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Anomalous contributions to the sound attenuation on the smectic-4 side of the
smectic-4 —smectic-C phase transition are found by generalizing the Landau-Ginzburg
theory. Terms coupling the smectic-C order parameter to the density and to the gradient
of the layer spacing are incorporated and are found, to second order near the transition,
to enhance certain of the viscosities which determine the acoustic attenuation. The
anomalous attenuation depends on the angle between the propagation direction and layer
normal, with the degree of anisotropy governed by the sensitivity of the transition tem-
perature to changes in the layer spacing for constant density. The dispersion in the sound

velocity near this transition is also considered.

I. INTRODUCTION

Recently, Bhattacharya, Cheng, Sarma, and
Ketterson' have experimentally investigated the
behavior of sound attentuation and dispersion in a
liquid crystal near the smectic-4 —smectic-C (4C)
phase transition. This work has motivated our
theoretical study of the acoustic attenuation and
dispersion near this transition.

In their earlier experiments near the nematic —
smectic-A transition, Bhattacharya and co-workers?
found the attentuation anomaly to be dominated by
an isotropic contribution, even though the symme-
try of the high-temperature state was uniaxial.
This was theoretically explained®* by calculations
based on a coupling between the order parameter
and the density, a scalar hydrodynamic variable, in
the nematic phase.

In the smectic-4 phase two hydrodynamic vari-
ables, the gradient of the layer spacing as well as
the density, enter the sound wave. We allow for
couplings between order-parameter fluctuations
and density and between order-parameter fluctua-
tions and the gradient of the layer spacing. Owing
to the coupling to this extra variable, our results
imply that the anomaly in the attentuation on the
smectic-A side of the AC transition is, in general,
anisotropic. The degree of anisotropy depends on
the coupling constants between the order parameter
and hydrodynamic variables.

In Sec. II we discuss the order parameter for the
AC transition and the appropriate Landau-
Ginzburg free energy. In Sec. III we write down
Langevin equations of motion for the order param-
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eter and the hydrodynamic variables. In Sec. IV a
mode-coupling solution for the enhancement of the
viscosities which give the major contribution to the
attenuation is presented. The attenuation for pro-
pagation parallel and perpendicular to the layer
normal in terms of these viscosities is derived in an
appendix. Finally, in Sec. V we summarize and
discuss our results for the acoustic attenuation and
dispersion in the smectic-4 phase as the smectic-C
phase is approached.

II. GENERALIZED LANDAU-GINZGURG
THEORY

de Gennes® has noted the similarity between the
AC transition and the superfluid transition in *He
and has proposed a complex order parameter
Y=sinfe’® to describe the AC transition, where 6
is the angle between the director and the normal to
the smectic layers and ¢ is the azimuthal angle
describing the orientation of the tilted director.
Based on a generalized Maier-Saupe® theory we
find the magnitude of the order parameter to be
sinf cos@ (rather than sin ). We choose to write
the smectic-C order parameter as Y=03+iQ>3,
where Q,p is the symmetric, traceless, second-rank
tensor used to describe the nematic liquid crystal,’
but here the director makes an angle with the 3-
direction, the 3-direction being defined by the nor-
mal to the smectic layers. The details of the func-
tional dependence of 9 on the polar angle are of no
consequence in the discussion which follows. The
fluctuations of the smectic-C order parameter con-
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tribute via an anisotropic Landau-Ginzburg free
energy:

Fy=7 [d*la|y|’+2m)~" |V g |?
+2m3)" | V| +(b/2) | ¥4,

(n
|

where 1 refers to the plane of the layers, m,, mj,
and b are positive constants, and a ~T —T, T,
being the mean-field theory transition temperature.

