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Cluster expansion for the electric microfield distribution in a plasma
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This paper employs a hybrid virial —Debye-chain cluster expansion to reinterpret a
collective-coordinate calculation of electric microfield distributions in a plasma. A nu-

merical evaluation of corrections previously neglected is presented. Comparisons with

Monte Carlo and molecular-dynamics results are included.

I. INTRODUCTION

The purpose of this paper is to reinterpret the
electric microfield distribution calculations
developed previously by Hooper, ' hereafter referred
to as I. We will show that the method employed
in I is equivalent to a combined virial-Debye ex-
pansion similar to that developed by Mayer.

The reinterpretation will start by expressing the
high-frequency component electric microfield dis-
tribution, due to a one-component plasma, in a
cluster expansion similar to the classical expan-
sions of Ursell and Mayer. Then, a split' in the
central interactions is introduced and an infinite
class of terms summed to obtain the results in I.
We stress that although similar in technique, the
cluster expansion presented here is different from
those of previous developments. ' Corrections to I
which result from retaining additional correlations
will be presented.

The system that we deal with consists of N-

charged particles immersed in a uniform neutraliz-

ing background. In addition, when treating the
problem of the electric field distribution at a
charged point, a "zeroth" particle must be includ-

ed. The N+1 particles interact through the
Coulomb interaction. The total system is assumed
to be in thermal equilibrium and macroscopically
neutral.

Section II of this paper deals with the develop-
ment of the formalism. The corrections to the re-
sults in I are discussed in Sec. III with the numeri-

cal results given in Sec. IV. Final conclusions are
discussed in the fifth and final section.

II. FORMALISM

Define Q ( e) as the probability of finding an
electric field e, at a singly charged point located at

where rj represents the coordinate of the jth parti-
cle, P=(kT) ', V the potential energy of the sys-

tem, and E is the electric field at ro due to the N-

charged particles in a given coordinate configura-
tion.

The potential energy of the system V is ex-

pressed as

N

V= g e Irt+Vit,
O=i &j

(2)

where Vz represents the contributions to the poten-
tial energy due to the neutralizing background.

An expression for V in terms of a Fourier ex-

pansion results in

4 e N

V= „g g e
' "irk',

k~ O=i(j

where the exclusion of the k =0 term in Eq. (3) ac-
counts for the neutralizing background.

Assuming that our system is isotropic we may
rewrite Eq. (l) as

P(e) =2m 'e I dl lT(l)sin(el),

where P(e) is related to Q(e) by the relation

4trQ( e)e de=P(e)de;

T(l) is defined by

T(l)=—Z(l) IZ,

(4)

ro, due to ¹harged particles moving in a uniform

neutralizing background and contained in a volume

Q. Then, if Z represents the configurational parti-
tion function of the N +1 particle system, we may
write

Q(e)=Z I ' I drodri ' ' «tte

X5(e —E),
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Z(l)= f f drPri . drNe ~""' (7)

N N
V(l )

—= g U,l(l )= g 1—
O=i &j O=i &j

i 1.VO

eP VIj,

(8)

where v;j=e /r;j and Vp is the gradient with
respect to rp.

The function Z(l) has the form of a configura-
tional partition function with the potential energy
of the system V(l}, defined in Eq. (8). We proceed
to calculate numerator and denominator of Eq. {6)
using the classical cluster expansions for configura-
tional partition functions which were developed by
Ursell and Mayer. 3

Again noting that the numerator Z(1) has the
form of a configurational partition function, we
write it in the form of a Helmholtz free energy,
F(l):

Z(1)=e

F{l}given by

PF(l) =—QA(p, l ) . (10)

Now the quantity A can be expressed in terms of a
cluster expansion,

N g 8
A(pl}= y ~ f ''' fR(&,1)lIdrj.nf

f g"drj represents the integrations over~ ~ ~

~

set of n particles; n p and n; are the number of
zeroth particles, here equal to 0 or 1, and N-
charged particles in the cluster R(n, l), respectively.

