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Ingredients of a theory of convective textures close to onset

M. C. Cross
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 20 August 1981)

The patterns of convection to be expected in laterally large Rayleigh-Benard cells close
to onset are analyzed using the amplitude equation approach of Newell and Whitehead
and Segel. This equation allows the introduction of a Lyapunov functional, which may
be used to order the stability of various patterns. Two competing effects are identified: a
surface effect that favors rolls approaching the sidewalls normally, and so tends to pro-
duce O(1) rotations of the roll orientation over the cell, and bulk effects that favor
straight parallel rolls. The competition between these effects, and the role of defects in
the structure, are studied in some simple examples.

I. INTRODUCTION

Theoretical analysis of the effect of the lateral
boundaries on the convective pattern in a
Rayleigh-Benard cell has been mostly limited to
two simple cases. Firstly, the linearized equations
have been studied to determine the onset patterns
and their critical Rayleigh numbers. This has been
done in cylindrical geometries, ' for both axially
symmetric and nonsymmetric patterns, and for rec-
tangular cells. ' A second class of problems that
has been studied is the inclusion of the weak non-
linearities close to onset, but only for certain sim-

ple solutions matching the symmetry of the lateral
boundaries such as axisymmetric rolls in a cylind-
rical container or straight rolls parallel to one side
of a rectangular container. ' The inclusion of
nonlinearity is important, for typically the solu-
tions growing from the more complicated onset
patterns become unstable, and the complexity of
behavior suggested by the linear analysis may be
misleading. In addition there has been numerical
work testing the stability of some of the onset pat-
terns in the cylindrical geometry, and for model
equations in the rectangular geometry.

On the other hand, a survey of the experimental
literature shows the common occurrence of pat-
terns involving large changes in roll orientation
over the cell, and often including dislocationlike
defects in the rolls (see, for example, Refs. 9—11),
although the simple patterns analyzed theoretically
have also been observed both in cylindrical' and
rectangular' cells. Two explanations of these
complicated patterns seem plausible. It may be

that as the Rayleigh number is rapidly increased
through the critical value, convection onsets in-

dependently in isolated regions with rolls oriented
in various directions. As the convection becomes
stronger and the different regions come into con-
tact some complicated pattern will form that may
persist indefinitely. A second explanation may be
that the simple symmetric pattern is in fact un-

stable towards the more complicated patterns ob-
served. Such an instability has indeed been docu-
mented' at rather high Rayleigh numbers.

In this paper the influence of lateral boundaries
on the convection pattern in the nonlinear regime
is studied, without the restriction to simple sym-
metric patterns of previous work, to investigate the
second suggestion. In particular, the effect of la-
teral boundaries in establishing patterns, in which
the direction of the rolls changes slowly but
through large angles over the cell, is considered.
Borrowing a term from liquid crystal physics, this
may be called the study of textures in convection.

The analysis will be performed close to onset in
a laterally large system so that use can be made of
the "amplitude equation" formalism introduced by
Newell and Whitehead' and by Segel. ' This for-
malism permits the treatment of the spatial inho-
mogeneities induced by lateral boundaries, together
with the weak nonlinearity, in a single equation for
the "envelope function" that describes the slow
modulation of the basic roll pattern. Also, from
the amplitude equation a functional I' may be de-
fined' ' that decreases in any dynamics of the
system (a Lyapunov functional). An ordering of
various convection patterns in decreasing values of
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this functional may than be used as an ordering of
stabilities: on perturbation a pattern may change
to one with smaller F, but not to one of higher F.
The ordering of stabilities according to the value of
F is made rigorous by the presence of small sto-
chastic forcing in the equations, of the form of
thermal noise. ' ' Then any state, even metastable
states at local minima of F, will in principle decay
to the stable state at the smallest mirninum of F.
Conventional estimates' ' of the magnitude of the
stochastic forcing of the amplitude equation due to
thermal noise suggest a value too small lead to any

probability for the decay of a metastable state over

experimental timescales, and in this case higher

minima of F may be observed as experimentally

stable states. Nevertheless, this ordering of stabili-

ties remains a useful tool in demonstrating the pat-
tern formation tendencies.

The basic approach developed in this paper is to
identify two contributions to the functional F: a

boundary layer or surface term that favors patterns

with rolls approaching the sidewalls normally, im-

plying O(1) rotations in the orientation of the rolls

over the cell; and bulk terms that favor straight

parallel rolls. It is the competition between these

contributions that may lead to interesting textures

and textural transitions. The separation into bulk

and surface effects is valid in general for

1/2

where e=(R R, )/R, with—R the Rayleigh number

and R, its critical value in a laterally infinite sys-

tem, and L is the characteristic lateral size of the

system expressed as a ratio to the depth of fluid

(i.e., the aspect ratio). The amplitude equation is
derived as the lowest nontrivial order in a pertur-

bation expansion in e', and its range of validity is
restricted to small e. Equation (1) then implies a
laterally large system.

