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The accuracy of an energy-density functional that contains kinetic-energy terms up to
fourth order in the gradient expansion and exchange-energy terms up to second order, is

tested by constructing a trial charge density in the same way as is done in a minimal-

basis-set-Hartree-Fock-type calculation. It is found that while the total energies for He,
Ne, Ar, and Kr, obtained by optimization of the parameters through the statistical func-

tional differ slightly from those determined by the Hartree-Fock method. The electron
densities are poorly described, especially in Ar and Kr. The results for the molecules

CH4, NH4, BH4, SiH4, and GeH4 within the one-center approximation are also report-
ed and compared with similar Hartrce-Fock calculations to test the accuracy of the model

to predict equilibrium distances. The same type of density is used in connection with an

energy-density functional whose kinetic-energy part is given by a partitioned-density
model recently proposed by Bader, which leads to similar results.

I. INTRODUCTION

The theorems of Hohenberg and Kohn' provide
the fundamental basis for the search of the exact
energy-density functional. Unfortunately, except
for the trivial case of one-electron system, the
correct kinetic-energy-density, T [p], and
exchange-correlation energy-density, K[p], func-

tionals are not as yet known. However, recently it
has been shown ' that when a Hartree-Fock or
even better charge density is used, the kinetic ener-

gy may be computed quite accurately from the
truncated expansion

T[p]=To[p]+T2[p]+ T4[p],

where

T [p]= „(3tt )3/3 fp—'/3dr,

T2[p]= „f-
p

and
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The term Tp is the kinetic energy of a free-
electron gas, T2 is —, of the original Weizsacker
correction for inhomogeneity as recently strongly
argued", ' and T4 is the fourth-order correction as
given by Hodges.

On the other hand, it has been shown that,
within the Kohn-Sham formalism, the exchange
energy density (the correlation energy being
neglected) can be approximated reasonably well by

with

' 1/3
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Ko[p] = ——4a
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2.695 711+
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(6)

K[p]=Ko[p]+Kz [p]

where (for the spin-restricted case)

(5)
a, =0.689 26

4.043 571+
n,
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and

1/3

(7)

with

n, p, +n, p,
n, +n,

n,
P, =0.002065 '4/3 '

4.043 57+
nt

nt is the total number of spin-up electrons.
Thus, the total energy can be computed from the

energy-density functional

E[pl =T[pl+ v-[ ]+J[p]+&[p]
where V„,[p] is the nuclear-electron attraction en-

ergy

V„,[p]=—Z f+dr,
T

and J[p] is the classical Couloinb repulsion energy

between p and itself,

p =p1+p2
——p(0) '+p2, (12)

as proposed by Tal and Bader", because the
Weizsacker term by itself reproduces very well the
kinetic-energy density close to the nucleus.

The object of the present work is to impose the
shell structure from the beginning by building up a
charge density which is identical in its functional
form to that of a minimal basis set (MBS)
Hartree-Fock calculation. ' The parameters are
determined by requiring the total energy, calculat-
ed through Eq. (8), to be a minimum with respect
to them. This way, we can also test the accuracy
of this functional to determine the charge density

by a direct comparison of the parameter values

with those obtained from a Hartree-Fock MBS cal-
culation.

We have also carried out the same type of calcu-
lations with an energy-density functional in which
the kinetic energy is approximated by

T(([p]= „(3(r—) ~'f p2 dr

P1
'

P2

where

J[p]= ,
' f f p' "p'-dr(de

r12
(10)

II. THE ATOMIC DENSITY

This functional is identical to the one just pro-
posed by Shih, Murphy, and Wang except that

2
they use a constant value for a of —, and a constant
value for p of 3.723 )& 10 [this value corresponds
to the definition given in Eq. (7) and it is obtained
from the value of 5.5 X 10 given in their defini-

tion Eq. (5) of Ref. 22]. They found very good
agreement with Hartree-Fock values when the
Hartree-Fock density was used.

Although Eq. (8) combined with Eqs. (1) and (5)
seems to be adequate for computation of the ener-

gy from an accurate electron density, it leads varia-
tionally to an inadequate equation for the density
if only the normalization constraint is imposed' "
(some of the terms will diverge as r approaches in-
finity). However, if the atomic density is con-
strained to have an exponential decay, ' ' the ener-
gies and charge densities thus obtained are im-
proved over those obtained by the Thomas-Fermi
method and its modifications. ' ' In particular,
Wang and Parr' have shown that the shell struc-
ture of atoms can be obtained through simple
energy-density functionals assuming that the
charge density is piecewise exponentially decaying.