The clusters in the expansion of A(p, l} are of
two types: (1) clusters which do not contain the
zeroth particle, np ——0; (2) clusters which do con-
tain the zeroth particle, no 1. If A i(p) and-—
At(p, l) denote the contributions from all type (1)
and (2) clusters, respectively, then

Z(l) =exp[QA i(p)+QA2(p, l )] . (14)

Here, R(n, l} is the sum of all products of f-Mayer
functions in which every particle in n is indepen-
dently connected to every other particle in n. The
f Mayer functions ar-e defined as

f;;(1)=(e 'j 1), —

where n represents the set of n =np + n; particles,

n. =np.n;. ,t .t

s 0 "l. —i
P =Po P yPo=Q yP=N/0

A similar procedure can be applied to Z=Z(1 =0},
with the result

Z{1=0)=exp[QAi(p)+QADI(p, 0)] . (15)

The term A i(p} is independent of 1; in fact, exp
[QA i(p)] is the configurational partition function
for the plasma without the zeroth particle.

Substituting Eq. (14) and Eq. (15) in Eq. (6) al-
lows us to write

T(l) =exp[Q(A2(p, l) —A2(p, o)}]. (16}

Vpj =Qpj+ Wpj y

where

—aro /A,

Wpj =(e /r )e

(17}

(18)

C + +3

FIG. 1. Graphical representation of A2. A black ver-
tex represents an ion, a white vertex the zeroth particle.
Each. f-Mayer function is represented by a heavy-solid
line connecting two vertices.

That is, all clusters not involving the zeroth parti-
cle cancel exactly in Eq. (16).

A graphical representation of some of the terms
appearing in A2 is shown in Fig. 1; a black vertex
represents one of the ¹harged particles, a white
vertex the zeroth particle. Each f Mayer fu-nction
is represented by a heavy-solid line connecting two
vertices.

As in I, we conjecture that quantitative features
of the microfield distribution will be more sensitive
to central than to noncentral interactions. A cen-
tral interaction involves the zeroth particle and one
of the N-charged particles; a noncentral interaction
involves any pair of ¹harged particles. Based on
this conjecture, the details of the central interac-
tions are treated with greater care. Therefore, we
split the central interactions into long- and short-
range contributions. The long-range central and all
of the noncentral Coulomb interactions we treat in
a Debye-chain expansion. After the long-range
contributions are renormalized, all the remaining
short-range "interactions" are treated by means of
a virial expansion. From an examination of the
formalism it is clear that the two expansions are
not independent but involve a hybrid {virial-Debye)
cluster expansion. It must be emphasized that the
conjecture discussed above is based on a plausibili-
ty argument, which is justified by results. ' ' To
carry out this procedure, we first set
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a is an arbitrary, real, positive paraxneter which
will be independently determined, and A, is the De-
bye length,

A. =(4ne~pp)

Substitute Eq. (17) into the expression for the f-
Mayer functions, Eq. {12). This yields a result

similar to one used by Ref. 2, but with the differ-
ence that in the present paper only central interac-
tions are split

(e "—1) i j+0
fj(l)=, 00

XJ.(i)+[1+XJ(i)]g [—puoj(l)]"/ni, i =0, JA0
n=1

(20)

where

X/(I ) =(e '~ 1) . — (21)

c =+ C + 6--:-4+

+2 +2 +2 . +
gl ~ Al

(l

with the aid of Eq. (20} we may further separate
the products in R(p, l) into sums of products in-
volving the f function, X function, and ( —pu)"/n!
functions represented by heavy-solid lines, light-
solid lines, and n-dashed lines, respectively. Clear-

ly, there can be at most one f or X bond directly
connecting two vertices. The result of splitting the
central interactions is shown graphically for some
two- and three-particle clusters in Fig. 2(a). The
two ( —Pu}-bonds with the triple dot in between

represent the sum of graphs with all possible num-
ber of ( —Pu)-bonds as shown in Fig. 2(b).