In Sec. II the amplitude equation approach is

described, and the existence of a Lyapunov func-

tional governing textural selection is demonstrated.
The various contributions to the Lyapunov func-
tional are evaluated in Sec. III. Section IV con-
tains a discussion of the competition between the
surface and bulk effects, and considers the relative

stability of various possible textures. A full solu-

tion to the minimization of the Lyapunov func-
tional requires considerable numerical work, and
we restrict ourselves here to a qualitative descrip-
tion of the competition between various types of
patterns that might be expected. Finally, con-
clusions are drawn in Sec. V.

II. AMPLITUDE EQUATION AND LYAPUNOV
FUNCTIONAL

Close to the onset of convection, a systematic

expansion in the distance above onset e taken to
lowest nontrivial order leads to a Lyapunov func-

tional that decreases in any dynamics. In a rec-

tangular geometry with a pattern based on a single

set of rolls parallel to the axis and normal to the x
directior it is

2

(2)

where A(x,y, t) is the complex envelope function
satisfying the equation' '

5F
5A*

'2

+pa„- 'a,' ~,
2qp

(3)

and the boundary conditions'

A(x =+L ) =0,
A(y =+M) =A~(y =+M) =0,

u =e' (Ae ' —c.c.)up(z)+O(e), (9a)

for a cell with rigid sidewalls at x=+L, y=+M.
It is convenient to include the —,e term in Eq. (2)
so that F is zero for a fully saturated, uniform en-

velope function.
Equation (3) is the amplitude equation intro-

duced by Newell and Whitehead and Segel describ-
ing the slow variation on time scale

r=e 't/Wp,

and length scales

X=@ '/ x/$0,
I/4yq I/2/gl/2

of the envelope function A(x,y, t) that describes the
modulation of the linear roll pattern. [The reader
will often find the amplitude equation written in
terms of these scaled variables and a scaled en-
velope function A =e ' A so that all coefficients
in the equation are 0(1).] The hydrodynamic vari-
ables, the horizontal velocity u =(u, v), vertical
velocity w, and deviation T of the temperature
from the linear conducting profile are given by
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u =0(e),

w =e' (Ae +c.c. )wo(z)+O(e),

T=e' (Ae +c.c.)To(z)+O(z),

(9b)

(9c)

(9d)

T(r,z, t) =P(r, t)To(z)+O(e), (1 lc)

with r the horizontal coordinate and V the corre-
sponding gradient. The order parameter may be
shown to satisfy

with qo the critical wave vector, and uo, mo, and
To, the critical solutions with a normalization fac-
tor chosen to make the coefficient of

~

A
~

in Eq.
(2) equal to —,. Equation (3) was originally derived
for the mathematically convenient but artificial
case of stress-free upper and lower boundaries, but
the derivation has since been generalized to the
experimentally relevant case of rigid upper and
lower boundaries. In fact, recently Siggia and Zip-
pelius ' have shown that the derivation for stress-
free boundaries is incorrect except at infinite
Prandtl number, and that an additional field (the
vertical vorticity) must then be introduced. This
difficulty does not arise for rigid boundaries, and
we will address our remarks to this case. The
parameters ro and go are numbers that are O(1) for
Prandtl numbers o of O(1), and are tabulated in
Ref. 20.

The boundary conditions Eqs. (4) and (5) were
derived by Brown and Stewartson' only for
stress-free upper and lower boundaries. So far no
calculation extending these results to the rigid case
has been reported, although Eq. (4) has been con-
firmed experimentally. In this paper we will as-
sume that Eqs. (4) and (5) remain applicable for
the rigid case as well.

Equation (2), the amplitude equation (3) together
with the boundary conditions Eqs. (4) and (5) lead
to the expression for the time derivative of the
functional F:

F= —2' f dx dy iA
i

(10)

u(r, z, t)= V P(rt)(iqp) 'up(z)+O(e),

w(r, z, t) =P(r, t)wp(z)+O(e),

(11a)

(11b)

showing that F decreases in any dynamics and does
indeed play the role of a Lyapunov functional.

If the convective rolls are not everywhere nearly
parallel, but instead their direction varies slowly
but over arbitrarily large angles, more general ex-
pressions than Eqs. (2) and (3) are needed. An ex-
pression for F involving only the slow variables de-
fined by Eqs. (6)—(8) has not been derived for this
case. Instead a real order parameter P(r, t) is de-
fined' ' ' that includes the rapid sinusoidal varia-
tion of the rolls, so that the hydrodynamic vari-
ables are given by

5F
ro4= —

~~
~

where

F= f d rI —,e —, eP—+, gP-

+ —,(ko~4qo)l(V'+qo Wl' j .