In a MBS calculation each occupied orbital is

approximated by a single Slater-type function,

(t(„( (r, e,y)=Nr" 'e "' r( (e,(t(), (13)

p(r)= gn;g (r)P;(r),

after integration over e and P. Here, n; is the
number of electrons in the ith orbital.

where N is a normalization factor and g„( is a
parameter, whose value is fixed by minimizing the
expectation value of the energy expression corre-
sponding to a single-determinant wave function,
constrained to the orthonormality of the set I 1(;].
This procedure was originally proposed by Zener'
and by Slater' who did not carry out the varia-
tional procedure but rather gave a set of rules to
determine the values of g„( for any atom. Later,
Clementi and Raimondi' optimized the orbital ex-
ponents in SCF calculations for atoms with 2 to 86
electrons to ensure the energy minimum.

The charge density resulting from such MBS is
given by (for a closed shell)
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In our calculations, the charge density is given

by Eq. i14) and the orthonormality constraint is
fulfilled by carrying out a Schmidt orthogonaliza-
tion between those orbitals with the same value of
the azimuthal quantum number I. The effective
charges are then determined through Eq. (8). One
advantage of this procedure over the piecewise ex-

ponential model of Wang and Parr is that we can
include T4 in our calculations, and therefore test
its importance when a variational calculation is
done. In the piecewise exponential model, Tq can-
not be included due to the discontinuities of the
first and second derivatives of the charge density.

Model'

Hartree-Fock
HF-MBSb

TFX9 W

TFX—WH

TFXWB

1.6875
1.6747

1.6252

1.9998

'See text for a definition of the various models.
These values taken from Ref. 16.

TABLE I. Total energy and parameters for the

ground state of He (atomic units).

2.861
2.847
2.886

2.800

2.893

III. CALCULATIONS

+&o[P]+&2[P], (17)

HF-MBS: Single-determinantal wave function
with a minimal basis set.

All models make use of Eq. (14) for the density,

and the energy expression is minimized with

respect to the effective charges (which are the in-

dependent parameters) in the density subject to the

orthonormality constraint. The virial theorem is

always satisfied for the final energy for the
1 1

TFX—,W and the TFX—, WH models as one can

prove by Fock's method. ' In the TFXWB model

the virial theorem is not satisfied because of the
term neglected. "

A. Helium and neon

Results for the He atom (1s ) are presented in
Table I. The total energies and the parameter
values agree quite well with the HF-MBS values.
The TFX 9 WH lies above the HF-MBS energy

We label the various calculations as follows:

TFX9 W: E[p]= To[p]+T2[p]+V„,[p]

+J[pl +&o[p]+&2[p]

TFX , WH: E[p—]= To[p]+ T2[p]+ T4[p]

+V..[p]+&o[p]+&2[pl, ll6l

TFXWB: E[p]= Ta[p]+ V„,[p]+J[p]

I
while the TFX—, W lies below, however, the electron

density is slightly better described in the TFX—W
1

9

than in the TFX—, WH model.

Results for the Ne atom (1s 2s sp ) are present-

ed in Table II and in Fig. 1. It is found with the
TFX—, WH model that the effective charge of the 2s

orbital is too small when compared to the HF-
MBS value, while the effective charge of the 2p or-
bital is too large when compared to the HF-MBS
value. This leads to a poor description of the radi-

al distribution function in the region of the L shell,

particularly in the position and magnitude of the
minimum and the maximum. However, in particu-
lar for Ne, the HF-MBS method predicts the same

value for the 2s and the 2p effective charges. '

This suggested to us that we impose the constraint

g2,
——$2& in the calculation. The resulting parame-

ters and consequently, the radial distribution func-

tion, agree much better with HF-MBS. Since this

type of restriction, namely, g =g„~ lies in the

spirit of Slater's rules, and since the values ob-

tained by Clementi and Raimondi for g and g„~
are, in general, very close to each other, it was im-

posed in all the other computations. This increases
the energy, but it improves the electronic density

description.
One can see from Fig. 2 that the calculation

with the TFX—,W model with this type of charge

density agrees better with the HF density than the
two-zone exponential p of Wang and Parr. The

1 1

difference between the TFX—,W and the TFX—, WH

electronic densities is negligible in this case (Fig.
1

1), while the energy is slightly larger for TFX—,WH

than for TFX—,W. The TFXWB p is in very good

agreement with HF-MBS.
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TABLE II. Total energy and parameters for the ground state of Ne (atomic units). '

Model

Hartree-Fock
HF-MBS
TFX—W9

TFX—WH

TFX—WH"

TFXWB

9.6421
9.4684

9.2449

9.6313

9.6662

2.8792
2.9634

2.9668

0.9540

2.8559

2.8792
2.9634

2.9668

3.5977

2.8559

128.547
127.812
127.353

125.352

128.577

125.312

'See footnotes of Table I.
Allowing g2, to be different than gq~.

B. Argon and krypton C. AH4 molecules

Although the results obtained for He and Ne are
good, the results for Ar and Kr (Tables III and IV)
show a rather large disagreement with the HF-
MBS values, especially the description of the radial
charge distribution in the region of the outermost
shell. In Kr not only the description is poor, but
the shell structure is partially lost and the total en-
ergies are much deeper than the HF-MBS energy,
except for the TFX—,8'H model whose energy lies

above the HF-MBS energy.