In order to perform a Debye-chain expansion on
the long-range central and noncentral interactions,
we expand the noncentral f-Mayer functions in

powers of ( —pu). With the decomposition of the f
functions into powers of {—Pu} functions we can
sum simple chains of ( —Pu)- and ( —Pu)-bonds as
shown in Fig. (3). Two types of chains are possi-
ble: The first has the zeroth particle and one per-
turbing ion for endpoints while the second has two
ions for endpoints. It is understood that the two

I

vertices at the endpoints of Fig. {3}are, in general,
part of a more complicated graph. Hence, we are
summing all graphs which are the same except for
the one sum of interactions displayed. The inter-
mediate ions in Fig. (3) do not interact with any
particles except as explicitly shown in the figure.
The final form for Az is an infinite series of in-

tegrals involving products of the functions X, u',
and U', u' and u' are defined graphically in Fig. (3)
and evaluated in Appendix A. There is the restric-
tion that no simple chains in the effective interac-
tions u' and v' appear in A2 because such a chain
is, in effect, a simple chain in u and v interactions
which have been already included in the summa-
tions. The new cluster expansion for A2. is given

by

tN n

QA2(p, l)=lnTo{l}+ g, h„(l),
i n

(22)

where ln T, {l) is the contribution from the ring
graphs presented graphically in Fig. 4(a), and h„ is
the set of all n +1 particle clusters, excluding ring
graphs, involving products of the functions 7, u',
and v' as described above and presented graphical-
ly in Figs. 4(b) and 4(c) for n =1 and 2.

ln Fig. (4) we have separated the graphs for
n = 1 and 2 into the subsets (bl), (b2) and (cl), (c2).
The separation is employed since it can be shown

that only the graphs shown in (bl) and (cl) are in-

cluded in I. There, only the first term in the

Gram Charlier expansion series for the Jacobian

6--'--4- o----o+ g )+(5—++ -. -

(bj

FIG. 2. Some two- and three-particle clusters in A2
after the splitting of the central interactions. The f
Mayer, P, and (—Pu)"/ n! functions are represented by
heavy-solid lines, light-solid lines, and n-dashed lines,
respectively. FIG. 3. Effective interactions u' and v'.
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e+a
N.

/

+g Q+
Now consider the individual terms appearing in

Eq. (24). In Appendix B we show that the first
term, T, (l)/To(0), can be written as

C ~+

(b )) (bt)

To(l)/To(0) =exp( yL—i) .

In Eq. (25),

(25)

+ " - +2 -' +2

+ - + -' + " +2 - +2
and

L =le&&, y=aa /4(a+ 1), a =ro/A,

(c i} (c 2)

2.
ep ——e/r p,

'

FIG. 4. Contributions to Ai up to n=2 of Eq. (22).
(a) The ring graphs. (b1) and (cl) are the graphs includ-
ed in the Jacobian approximation in I. (b2) and (c2) are
the neglected terms in I. The triple dot has the same
meaning here as in Fig. 2, except now it refers to
( —l)v')- or (—)(3u')-bonds. Note that the noncentral
bonds in the second bracket of (c2) have a minimum of
two (—Pv')-bonds. The graph in (b2) has a minimum of
three (—Pu')-bonds.

rp is the ion sphere radius defined by the expres-

sion

4n

3
rpp= 1 (26)

Next, we consider the factors resulting from terms

in the series exponent. For n =1, and considering

only terms shown graphically in Fig. (4bl), we

write

of the collective coordinate transformation is re-
tained. We will show that the graphs (b2) and (c2}
are neglected by such an approximation.