(12)

(13)

The quartic term in Eq. (13) is written for the case
of a single set of rolls locally, present, and then

1

g = —,. To treat the case of superimposed rolls g
must be replaced by a nonlocal but short-ranged
kernel. Also the gradient term should strictly be
the Fourier transform of (q —qp)

~ 1(e ~, with 1(e
the Fourier transform of g(r). The expression
used in Eq. (13) reduces to this form to the lowest
order in e that we are considering, but includes
higher-order corrections that will be incorrect.

Equations (12) and (13) reduce to the ampli-
tude equation on the substitution

g(r, t)=[A(x,y, t)e ' +c.c.], (14)

with A assumed varying on the slow scales Eq. (9),
on coarse graining over a few wavelengths 2~qo ',
and if only the lowest-order terms in e are re-
tained. The boundary conditions Eqs. (4) and (5)
are reproduced by requiring at the boundaries

1(=s VQ=O, (15)

with s the surface normal. These conditions also
reproduce to lowest order the boundary conditions
recently derived for rolls approaching the
sidewall at an arbitrary angle, although higher-
order effects (such as the amplitude of the conju-
gate rolls discussed there) will again be incorrect in
numerical details.

With the more general definition F retains the
property of a Lyapunov functional

F= —rp f d r(g) (16)

and Eqs. (12), (13), and (15) are the generalizations
required to allow the study of convective textures.
They are correct only to the order in e of the origi-
nal amplitude equation, and the terms higher-order
in e implied by the expressions will be in error.
Since, however, at these higher orders in e no
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Lyapunov functional is likely to exist, such correc-
tions are in any case of no use in the present work.
Note that once F is proven to be a Lyapunov func-
tional for the more general situation, we are free to
use either expression, with Eq. (2) a local contribu-
tion to the total F from a region where the x direc-
tion is chosen locally as normal to the rolls.

III. TEXTURAL CONTRIBUTIONS TO F

Two competing contributions to F may be iden-
tified: a boundary layer or surface contribution,
and bulk contributions. Close to the sidewalls the
convection is suppressed, and the envelope function
goes to zero. It heals to its bulk value in a dis-
tance typically O(e '~

go), but depending on the
orientation of the rolls. This leads to a boundary
layer contribution to F of order e per unit
length, which depends on the orientation at which
the rolls approach the surface. On the other hand,
well away from the sidewalls the magnitude of the
envelope function should mostly take on the max-
imum value consistent with the slow variation of
the roll orientation. There will then be a bulk con-
tribution to F depending on this slow variation. In
addition, it turns out that to allow a particular
kind of bending of the roll structure localized de-
fects must be allowed in the roll pattern, corre-
sponding to the ending of a pair of rolls (disloca-
tions). Around the dislocation point the magnitude
of convection will be supressed according to Eqs.
(3) or (12}over a core region of size O(1) in the
slow variables X, Y. This leads to an additional
cost to F. Finally we consider the possibility of a
grain boundary or "internal surface" line between
regions of rolls with differing orientations, allow-

ing abrupt (i.e., over the length scale e '~2go}

jumps in the roll orientation in the bulk of the cell.
In the analysis of these effects the separation of

length scales e' L && 1 will be repeatedly used.
This implies that the healing of the magnitude of
the convection

~

A ~, near a sidewall or the core of
a defect, takes place on a length scale ( & e '

)

much shorter than the size of the system L that
governs the length scale over which the orientation
of the rolls must change. Thus, for example, to in-
vestigate the surface contribution we may usually
simplify the calculation by considering straight
rolls approaching a straight boundary.

A. Surface contribution

The approach of the envelope function to zero at
a rigid sidewall for rolls parallel or perpendicular

2

cocos 8 +@A —~A
~

A=0,
dx

A(x =0)=0,
(17)

with x measuring the distance from the sidewall

and 8 the angle between the roll normal n and the
surface normal s. These equations are also implied

by Eqs. (12) and (15). [In fact, in either case to
satisfy the boundary conditions, small amplitude
"conjugate rolls" at an angle —8 are excited in the
boundary layer, 2 but these do not affect Eq. (17)
or the contribution to F to the order needed. ]

The solution to Eqs. (17) is

A =e'~ tanh(x/V 2g), (lg)

with (=e '~ gocos8, leading to a boundary layer
contribution to the Lyapunov functional per length

with

F, =E ~ f,(n.s), (19)

(20)

