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Observations on the criticality of the Yvon-Born-Green equation of state
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Recent analyses of the Yvon-Born-Green equation strongly suggest that if it has a criti-

cal point, the critical correlations are, for spatial dimension less than four, negative at
long range. We present here new numerical evidence that the YBG equation, in spatial

dimension three, does not have a critical point, in contrast to the conclusions reached in

previous numerical work. Our evidence comes from new numerical solutions which are
closer to the supposed critical point and of greater precision than was achieved in the pre-

vious work. The extrapolations inferred from the previous work are not followed by the

new solutions. The conclusion that there is no true critical point is based on three obser-

vations. (1) None of our numerical solutions are negative at long range. (2) The inverse

compressibility does not extrapolate to zero along any isochore in the vicinity of the sup-

posed critical point. (3) The inverse correlation length does not extrapolate to zero in the

vicinity of the critical point, but rather goes through a nonzero minimum at a point of
maximum, but not infinite, correlation length.

I. INTRODUCTION

Green et al. ' have solved the Yvon-Born-
Green (YBG) equation, in the superposition ap-
proximation, for the pair distribution function g (r)
by a numerical iterative technique. The inter-
molecular potential used was a hard core of radius
cr with an attractive square well of radius 1.85 0
and depth e. They found a region of temperature
and density for which g(r) became long ranged,
and hence the reduced compressibility

ttr = 1+ I [g (r) —1]r dr

quite large. Natural extrapolations of their data in
this region implied a critical point near
O=e/kT =0.374 and reduced density
+=4srntr =4 60, where n .is the number of mol-

ecules per unit volume. With these critical point
values, they determined from above numerical data
values of the critical exponents which were very
close to those believed to be correct for fluids.

Subsequent analytic work on the YBG equation

by Jones et al. and by Fisher and Fishman '

have made the existence of critical solutions of the
YBG equation for spatial dimension three less
plausible. These authors have argued that if the
YBG equation has solutions for which a well de-

fined inverse correlation length ~~0, then ulti-
mately the correlations h (r) =g (r) —1 must be-

come negative at intermediate and long ranges.
This is certainly not plausible for a realistic critical
correlation function and none of the previous'
numerical solutions have shown this property.

This apparent discrepancy between the numeri-
cal and the analytical work has led us to refine the
numerical solutions of the YBG equation and in
particular to construct solutions closer to the sup-
posed critical point than was previously possible.
We believe the new data show that, in the vicinity
of the previously supposed critical point, the in-
verse correlation length does not attain zero but
rather goes through a positive minimum, the in-
verse compressibility does not attain zero, and the
correlations remain positive at intermediate and
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long range. Our conclusion is that the YBG equa-
tion does not show true critical behavior for space
dimension three but rather has a region of tem-
perature and density for which critical behavior
starts to develop but is never completely realized.

II. NUMERICAL METHOD

Since the previous work " and this work lead
to different conclusions concerning the critical re-

gion of the YBG equation we shall, in addition to
reporting the new data, discuss the relationship be-
tween the two works and the kind of numerical
difficulties which arise in constructing these solu-
tions.

The numerical method used here is basically that
described in some detail in Refs. 1 —3, i.e., a rather
standard first-order iterative procedure. For illus-
trative purposes we describe the calculations done
along what was supposed to be the critical iso-
chore, +=4.60, and from which the exponent y
was found. In the previous work solutions were
found for several 8(0.371. The compressibility
was then calculated at these 8 and lmcz was plot-
ted versus inc, where e=

~

8—8, /88,
~

. Over a
range of 8X10 (e(4X10 the data points
were very nearly on a straight line whose slope
determined y to have the value 1.24. It was no-
ticed that the point at 8=0.371, closest to the
supposed critical point, was slightly low but this
was attributed to numerical difficulties. We now
see this as the beginning of a systematic deviation
from the critical behavior established in the inter-
val SX10 (e(4X10, a deviation whose final
result is the absence of any true critical point.

