the examples considered, to offer a
theoretical picture of nuclear and electron spin sys-
tems which is more comprehensive than the spin
temperature formalism. In all the cases where spin
temperature is strictly forbidden, irreversible ther-
modynamics may be used. Where spin tempera-
ture may be used, irreversible thermodynamics pro-
vides an alternate theoretical framework.

The principal conclusion of this paper is that
spin temperature is a useful concept, but that its
use is a rnatter of convenience. None of the exam-
ples cited show that spin temperature is an in-

dispensable concept. In each case irreversible ther-
modynamics makes available a more inclusive
description.
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