The boundary layer contribution is minimized
for n s =0, which corresponds to rolls approaching
normal to the boundary. In this limit (in fact
8'=n/2 8(e.'~ )—Eq. (19) is not valid, since the
fourth-order gradient terms omitted in Eq. (17)
then become important. Their inclusion leads to
the result for 8'~0

F, -e [1+0(e ' 8')], (21)

which is usually negligible compared with terms
such as Eq. (19) in the limit of validity of the ap-
proach, e« 1. The tendency of rolls to come in
normal to the surface was previously observed by
Davis from a linear calculation (see also Segel' )

and our work extends this conclusion into the non-
linear regime. Pomeau and Zaleski have shown
in fact that for rolls parallel to a plane boundary,
there is a linear instability towards nucleation of a
set of normal rolls in the boundary layer, and their
result should also apply for rolls approaching at an
arbitrary angle, not normal. In a finite system the
second set of rolls may be suppressed by other
sidewalls or by the curvature of the surface. For
example, the instability for concentric rolls parallel

to a plane sidewall was investigated by Brown and

Stewartson. ' The question of rolls approaching at
an arbitrary angle was studied only recently.
There it was shown that rolls may indeed approach
at an arbitrary angle, and that the healing of the
envelope function is then described by
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to a cylindrical surface towards radial rolls in the
boundary layer may be shown to be suppressed for
curvatures r ') e, although an instability to
straight rolls may still exist (Sec. IV).

B. Bulk contributions

together with the constraint

curl, n =0 .

Relaxing the restriction 5q =0 will lead to small
corrections in n and F.

(30)

Fs=e f d r[ —,(divn) +(5q) ] .

This expression can be derived from Eq. (13) by
writing

(22)

with

1(= ~A ~e'~+c. c. , (23)

Away from the sidewalls we expect the magni-
tude of the envelope function to reach the satura-
tion value consistent with the slow variation of the
roll direction. It is convenient to introduce vari-
ables n, a unit vector normal to the rolls, and 6q,
the deviation of the local roll wave vector from qp.
Ignoring gradients of the magnitude of the en-
velope function, which will lead to small correction
terms, and then minimizing the expression for F
locally with respect to the magnitude of the en-
velope function leads to an expression for the bulk
contribution:

C. Defect contribution

It will be seen in Sec. IVA that Eq. (27) or Eq.
(30) provides a strong restriction on the possible
textures. The origin of these constraints is the sin-
gle value assumed by the phase of the order
parameter g [Eq. (24)]. They may therefore be re-
laxed if there exists points where

~

A
~

~0 so that
the phase becomes undefined. Such isolated points
are dislocations in the rolls, shown schematically in
Fig. 1(a). It is easy to see that dislocations permit
textures with bending of n [see Fig. 1(b)]. A care-
ful calculation of the additional F implied by such
a texture requires knowledge of the defect distribu-
tion. However, in a large system it is useful to
consider a coarse grained description averaging
over an area a enclosed by a contour C containing
several defects. Then, defining a coarse grained
bending by

Vg=(qo+5q)n, (24)

(26)

In addition these identities imply the constraint

curl, n =qp '(n )( V5q), , (27)

or by taking Eq. (2) with locally A =
~
A

~

e'~ and

(25)

1
(curl, n ) =—J n d 1

g c

leads to the result

(curl, n ) =2nrqo 'pD(r),

with pD(r) the dislocation density. The contribu-
tion to F per unit area from isolated defects may
then be written

(31)

(32)

6 ( ]/2
(28)

so that a texture of n with nonzero curl, n (i.e.,
with "bend" in the language of liquid crystal phys-
ics) implies a deviation of the roll wave vector
from qp. Now for the convecting state to be stable
with respect to the conducting state we expect over
most of the cell,

FD = (qo/2~) ( curl, n )F, (33)

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

I I I I I

where F, is the core contribution of a single defect,

Such an nonzero 5q is, according to Eq. (27), typi-
cally sufficient to allow nonzero curl, n correspond-
ing to no more than O(e' ) variations of n over
the cell. Therefore, in the discussion of convective
textures where we are interested in O(1) variations
of n, as a first approximation we may take 5q =0
over the bulk of the cell, leading to

Fs e f d r , (divn)—

FIG. 1. Dislocations in the roll structure. (a)
Schematic drawing of a single dislocation point in the
rolls. (b) The presence of dislocations allows a fanlike
pattern of rolls. The arrows indicate the direction of the
normal to the rolls n, which is "bending" in the liquid
crystal language.
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and interactions between the dislocations have been

ignored since they generally decay exponentially

with separation. The core contribution F, arises

from the depressed magnitude of the envelope

function approaching the singular point. It is es-

timated to be (Appendix A)