In the previous work solutions for 8& 0.371
were not found because of two numerical difficul-
ties; (1) as 8 increases the range of g (r) increases
and therefore the cutoff range r,„ for the numeri-
cal solutions must be increased; this, in turn,
causes a rather rapid increase in the computer time
required for an iteration (of the order of one sec
per iteration). (2) The apparent convergence rate
of the iterative process becomes smaller as 8 in-
creases towards 8, requiring many more iterations
to obtain solutions at a given level of accuracy.
Roundoff error in the previous single precision cal-
culations had to be contended with. This coupled
with the slow rates of convergence made it unclear
whether the iterative procedure was ultimately con-
verging at all and prevented the numerical con-
struction of reliable solutions for 8~0.371.

We report here results obtained from new nu-

III. RESULTS

Figure 1 is a plot from the new data of a z
' vs 8

for the supposed critical isochore A,o——4.60. The
dotted line shows roughly the previous extrapola-
tion of ~z' to zero, from data at 8(0.371. The
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FIG. 1. Plot of Kz vs 0 for A,o ——4.60. The dashed

line is the extrapolation to a ~
' ——0 of the steep portion

of the locus.

merical solutions of the YBG equation. These
differ from the previous solutions in the following
respects. (1) The calculations are done in double
precision, effectively eliminating the problem of
any accumulation of roundoff error. (2) The calcu-
lations are done to higher convergence. Iterations
are continued until the difference between succes-
sive iterates of g(r) is less than 10 ' at every r, as
compared to 10 in the previous work. (3) Solu-
tions are found for values of (+,8}closer to the
supposed critical values than in the previous work.
The very slow rates of convergence typically re-

quire several thousand iterations before the desired

precision is reached. As in previous work the solu-

tions are always constructed for an interval r,„
somewhat larger than the range at which the corre-
lations have decreased to 10 6. (4} A more de-

tailed analysis of iterative process is given, which

convincingly shows the process is converging and
allows an estimate of the remaining error.
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data for 8&0.371 do not follow this trend and

clearly do not extrapolate to zero in this region of
temperature. A similar figure could be constructed

for neighboring isochores. Table I presents the

isothermal compressibility a.r, the range [at which

g (r) 1&—10 ] and the cutoff length r,„of the

solutions, along several representative isochores.

The range of g (r) reaches a maximum along each

isochore whereas the compressibility continues to
increase with 8, although more slowly at the larger

8.
Another reasonable criterion for a critical point

is a Kirkwood stability condition, i.e., that a cer-

tain stability function' F(O, H, AO) vanish at the

critical point. It has been shown that this func-

tion is proportional to the square of the inverse
correlation length of g(r) ". In Fig. 2 we plot
F(0,8,+) along the isochore Ao ——4.60. The stabil-
ity function does not reach zero but has a positive
minimum of 0.0064 at 8=0.375. This corresponds
to a minimum ~ 0.08 or a maximum correlation
length (=12.5 o.

The numerical solutions for g (r), from which
the above data were constructed, were obtained by
iterating until the difference hn between the n and
n —1 iteration was 10 ' at every r. This usually
required several thousand iterations at the larger
values of 8 since h„decreased very slowly with the
number of iterations n. The fact that h„decreases
with increasing n is not sufficient to ensure that

TABLE I. vz. , range, and r,„as a function of 8 and A,o.