A second contribution to the free energy comes
from the elastic properties of the smectic-4 liquid
crystal®’:

Fa= [ d*r[+(3p/3p)} u(Bp)+ +(33/dV5u)XVsu)? +(3p /3V5u ) Ap)(V3u)+ 3K (Vi +V3u )],

where Ap is the deviation of the density from its
equilibrium value, u is the displacement in the 3-
direction of the smectic layers from their equilibri-
um position, K 9 is the Frank elastic constant, p is
the pressure, and ¢; is the conjugate field associat-
ed with Viu. The thermodynamic derivatives are
taken at constant entropy here and throughout the
paper. The equilibrium density p has been set
equal to unity. The superscript zero indicates the
bare value of the particular quantity.

A Kkinetic-energy contribution arises due to the
velocity of the center of mass V,

F,=3[d*|V|2. 3)
Finally, we introduce terms in the free energy

which couple the density and layer-spacing fluctua-
tions to the smectic-C order parameter. These are

Fyp=(1,/2) [d’rBp|9|? (4a)
and®
Fpu=(y,/2) [d*rVau|y|?. (4b)

Near the AC transition then, the consequential

2

—
contributions to the free energy are given by

F=F¢+Fel+Fv+F¢p+F¢u . (5)

III. EQUATIONS OF MOTION

The dispersion relation describing propagation
and attenuation of sound results from the solution
of the set of equations of motion for the hydro-
dynamic variables characterizing the system. De-
tails of this dispersion relation in the smectic-4
phase have been discussed by Martin, Parody, and
Pershan® (MPP) and by Miyano and Ketterson.'”
As the AC transition is neared, fluctuations of the
smectic-C order parameter become important and
renormalize the dissipative and elastic coefficients
occurring in the hydrodynamic equations of mo-
tion. We allow for these fluctuations by writing
down equations of motion for density, layer dis-
placement, velocity, and order parameter in the
standard Langevin form.!!

For the real and imaginary parts of ¢, i.e., Q13
and Q,3, we have

30 43(T 1) /3t = ol F V0 (F51) — (1 /7°)8F /8Q 3 (F,1) + 0o F5)/7° 5 (6a)

where the Greek indices take on values 1 and 2, the Cartesian indices take on values 1, 2, and 3, and repeat-

ed indices are summed over.

For u,
Qu(T,t) /0t =v3(T,t)+L°V3(8F /8V3u(T,1))+6(T 1) . (6b)
For Ap,
dAp/dt+V,v;=0. (6¢)
For V,
ov;(T,t)/0t= —V,~(8F/5Ap(?,t))+u.-ja(f’,t)Vj(ZSF/SQa3(f’,t))—Vjaf}(?,t)
(6d)

+8,-,3V3(8F/8V3u(f’,t))+§,—(f",t) .
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Wijq is given formally by the Poisson bracket of
velocity with the microscopic analog of Q,;. Its
form can be determined phenomenologically by im-
posing the constraints of the smectic-4 symmetry.
For the purposes of this paper the explicit form of
Mijq is not needed.

In Eq. (6d) 03 , the dissipative part of the stress
tensor, also has the symmetry of the smectic-4
phase:

0'3: —ﬂ%kIVI(SF/avk) ’ (7)

where ’7?jk1 is the bare viscosity matrix. We use
the notation of MPP for the viscosities. The
viscosities are given in their equation (3.5).

In (6) oy, 6, ;, the noise sources, are related via
the fluctuation-dissipation theorem to 7, the bare
coefficient describing the rate of relaxation of Q,;,
&0, the bare transport coefficient associated with u,
and 7, respectively, in the usual way.!!

IV. MODE COUPLING CALCULATION

We find the order-parameter fluctuation contri-
butions to the viscosities and elastic constants by

means of the usual mode-coupling method.'>!3
We are looking for the largest contribution to the
sound attenuation in this paper. In the calcula-
tion* of sound damping near the nematic —
smectic-A transition, this arose from a dissipative
coupling of the square of the order parameter to
the density in the free energy. Other terms, such
as the reactive coupling of the order parameter to
the velocity in Eq. (6a), gave a smaller contribution
to the sound attenuation.!* Therefore, in this paper,
we concentrate on the coupling of the density and
the gradient of the layer spacing to the order
parameter as described in (4a) and (4b). The con-
tributions to the viscosities due to these terms will
be found by perturbation theory in Yp and vy,
correct to second order. The renormalized,
frequency-dependent viscosities then determine the
anomalous acoustic attenuation and dispersion near
the phase transition.