F — s/4, (34)

FG e3~2cos8gnfG [P——(8)], (35)

where P(8) is a parameter depending on Prandtl

number describing the interaction of two sets of
rolls at an angle 28. The function fG has bounds

fG(z) &z'&' (36a}

where y is an O(1) number that requires numerical

evaluation.
The expression for the defect contribution FD in

Eq. (33) has assumed defect separations [typically
O(L ') if the defects are distributed over most of
the cell] large compared with the core radius

O(e '~ }. This is justified by the basic assumption

Eq. (1). However, if the dislocations are instead

arranged along a single line, the separation implied

by Eq. (32}becomes O(1). Such an arrangement

(Fig. 2) may be called a grain boundary. 27 A
small-angle grain boundary may indeed be treated

as a line of well-separated dislocations. For larger
angles where the cores would overlap it is better
treated as an "internal surface" between regions de-

cribed by different envelope functions. Such a cal-

culation is described in Appendix B. This leads to
the contribution per length of grain boundary

fG(z) &4W2/3, (36b)

where the bounds become good estimates for z
small (36a) and z large (36b), respectively. The

values of fG are graphed in Fig. 3 for various

Prandtl numbers. For very small 8 (8 & @'~ ) a
description in terms of isolated dislocations (of or-

der qc8 per length of grain boundary) is better and

leads to a lower value:

(37)

D. Summary

Three contributions to the Lyapunov functional

F have been identified: a surface contribution, a
bulk contribution, and a defect contribution. The
surface contribution tends to produce O(1) rota-

tions of the roll structure over the cell, whereas the

bulk and defect contributions are reduced by a tex-

ture of straight parallel rolls. To compare their

magnitudes the spatial gradients of the roll orienta-

tion are taken to be O(L ') with L the characteris-

tic aspect ratio of the cell. This gives the results

displayed in Table I. Note that the analysis has

assumed e« 1, so that the amplitude equation ap-

proach is valid and F is a useful quantity, but
e' L y& 1, so that surface and bulk contributions

may be conveniently separated. In addition, tex-

tures consisting locally of a single set of rolls have
been assumed. Superimposed rolls (e.g., locally
squares or hexagons) lead to a much larger bulk
contribution280(p L ) and may be safely ignored
over the bulk of the cell.

1.4
g =0.01

1.2

1.0

0.8

-1/2

0.4
I I I I I I I I

0 IO 20 30 40 50 60 70 80 90
e

FIG. 2. A large-angle grain boundary. In the boun-

dary thickness of order e '~ (s the pattern consists of a

superposition of the two roll patterns.

FIG. 3. The parameter fG giving the grain boundary

cost to the Lyapunov functional per length of boundary

as a function of the angle 8 of Fig. 2.
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TABLE I. Contributions to the Lyapunov functional
F. Taking spatial gradients of the roll orientation to be
O(L ') the orders of magnitudes of the various contri-
butions to F are compared.

Contribution
to F

Contribution
to F/e

Surface
(

P P)
Bulk textural
((divn )2)
Dislocation
(curl, n )
Roll
superposition

3/2L

~5/4L

eL2

61/2L

~1/4L

(&1/2L)2

IV. ANALYSIS OF TEXTURES

We look for the "most stable" pattern of rolls as
the one giving the lowest mimimum of F, which is
the sum of contributions displayed in Table I. A
complete solution to this problem requires numeri-
cal solution of the order parameter Eq. (13). Here
we will compare the values of F for some simple
configurations in various geometries to demon-
strate the types of effects that must come into the
complete solution. In particular, we will em-

phasize the scaling of various terms with e and L,
so that the limit a~0, e' L && 1 may be easily
studied. We first look at possible textures in the
absence of defects in the bulk of the cell and then
consider modifications on relaxing this constraint.

A. Defect-free textures

In the absence of dislocations the constraint Eq.
(30) leads to the condition that contours of con-
stant n lie along n. This implies that if the orien-
tation of a particular roll is known everywhere,
then the orientation of the other rolls is fixed by
this construction. The boundary layer contribution
F, may lead to a global selection of a particular
pattern satisfying this constraint, but in general lo-
cal adjustments to reduce F, will not be possible.
Furthermore, for a curved roll the construction im-
plies orientational singularities at distances of order
of the radius of curvature, which for the large cur-
vatures required to minimize F, everywhere, will
usually be within the cell. In this case, if only
point orientational singularities are permitted, the
rolls must form segments of concentric circles.
(The possibility of line orientational singularities
will be considered later. ) Thus, we are led to look

2. Circular-cylindrical cell, radius L

An interesting comparison in this case is given
by textures of concentric rolls [Fig. 5(a)] or of
straight rolls [Fig. 5(b)]. The pattern of concentric
rolls was observed by Koschmieder and Pallas,
whereas a pattern similar to Fig. 5(b) may have
been observed as a stationary stable state by Chen
and Whitehead and in small cells by Stork and
Muller. It is easy to see that for e' L »1, the
texture of straight rolls is the more stable since it

(0) (b)

FIG. 4. Schematic drawing of suggested roll patterns
in (a) a long thin rectangle and (b) a square cross sec-
tion.

at the competition between bulk and surface con-

tributions for textures of concentric circles, al-

though other textures are certainly possible.