KT Range max

4.55 0.368
0.369
0.370
0.371
0.372
0.373
0.374
0.375
0.377
0.380
0.385

31.33
40.45
54.64
78.14

117.32
182.46
274.33
374.88
527.95
631.25
685.32

53.00
58.60
65.15
76.90
88.40

103.00
115.40
122.40
123.35
115.05
103.20

60
65
70

100
100
125
150
150
150
150
150

4.60 0.368
0.369
0.370
0.371
0.372
0.373
0.374
0.375
0.377
0.380
0.385

30.79
39.75
53.74
76.86

116.17
181.79
276.31
382.14
544.96
653.44
708.93

52.85
58.45
66.20
76.75
88.50

103.55
116.75
124.30
125.65
117.25
104.90

60
65
75

100
100
125
150
150
150
150
150

4.65 0.368
0.369
0.370
0.371
0.372
0.373
0.374
0.375
0.377
0.380
0.385

30.09
38.77
52.33
74.77

113.19
178.44
275.05
386.33
560.75
676.55
732.20

52.55
58.10
65.85
76.30
88.20

103.70
117.70
126.05
128.05
119.50
106.70

65
75

100
100
125
150
150
150
150
150
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0.0I- FIG. 3. Plot of —ink„vs n for the compressibility at
+=4.60 and 8=0.375.
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FIG. 2. Plot of F(0,8, A,O) vs 8 for A,o——4.60. The

dashed line is the extrapolation to zero of the steep por-
tion of the locus.

h„=X„—X„~——A (c —1)c"

So the process will converge geometrically if a plot
of ink„vs n is, for large n, a straight line whose
slope (inc) is negative. This test has been applied
to several of the numerical solutions where the
quantity X has been chosen to be either the
compressibility or the value of g at various r. A
typical result is shown in Fig. 3 where, for the

the process converges. If h„decreases too slowly

the process may be divergent, so one must consider
the possibility that the deviations from the previ-

ously extrapolated curves in Figs. 1 and 2 are due
to a loss of convergence in the iterative process,
i.e., that the values would continue to change slow-

ly but ultimately by very large amounts under con-
tinued iteration. We have convincing evidence that
this is not the case and can, in fact, estimate the
remaining error.

A quantity X computed by a convergent first-
order iterative process will usually approach its
limit X geometrically, i.e., if X„ is the value of X
at the nth iteration, then one expects for large n

that the remaining error 5„be given by
5„=X„—X=Ac", where

~

c
~

&1. The difference
between successive iterates will be

compressibility at A,o ——4.60, 8=0.375, —ink„vs n

is plotted for 100&n &2400. The points fall very

accurately on a straight line for n & 500, whose
slope determines a value of c =0.9968. So the
convergence is very slow but the process shows no
tendency whatsoever to lose convergence at large n.
The error 5„remaining in ~T can be found from
the successive difference b,„by 5„=b,„c/(1—c).
For slowly converging processes (c=l), 5„ is much

larger than b,„so it is important to iterate to very
small 5„ for these processes. For the compressibil-

ity example we have used here 52~-0.025 which
should be compared to the value of ~z of 382.14
given in Table I. These convergence results are
typical of all the data, with the convergence factor
c generally closer to 1 for solutions whose range is
large. It therefore appears that the large-0 solu-

tions are as reliable as those previously found
despite the slow convergence rate, and that the new

conclusions based on them are warranted by the
numerical evidence.

IV. CONCLUSIONS

We feel the numerical evidence supports the fol-
lowing conclusions concerning the critical region of
the YBG equation. In the vicinity of A,o

——4.60 and
8=0.374, there is no true critical point in the sense
that the compressibility and correlation length of
all solutions in this region remain finite and, in ad-
dition, the correlation function g (r) —1 is always
positive at intermediate and long range. Thus,
there is no disagreement between the numerical
evidence and the analysis presented in Refs. 4—6.
There is, however, a region near +=4.60,
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lows the algebraic forms characteristic of true crit-
ical behavior and the exponent values are quite
realistic. ' This near critical region extends to

1

perhaps a=8 X 10 (i.e., to within about —,% of
the critical temperature) along the critical isochore.
As a final example of the rather realistic properties
of this region, we show in Fig. 4 a plot of the sus-
ceptibility X=A,otcT, at 8=0.373, vs

~ Q—Q ~,
where Q is the value of A,o for which X is max-
imum on this isotherm. The behavior is nearly
symmetrical as expected' in the neighborhood of a
critical point. This symmetry becomes markedly
weaker for 8)0.375.

3750-
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8=0.374, where the solutions appear to be ap-
proaching a critical point. In this near critical re-
gion, the thermodynamic behavior very nearly fol-
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