As a first test of these functionals to predict
molecular constants such as the equilibrium dis-

tance, we have done calculations on several AH4
molecules within the one-center approximation.
Thus, one has to include additional terms in the
functional. The electronic charge-proton attraction
is approximated by

(lg)
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FIG. 1. Radial distribution function for the ground
state of Ne. ( ) Hartree-Fock; HF-MBS and
TFXWB are identical ( ————); TFX—W and

TFX—WH are identical ( —. — —. —).

FIG. 2. Radial distribution function for the ground
state of Ne. ( ) Hartree-Fock; ( ————) zone-
exponential model, see Ref. 15; ( — — — —)

TFX—W.
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TABLE III. Total energy and parameters for the ground state of Ar (atomic units). '

Model kp kp

Hartree-Fock
HF-MBS

TFX—8'
9

TFX—WH

TFX8'B

17.5075

17.2049

16.7808

16.8731

6.1152

6.6965

6.7145

7.1419

7.0041

6.6965

6.7145

7.1419

2.5856

2.8018

2.8009

3.0391

2.2547

2.8018

2.8009

3.0391

526.817
525.765

527.562

521.296

525.359

'See footnote of Table I.

4 3v6
Vpp

———Z + (19)

where Z is the nuclear charge of the central atom
A. These two terms have to be included in the
three models considered. The results for CH4,
NH4+, BH4 SiH4, and GeH4 are presented in
Table V and compared with similar calculations.
It may be seen that the TFXS'B model is surpris-

ingly accurate in predicting the equilibrium dis-
tance, except in the case of SiH4, while the other
models tend, in general, to underestimate it. The
energies obtained are very similar for all models.

which corresponds to having spread uniformly the
four protons over the surface of a sphere of radius
R. The nuclear-nuclear attraction for a tetrahedral
geometry is exactly given by (AH4)

IV. CONCLUSIONS

Since we have used approximate functionals,
there is no guarantee that the energy should lie
above EHF. However, the energy obtained from
the constrained calculations reported, is in several

cases already lower than EHF. This indicates that
the results that would be obtained carrying out the
full variation and solving the corresponding dif-

ferential equation, would be in larger disagreement
with the HF values. Thus, at least for the func-
tionals based on a gradient expansion, it is neces-

sary to incorporate additional constraints from the
beginning, besides the normalization.

However, there is no guarantee that such con-
strained calculations (like using HF-minimal basis
set type densities or piecewise exponentially de-

creasing densities) would greatly improve the
description. As a matter of fact, the poor results

TABLE IV. Total energy and parameters for the ground state of Kr (atomic units). '

Model kp kp g3d 04p

Hartree-Fock
HF-MBS
TFX—8'
TFX—he
TFXWB

35.2316
30.8603

33.8603

31.3685

13.1990
9.7397

7.3183
20.2288

16.0235
9.7397

7.3183
20.2288

7.0109
12.8800

12.5204

3.5668

6.8114
12.8800

12.5204

3.5668

6.8753
3.1148

2.2577

9.4217

2.8289
13.4287

12.9476

2.8807

2.4423
13.4287

12.9476

2.8807

2752.056
2744.520
2793.115

2737.933
2857.838

'See footnote of Table I.
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TABLE V. Total energy and equilibrium distance for various molecules within the one-center approximation (atomic
units).

Model
CH4

—E Re

NH4+

—E Re
BH4

—E Re

SiH4'
—E Re

GeH4'
—E Re

Experimental
Hartree-Fock'
Hartree-Fock
HF-MBS
TFX—8'

9

TFX—WH

TFXWB

40.53
40.23
40.07
39.05
38.37

39.06

38.55

2.07
2.07
2.08
2.19
1.86

1.86

2.09

56.84

56.30
55.38

54.42

54.62

1.96

1.91
1.76

1.76

1.91

27.20

26.62
25.85

25.38

25.53

2.37

2.24
2.14

2.14

2.38

291.24
290.79
290.31
289.48

285.70

286.55

2.78
2.80
2.76
2.97
2.49

2.49

2.19

2077.80
2076.80

2093.53

2071.68

2119.29

2.89

3.02

3.63

3.50

2.82

Hartree-Fock limit, without the one-center approximation.
Hartree-Fock limit, within the one-center approximation.

'Experimental and Hartree-Fock values taken from J. P. Desclaux and P. Pyykko, Chem. Phys. Lett. 29, 534 (1974).

obtained for Ar and Kr indicate that the present
approach does not provide a systematic and simul-

taneously useful (predictive) method. Nevertheless,
the results reported give some information about

the level of accuracy that can be achieved through
these functionals. However, they should not be
used to reach any preference between the different
models.
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