1. Rectangular cell L XM

First consider a long, thin cell L »M. In this
case, for textures of straight parallel rolls F, is
clearly minimized by rolls parallel to the short side
of the cell, Fig. 4(a). This is the extension of the
well-known result of Davis into the fully non-
linear regime e' L » 1. Such a pattern is often
observed close to onset, e.g., Ref. 13. For widths
M 4 6' this is probably the most stable pattern.
For larger widths the boundary layer instability
discussed in Sec. IIIA will arise. The details of
the behavior near the endwalls is then complicated,
but if defects are excluded the final state may be as
in Fig. 4(a), but with small amplitude cross rolls in
the boundary layers at the endwalls.

For L and M of comparable size it is easy to
devise textures that reduce F, from the value for
straight rolls. For example, for the case L =M the
texture of Fig. 4(b), consisting of circles centered
on one corner, reduces F, by a factor of 0.88 from
the value of straight rolls parallel to one side. The
bulk textural contribution for Fig. 4(b) is larger
than that for straight rolls, but is negligible for
E L » 1. Again the effect of the surface insta-
bility on these two textures is not clear.
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I

I 1 I
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I

(a) (b) (a) (b)

FIG. 5. Schematic drawing of suggested roll patterns
in a circular cross section.

leads to a lower F, (by the factor 2/m). The bulk
textural contribution also favors this result, but is
again negligible. The result that straight rolls
should be more stable than concentric rolls in a
large cylindrical geometry was suggested before

by an approximate analysis for c' ~2L =O(1). A
similar conclusion was reached by Charlson and
Sani for some much smaller cells.

B. Textures with isolated dislocations

= (qp/2n ) f —f n dl. (38)

where the cell is divided into regions + of positive

and negative curl, n. For isolated dislocations the

contribution to F is then NzF, with F, given by

Eq. (34).
As examples, consider the textures in Fig. 6,

which may be thought of as Figs. 4(b) and 5(b) dis-

torted so that the rolls come in perpendicular to
the sidewalls. The numbers of dislocations, given

by the integral in Eq. (38) are

The examples considered in Sec. IV A demon-
strate the tendency of the rolls to come in every-
where perpendicular to the sidewall. For a closed
contour boundary, this is inconsistent with the con-
straint implied by the absence of defects. Relaxing
this constraint leads to a certain number of dislo-
cations, with the corresponding cost in F. This
must be compared with the gain in the surface
contribution.

The number of dislocations ND is easily calculat-
ed using

ND ——(qp/2n) f d r
~
curl, n

~

FIG. 6. Textures with defects. The lines are to be
thought of as locally along the roll directions, and not as
actual fluid contours. The arrows indicate the direction
of n. These textures imply the presence of dislocations
distributed over the cell.

NDF, . 'On the other hand, the change in the sur-

face contributions [from those of Figs. 4(b), and

5(b)] are

5F, (square) =—0.88 X 4Lf, ,

5F,(cylinder )= 4Lf, , —
(40a)

(40b}

--) l

with f, given by Eq. (20}. Notice that both FD
and 5F, are proportionality to L, the characteristic
size of the system. The constants of proportionali-
ty are, however, O(e ~4} and O(e ~ ), respectively, so
that in the formal limit e~o the dislocation cost
always outweighs the surface gain, and the simpler
dislocation free textures are more stable. Simple
power-counting arguments suggest this result is
true in general.

This conclusion may change, however, if e is re-

tained small, but the limit e~O is not taken. An
example demonstrating this is convection in an an-

nual region between r and r+5r with e' 5r,
E' T pp 1 but 5r/r « 1. We now compare the
texture of radial rolls Fig. 7(a), which are normal

to both sidewalls but contain dislocations, to that
of straight rolls Fig. 7(b). Since the number of de-

fect is now

ND =(qp/2~) f n d 1 =qp5f

giving a defect contribution F~ -e 5r, whereas
the difference in the surface contribution is propor-

Nn (square) =(4—2V 2)qpL /2n,

ND(cylinder) =2(m —2)qoL /2m,

with the corresponding dislocation cost FD of

(39a)

(39b)
(a) (b)

FIG. 7. Schematic drawing of possible textures in an
annular cross section.