Splitting up the potential appearing in Z(l =0}
in the same manner as previously described in

treating Z(l}, we are able to carry out a similar ex-

pansion program with the result

I')"(l) =p[h', "{I)—h')" (0)]

=p f dr)o[X)(1)Q)(i) Xi(0)Q)(0)]

sin[LG (x)]
LG (x}

,(,) sin[Lq (x)]
Lq(x}

(27)

QAi(p, 0}=lnTo(0)+ Q ~h„(0) .
&

n!
(23) where the angular integrations have been done.

The functions in the second equality are defined by
The graphs representing the terms in Eq. (23) are

topologically equivalent to those in Eq. (22) but
with I set equal to zero.

Combining Eqs. (16},(22), and (23} gives the fol-

lowing result for T(l):

Q) (I)=exp[ —Pu'( r)o, I)],

u'(rtp, l)= 1 — '~o u (rio) .
e

(29)

T(l) = [T()(l)/T()(0)]

Xexp g ~[h„(l}—h„(0}]
) 5 (24)

The functions in the third equality are defined in
Sec. III: Eqs. (35), (36), (38), and {39).

For the second term in the series, n =2, we use
the graphs in Fig. (4c1) to write

2
I"'(l)=~[h"'(l) —h'"(0)]

2
2 p g

f f dr)grio[X)(l)Xq(l)Q)(l)Qq(l) —X)(0)Xg(0)Q)(0)Q,(0)](e "—1) .
2

Thus, the contributions to T(l) from Figs. 4(a), 4(b1), and 4(c1) are given by

T"'(I)=exp[ —yL ~II"(1)+Ii"(l)] .

The results in Eqs. (25) —(31) are identical to those in I for T(l) as given in Eqs. (25)—(35) of I.

(30)

(31)
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III. CORRECTIONS

1053

In Sec. II we expressed the microfield distribution function in terms of a cluster expansion where the

long-range interactions are treated in a Debye-chain expansion and the short-range interactions in a virial ex-

pansion. The two are not independent but involve a hybrid virial Debye-chain cluster expansion with the

long-range collective effects of the Debye chains modifying the short-range virial expansion.

As mentioned earlier, the graphs in Figs. 4(b2) and 4(c2) are not included in the results of Eq. (31). The

neglected terms can be interpreted as correlations between the collective coordinates introduced in I. In this

section we will evaluate these contributions to T(l} for n =1 and 2 in Eq. (24}.
The corrections to I i(I},shown graphically in Fig. 4(b2), is given by

I'i '(I) =p[hi '(1)—hi '(0)]

=p Jdr&{[e ' ——,[Pu'(ri, l)]
—pug(, r )+Pu'(ri, l}—1) —[e ' ——,[Pu'(r, }] +Pu'{ri}—1 j) . (32)

Performing the angular integrations we get

I' '(l)=3 dxx2 e ( )»n[Lq(x)]
1 + L q (x)

Lq{x}~ 6
{33)

The functions that appear in the integrand are defined as follows:

x =r/ro, (34)

s(x) =
2 20

(
gg ~gg)

3x
(35)

2
1 a

(
—~ —OZ

) (
—CX —COX

)
2 21 —a x

(36)

Combining Eqs. (27) and (33) we find that

I,(l)=3 dx Fi i sin[LG(x)]
1 + L q (x)

LG(x) 6
(37)

with

2

(~ ~
—ClX ~

—CMX)

1 —a
(38)

G(x) =
2 2

(e —a e )+—(ae —a~e )
a

1 —a x x
(39)

Before evaluating the contributions from the graphs in Fig. 4{c}we note that the sum of three particle
clusters is a small correction to T(l). Hence, we only consider graphs with the 1owest nonvanishing num-

ber of (—Pu')-bonds connecting particles 1 and 2. With this simplification the graphs in Fig. 4(c) will be of
two types; graphs with one (—PU')-bond, and graphs with two (—PU')-bonds.