Equations (6a) —(6d) are best solved in Fourier
space. The derivatives of the free energy can then
be easily found, e.g.,

8F/8Q43(—K, — )= X—n(E)Qa3(E,m)+ypfq _Apld,00m (K~ G0 —a)

+i7u fq m,‘Isu(fl',w')Qas(E—fl',w—w') ’ (8)
where
X~ NG)=9"T(§)=a+q%/2m,+q%/2m; 9)
and
[ = f_diq_ do’
o' J (2m) Y 2w
An additional term, of order bQ?, has not been written explicitly. The formal solutions for (6a)—(6c) are
then
Qo (K,0)=G§(K,0) |malK,0) /P +i [ gtijal K —Fro—0 i (G0)
~ S, 80000 (K o0 —0)
— /) [ a5u(d,0)Qu(K G0 -0 |,
(10a)
u(K,0)=GJ(k,0) [e(E,w)/y?+u3(E,w)+(i/y?)k3<ap/av3u oAp(K,0)
/20K [ 0as(G,0)Qu(R—Gr0—a) | (10b)
Ap(K,0)=kv;(K,0) /0 , (10¢)

and Eq. (6d) written out in more detail is
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—iov(K,0)= §(K,0)=(1/2ky, [ 0ur(@,0)Qu(k—F,0—0")
— ik;(3p /3p)gu Ap(K,@) + k;k 3(3p /33 )3u (K, )
+ifq,ﬁ,.qji‘ija(E—ﬁ’w—w')[X‘I(H)Qas(?i,w’Hypf, Ap(G,0)0:3(G—§ 0" — ")
+inf, 434(q",0)003(4—q",0'—0")]
—ikjoB(E,0) 48,3 [~ AWK Du(K,0) +ik(3p /373 (K, 0)

+i/2ksv, [, 0ar(@,0)Qus(K—Gr0o—a") | ,

(10d)

where
GY(K,0)=[ —io+X~'(K) /") '=[—io+T(K)], (11)
GAK,0)=[—iw+W(K)]™", (12)
W(K)=(1/¥)[k3(3¢5/0Vu)+K (kT +k3 )], (13)

and repeated indices are summed over. Equation (10) can be solved to the desired order in 7, and v, (or
other couplings) by iteration. We substitute the formal solution (10a) for Q,; for the factors of Q,; multi-
plying ¥, and y, in (10d). We isolate those terms of second order in 7, amd y,. The Q,3’s are then re-
placed by their zeroth-order expressions and the noise source can be averaged using

(1:(K,0)1;(4,0)) =2/°2m)*8(K+ )80 +0")5; ; . (14)

This yields for the equation of motion for the average of v;

—m<u,(kw>>—(1/¢’)f 3{[x(q XK =D/ [—io+D(@)+T(K-§)])

><{ ikiy [ 7,( Bp(K,0)) +iksy, (u(K,0))]

— 8, 3ik37,[7,{ Ap(K, @) ) +ik3y, (u(K,0) )]} +(other terms) , (15)

where “other terms” represent bare terms and other renormalizations not expected to give contributions to
the sound attenuation as large as those we have retained. We now take the limit of small wave vectors,
k—»O and separate the integral over wave vectors q into its real and imaginary parts. We eliminate

(Ap( (K,w)) via (10c) and since we - are working with small wave vectors we may neglect the disspative terms
in the equation of motion for u( K,»)) and eliminate —iw(u(K,w)) via

—io(u(k,0))=(v3(K,0)) . (16)

We then have (writing out the bare terms this time)