25 INGREDIENTS OF A THEORY OF CONVECTIVE TEX'HJRES. . . 1073

tional to e r, we find that the texture with dislo-
cations Fig. 7(a) is the more stable for 5' = —0. 88( 4&2/3)E Lgp

= —1.66' i L(p. (44)

e')i4 5r
(42) Using the values for fG from Fig. 3, suggests for

not too small Prandtl numbers

This result suggests a transition for e-(5r/r),
which may be made arbitrarily small. Although
the geometry is certainly a special case, chosen to
emphasize surface effects, it provides an interesting
example where the tendency of rolls to come in
normal to the boundary may favor a texture in-

volving roll dislocations.

C. Textures with grain boundaries

FG =W2e L(pfGcos8, (43)

where the bar averaging over the angle 0 of the
grain boundary along its length. Compare this
with the change in Fs from the texture in Fig. 4(b):

FIG. 8. A texture in a square cross section with a
large-angle grain boundary (of varying 8) along a diago-
nal.

In Sec. IV B the defects were assumed to be iso-
lated dislocations. It is also of interest to consider
textures involving large-angle grain boundaries.
The question arises whether, to satisfy the tenden-

cy of rolls to come in normal to the sidewalls, it is
favorable to introduce a large-angle grain boun-
dary. Since both contributions to F scale as e L,
analyzing the competition involves a comparison of
the numerical prefactors in Eqs. (35) and (19).

As an example, consider the possibility of a
grain boundary along the diagonal of a square cell,
Fig. 8, compared with the texture of circular rolls,
Fig. 4(b). The grain boundary contribution in Fig.
8 is

FG+5Fs (O (45)

so that the texture with a grain boundary is then
more stable.

V. Conclusions

Various ingredients that tend to favor particular
textures close to onset (in the sense of reducing the
Lyapunov functional F) have been identified. We
find a strong tendency for the rolls to come in nor-
mally to a rigid sidewall, in this way minimizing
the thickness of the boundary layer over which
convection is suppressed. However, close to onset
the roll wavelength is rather precisely fixed, so that
a condition of rolls normal to all sidewalls implies
the presence of defects in the cell. The analysis
suggests that in the limit e~O but e' L && 1, the
cost to F of isolated dislocations outweighs the re-
duced surface contribution, and such textures will
not be the most stable. Geometries may be devised
that probably do have most stable textures with
isolated defects at small but finite e. In addition,
at least at not too small Prandtl numbers, textures
with grain boundary defects may become favorable.

We have assumed an ordering of stabilities ac-
cording to decreasing values of the functional F.
In practice, in the absence of significant stochastic
forcing, any local minimum may be observed as
steady state over long times. In this case the re-
sults may be useful in understanding relaxation to-
wards these minima.

The analysis has been done only for small e, a
region where two dynamic length scales exist (in
addition to the cell size L): the roll wavelength
2m.qo

' and the magnitude healing length
0(e '

qo '). It is unclear how many of the quali-
tative effects derived is this limit may extend to
larger Rayleigh numbers, where only a single-
length scale governs the dynamics. One possible
difference is that at larger Rayleigh numbers the
roll wavelength may suffer larger distortions, al-
lowing more roll bending without necessitating
dislocations. Few systematic experiments have
been done to study the textures close to onset in
large cells where our analysis should be valid.
Krishnamurti has reported results for rectangular,
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cylindrical, and annular containers for R/R, of 1.1
or 1.2 using a high Prandtl number oil. She re-
marks on the tendency of rolls to come in normal
to the sidewall in each case. The texture observed
in the rectangular cell consists of rolls parallel to
the short side, with some cross-roll modulations of
the two rolls nearest each end, as would be expect-
ed from the discussion of Sec. III A. Berge'
shows similar results. Both circular and annular
cells Krishnamurti finds lead to defccted textures,
although the reproducibility of the details of the
textures is not remarked upon. On the other hand,
at slightly higher Rayleigh numbers the textures
observed by Chen and Whitehead in the circular
container seem better described as straight rolls
with some cross roll modulation near the sidewalls,
although this result may be biased by the initial
pattern of straight rolls used. In an annular con-
tainer they observe a texture reminiscent of Fig.
7(a). At higher Rayleigh numbers the presence of
isolated dislocations seems to be a more general
feature than suggested by our small e analysis (e.g.,
Refs. 10 and 11). Whether this difference arises
from the defects being frozen in from some initial
condition, or simply reflects the difference of a
larger Rayleigh number or rather small cell sizes,
is not known.

Even our analysis at small e has been descriptive
rather than quantitative. It would be interesting to
study the trends suggested by this approach further
by numerical solution of the amplitude equations
[for example, Eqs. (12) and (13)]. A first step has
recently been reported by Manneville. ' Further
studies including, for example, a study of the
dependence on initial conditions would provide
useful information for comparison with experi-
ment.

Finally it should be remarked that the amplitude
equation is derived as a truncation of an expansion
in e' . A solution minimizing the functional F is
a static solution at the order of the expansion giv-
ing the amplitude equation, but may not be static
when higher-order effects are included. In particu-
lar, time variations on the scale set by Eq. (6) are
ruled out, but variation on a slower time scale may
occur. Even the pattern labeled "most stable" is
conceivably not stationary on these longer times-
cales.
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APPENDIX A: DISLOCATION CORE
CONTRIBUTION TO F

Assume a roll pattern with straight rolls to the y
axis except for distortions induced by adding an

extra roll pair at x =0, y &0. If the deviations of
the roll normal from the x axis are small over the
regions contributing to F, we may use the expres-
sion Eq. (2). The core contribution will be of order

F, -e core area, (A 1}

where the core is the size of the region where the
magnitude ~A

~

is depressed.
The dependence F, (e} may be readily found by

transforming to the scaled variables X, Y according
to Eqs. (7) and (8) together with

A =e-'~'A,

F &
—5/4(~ /g3}l/2F

(A2}

(A3}

so that

F= f drd& —,—f& f'+-, [~ f'

l+ ~x ——~~ A
2

2

(A4)

together with the condition

f VP d 1 =2m. , (A6)

where the contour C surrounds the dislocation
point. Equation (A5) will lead to a magnitude

~

A
~

that heals to unity in distances O(1) in the
scaled variable. These equations have been studied

by Toner and Nelson, who show that the integral
Eq. (A4) converges at long distances so that

F, =O(1), (A7)

where the value of the constant must be evaluated

by numerical solution. Returning to the unscaled
variables according to Eq. (A3) gives the core con-
tribution to F:

with the stationary dislocation solutions deter-
mined by

2

5A' 2
=0=i—

[
J['J+ a ——'a'„7, (As)

The author thanks Daniel S. Fisher, Eric Siggia,
and Annette Zipelius for useful conversations on
various aspects of this work.

F, =«5~4,

where all constants are absorbed into the O(1)
number a.

(AS)
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APPENDIX B: GRAIN BOUNDARY
CONTRIBUTION TO F

so that ri(+ ce) =1,X(—ee) =0 and X(+ 0o) =sr/2
and

A large-angle grain boundary may be treated as
an "internal surface" separating regions described
by different envelope functions A i and A2. If x is
the coordinate normal to the grain boundary (ima-
gining the geometry of Fig. 2) then the contribu-
tion to I' per length of grain boundary is
e gocos0fg where, assuming A ~, A2 both real

fg= f dX[ —,—(Af+A2)

+ —,[A ) +2(p+ 1)A (A 2+A 2]

fg= f dX[ —,(1—7) ) +(t)rri)2

+ —,pri sin X+(rit)+X)~] . (B5)

The minimum of fg must be found numerically.
We may place upper bounds using some simple
variational ansatz. For P=O it is clear that the
solution will have g=1 everywhere, with 7 varying
arbitrarily slowly, leading to fg ——0. For small P a
good trial solution is to assume g =1, with varia-
tion only in 7:

+(a,A, )'+(a,A, )']

where here X is the scaled normal coordinate

X=@ ' /gocos8, (B2)

fg & f dX[ —,psin'I+(8~I) ] .

This may be readily minimized to give

A i ='g cos+,

A2 ——g sing,

(&3)

1

and for angles 8 not too close to —,m the fourth-

order gradient terms may be neglected. The
parameter P(8) was introduced by Newell and
Whitehead' to describe the superposition of roll
structures, and is discussed further in Ref. 23. Its
value for the useful case of rigid top and bottom
boundaries may be calculated from Ref. 20.

We seek a minimum of fg where A ~( —Do)=1,
At(+De)=0, and A2( —0e)=O, A2(+ ao)=1. It is
then convenient to introduce variables g, X defined
by

(87)

with the bound becoming a good estimate for p
small. On the other hand, for large P only when ri
is small will 7 change significantly. In this limit
an ansatz of g going linearly to zero either side of
x =0 should be good giving [cf. Eq. (20)]

fg &4v 2/3,

where the bound becomes a good estimate for large
P. Values of fg calculated numerically for various
Prandtl numbers are displayed in Fig. 3.

For 8 close to O(H (e' ) the grain boundary will

appear as a line of isolated dislocations, and the re-
sults of Appendix A should be used.
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