— i v(K,0)) = —ik okicQv; /o —ik;k3c 03 /0
—k; { kv + kv )+ (3 — 8 33 +k3v; ) +8; 3(kjvs +kav;)]
+ (03— 8y kpvy -+l + 03— 4n3— 208+ 138 38 3k 303
+(n3—ng+09(8; jk3v3+8;38; 3k1v1) }
+ (I +iI2)[iki‘}%klvl/w_ikikSYp'}/uUS/w+8i,3(k§7/124v3/w"kﬂ’p}/uklvl/w)]
+ (higher -order terms) , (17
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where
c?1=c?2=c82=(8p/ap)%3,, , (18a)
ety =c3=(3p/3p)g,, —(3p/3V3u)3 (18b)
¢$3=(3p/3p)g,, —23p /3V3u )

+(33/3V3u )5, (18¢)

and the MPP convention for the %’s is used. (See
Appendix A of Ref. 10.) Also

11=(2/7ﬂ)f(—‘21%");x<a)/[w2+4r2<a)] ,  (19)

L=[4/"*f %1/@%@2@] . (19)

Equation (17) then gives, by inspection,
M=+~ 1 , (20a)
=3, (20b)
n3=73, (20c)
ne=na+vl1 » (20d)
Ns=09+7, Vo~V )1 (20e)

3 —
ne=m342 [ 24 (XN @)X(G) Bply e 12T (@)/ [0 +4T%T)]

)

where we used T'(q)=[¥°X(d)]~". In Eq. (23)
X(q) and T'(q) are the true, remormalized expres-
sions. Similar expression hold for the anomalous
parts of 1, and 75 and the contributions to the
elastic constants in Eqgs. (21a)—(21c).

V. RESULTS AND DISCUSSION

The critical behavior of the viscosities and
dispersion, which in turn determine the behavior of
the sound attenuation and velocity, is contained in
the integrals I; and I, of Eq. (19). The depen-
dence of the viscosities and dispersions on the dis-
tance from the critical temperature and on fre-
quency can be found from scaling arguments in
two regimes of interest.*!2 The dynamic critical
exponent which describes the relaxation rate of the
order parameter is z:

Nk=0)~&"2, (24)

where £ is the correlation length. We follow here
de Gennes’s analogy between the AC transition and
the superfluid “He transition.!* Defining the re-
duced temperature, t =(T —T,)/T,, we can write
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where the 7’s are the true viscosities. For the con-
tributions to the reactive parameters that determine
the dispersion we find

(3p /3p)y,u=(3p /)3 —Vpl2 » (21a)
(3p /0V3u),=(3p /3V3u )2—ypyu12 , (21b)
(3¢3/8V3u),—(3¢3/3V3u)g—val, . (21c)

In order to predict the size of the anisotropy in
the speed or attenuation of sound we need more in-
formation about the bare coupling constants v, and
Y« We eliminate these in terms of the true cou-
pling constants by using the fact that
(0F /9p)y,, =p and (3F /dV3u),=¢; and expand-
ing out these relations to second order. We obtain
for v, and y,

Yo=X"AG[3X(d)/3plv,u » (222)

Yu =X "AQ)[OX(G)/3V3u], . (22b)

If we substitute (22a) into (20d), for example, we
finally obtain for 7,

(23)

|

the scaling behavior of £ for w < I'(k =0) as
&~17" above the transition. Applying the usual
scaling techniques to (14) and using the scaling re-
lation for the specific-heat exponent a=2—vd, we
find, for 0 =0,

Ni~Na~"s~t" 6" . 25)
The relationships between the elastic constants
of Eq. (21) and the velocities of sound for propaga-
tion directions perpendicular or parallel to the nor-
mal to the smectic layers are given in Eq. (A6) and

(A11) of the Appendix. Using these relations in
conjunction with the critical elastic constants [Egs.
(21) and (19b)] we can write, for small w, a scaling
relation for AV?Z, the deviation from the =0 re-
sult for the correction to the square of the sound
velocity [V2=(V°)>—AV?]. For either propaga-
tion direction we find

AVE(0)—AVH(0=0)~ —t " HwE)P?.  (26)

For o> I'(K =0) the frequency dependence dom-
inates the scaling and temperature dependence
enters only through the derivative of @ with respect
to p or Vsu. Using Kawasaki’s scaling assump-
tions'? in this regime we find
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nl~n4~ns~t—2aw—l+a/zv . 27)
In both frequency regimes we find the behavior of
the viscosities and velocity corrections to be singu-
lar as T approaches T,.

We now want to use the viscosities we have
found to determine anomalies in the attenuation of
sound and the sound velocity. The solution of the
eigenvalue problem for these quantities for a gen-
eral angle © between the sound propagation direc-
tion and layer normal is quite complicated.”!* (The
angle © should not be confused with the angle 6
which enters the order parameter). To exhibit the
features of our result, i.e., anisotropy in the sound
damping, we present the answers for two special
angles, ©=0°" and ©=90". The solution for the
hydrodynamic modes for these angles is presented
in the Appendix. In discussing the sound damping
we take into account only the anomalous terms in
the viscosities which we have calculated in Sec. IV.

d’q
(2m)?

asy=[(3a /3p)% , / Vs 1k2/7) [

The anomalous attentuation coefficient for 6 =90°,
Qq, is then, from (A13) and (A11),

asr= 4k [(3p /3p)yu ]~
=31k Voo (28)

where 7, is given by (23).

For frequencies less than I'(4d=0) we may use
the small wave-vector form of X(q) which is given
in (9). Assuming the primary dependence of X(q)
on density and layer displacement is in the transi-
tion temperature, i.e., in the parameter a of Eq. (9),
we can write

Yp=—(8a/3plyy » (29a)
Yu=—(3a/3V3u),, (29b)

where a is the true inverse susceptibility evaluated
at zero wave vector. Then (29a), (28), (20d), and
(19a) yield

X(q)/[0*+4T44)], (30a)

where ¥ is the true viscosity which determines the rate of decay of the order parameter. Similarly, using

(A8), (A6), (29b), (20a), and (19a) we find

Aside from the inverse of the speed of sound in
the two directions, which occur in the definition of
a, the anisotropy in the damping of sound comes
from the derivative of a with respect to p and Vju.
Physically we expect molecular interactions and
hence T, to increase as p increases so that
(3a /9p)y,u <0. On the other hand, a negative V3u

corresponds to a smaller layer spacing, hence we
expect T, to increase with decreasing V,u,'® mak-
ing (da /8V3u),>0. Therefore, we expect

(da /3p)y,, and —(8a /dV3u), to have the same

sign, which means that the attenuation at 0° would
be larger than that at 90°, aside from the speed of
sound factors. Since the anomaly for the speed of
sound is a weaker function of reduced temperature
than for the viscosities, at least for small w [see
Eqgs. (25) and (26)], we would expect the experi-
mental results to show a to be greater than agy
very near the transition.

This is in contrast to the nematic —smectic-4
transition where the attenuation was experimental-

2 2 d’q
ao=1{ [(3a /3p)y,, —(3a /3V3u), 12/ Vo JUe2/p) [ Py

X(G)/[0*+4T%q)] . (30b)

—
ly shown to be dominated by an isotropic contribu-

tion.? This feature was explained>* by coupling
the order parameter to the density. Coupling of
the order parameter to the gradient of the layer
spacing as well as the density predicts an anisotro-
pic attenuation near the AC transition.

For arbitrary © between 0° and 90° the behavior
of the attenuation and dispersion can again be
determined by knowing the shift in the viscosities,
Eq. (20), and the elastic constants, Eq. (21). The
solutions, however, are considerably more compli-
cated.'”
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APPENDIX

The linearized equations of motion of the hydrodynamic variables in the smectic-4 phase for arbitrary
propagation direction are,” ' in the notation of MPP (note—¢ is a transport coefficient in MPP),
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—iwdp+ik;v;=0, (Ala)
—iou —v3—ilk;8¢3—iET " 'k;8T=0, (A1b)
—iw8Q +Ek 386 +k k;k;8T + (k) —k k38T =0, (Alo)
—iwv; +ik;8p —i8; 3k 38¢3+ M kjkiv =0 . (A1d)
Choosing p, s, and Vsu to be the independent variables we can expand the remaining quantities:
&p =(3p /3p)s,v,u8p+(3p/3s),,v,,05 +(3p /3V3u ) V3u , (A2a)
8T =(3T /9p)s,v,udp+(3T /3s),,y,,85 + (3T /dV3u)s ,V3u , (A2b)
86¢3=(3¢3/3p)s,v,, 80+ (3¢3/35),,v,,85 +(3¢3/3V3u ), ,V3u . (A2c)

For an angle of ©=0° between the direction of propagation and the normal to the smectic layers we have
k=ké;. In this case the equations of motion become

—iw8p+ipkv3=0, (A3a)
—iou—v3—ilk[(d¢3/0p)8p+(3¢3/0s)8s +(3d3/dV3u)Viu]
—(i&k /T)[(3T /3p)8p—+(dT /ds)8s + (8T /3V3u)V;iu]=0, (A3b)

—i@T8s +Ek*[(3d3/3p)8p+ (33 /3s)8s + (33 /0V3u )V3u ]

+xk*[(3T /3p)8p+(dT /3s)8s +(dT /dV3u)V5u]=0 , (A3c)
—iwvy +13k%, =0, (A3d)
—iwv, +13k, =0, (A3e)
—iwvy+ik[(3p /dp)8p+(dp /0s)8s +(3p /0V3u ) V;u]

—ik [(3¢3/3p)8p+(3d3/0s)8s + (33 /dV3u )V3ul+7,k*;=0 . (A3f)
There are two dissipative modes arising from the v; and v, equations, each characterized by

0=—ikn; . (A4)

Solving the remaining four equations will give the other four modes. First we find the zeroth-order solu-
tions by neglecting all dissipative terms. This is easily done by substituting for 8p and V;u in the v; equa-
tion. We find two additional dissipative solutions (Re w=0) and a pair of propagating solutions with

(1)2=k2033 N (A5)
where c33 is given by Eq. (17c). The speed associated with these modes is
Vo=w/k=1+ci{*. (A6)

The attenuation is found by including the dissipative terms to first order. The correction to the angular fre-
quency is

Ao =(i/2c33)( [(dp /3s)—(3p3/3s)]{ Ek*(c33—c13)+K k2[(T /3V3u)—(3T /3p)]}
+(C33—C13){ §k2(013—033)+(§k2/T)[(aT/ap)—(aT/aV3u)] }—C33k27]1) s (A7)

where c,3 is given by Eq. (17b). Since the most divergent dissipative parameters near the AC transition are
the 7’s, we find for the adiabatic sound attenuation

ap=iAw/Vye=k,/2c}5* . (A8)

For ©=90° (propagation parallel to the layers) K=ké, 1 without loss of generality. In this case the equa-
tions of motion are



25 PROPAGATION AND ATTENUATION OF SOUND NEAR THE... 1091

—iwdp+ikv; =0, (A9a)

—iou—v3=0, (A9b)

—iwT8s +x,k>[(dT /3p)8p+ (3T /3s)8s 4+ (dT /3V3u)Viu]=0 . (A9c)

—iov,+ik [(3p /dp)8p+(dp /s )8s +(3p /dV3u)V;u] +(p+na)k, =0, (A9d)

—iwvy +1,k%,=0, (A9e)

—iwvy+13k3=0. (A9f)
Two dissipative modes are described by the last two equations and have

0= —ink? (A10a)
and

w=—ink?. (A10b)
From the other four equations we again find two additional dissipative modes and a pair of propagating
modes with

Voo =+(3p/3p)s - (A11)
Doing first-order perturbation theory gives

Aw=—[i/2(3p /3p)][(3p /3s)k kHDT /3p)+(3p /3p)k (M2 +14)] (A12)
or

o=k (m,+m4)/2(3p /3p)' 2. (A13)
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