The contribution to T(l) from graphs with one (—Pu')-bond is given by

(40)
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2

I2 "(l)= f dr]dr2v'(r]2}([ [e ' +pu'(r], l) —1][e ' +pu'(r2, 1)—1]

—pa~(r ) —pu'(i )
[—e ' +pu'(r]) —1][e ' +pu'(r2) —1] I

—pug(r ) —pg(r )—[e
" " +Pu'(r]) —1]e

" "X,(0) I } . (41)

I2"(l) corresponds to the graphs in Fig. 4(cl) and I2 "(l) to the graphs in the first bracket of Fig. 4(c2).
The integrands in Eqs. {40}and (41) are a product of functions of (r],1} and (r2,l) with the exception of

the r]2 coupling term in v'(r]2). In order to uncouple the r], r2 dependence, we expand v'(r]2) in sherical
harmonics':

v'(r]2) =—y (2k +1)vk(r], r2)P»(cosH]2),
k=0

where

2

vk(rl r2) +»+]/2(ax ] }Ik+ ]/2{ax2 }/{x]x2}
s 1/2

3

(42)

(43)

and xj =rj/ro, x»x2, and k =0, 1, 2, ... . This method allows Eqs. (40) and (41) to be reduced to a tract-
able double integral where the angular integrations are readily performed to yield

I2"(l)+I2 "(l)=3a g f dx2x2 Ik+]/2(ax2) f dx]x']"I].'„]/2(ax])
k=0 Z2

&C( —1) (2k+1)[ik"(x],x2)+ik "(x],x2)], (44)

ik"(x],x2)=e ' e '
[ [e ' jk(LG(x])) jk(Lq(x]))—][e ' jk(LG(x2))

—jk(Lq(x2))] —5» OX](0)X2(0) I,
ik "(x],x2) = [e ' {2e jk(LG(x2)) jk(Lq(x2)}}——5k o{1+s(x2))][e ' jk(Lq(x] }} 5k 0]—

(45)

—5»0[(e ' —I}[e ' (2e —1)—[1+s(x2)] j

+s(x])e ' [2e ' (jo(LG(x2))—1)—(jo(Lq(x2)) —1)]]

——5», [ q(x, )e ' [2e ' j,(LG(x2)) —j,(Lq(x, ))]

+q(x2)[e ' j](Lq(x]))—Lq(x])/3] J . (46)

The functions I and X refer to modified Bessel functions of the first and third kind, respectively, while jk
specifies a spherical Bessel function of order k."

The second bracket in Fig. 4(c2) shows the graphs with a minimum of two (—Pv*)-bonds. Their approxi-
mate contribution to T(l) is given by

I2 ' '(l) = dr]dr2v'(r]2)2 —[u'(r „l}u'{r2, l}—u'(r] )u'(r2)]

—pu'(r )—P[u'(r], l )e ' X2(l) —u'(r] )e ' X2(0)] (47)
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The first term in square brackets in Eq. (47) may be evaluated by introducing the Fourier transforms as in
Appendix B. Then,

4
d r,d rzU'(r, i ) [u'(r i, l )u'(rz, l ) —u'(r i )u'(ri)] = —yiL

{48)
2 4

yi —— (a +1)ln
12(a —1) 2+a + (a —1}(2a+1}

3(a+2)

The term in the second square bracket in Eq. {47}may be reduced to a one-dimensional integral by first in-
tegrating over r],

2+3 —Pu~( r 1) —pu~(, r )

2

J dxi[ [t(xi}+iLp(xi)cos8z]e ' (e ' e

—e ' ') —t(xz)e ' Xi(0) ]

~ r

z zi i sin[LG(x)], i„i sin[Lq(x)]

Lp(x) [e —'*'ji(LG(x))—e' 'ji(Lq(x))] (49)

where in Eq. (49)

g5 2
t(x)=

36x a2 —l
e Ei(3ax)+e~[ln3 —Ei(ax)]

~ CCZ ~
—QCXX

Ei [(2+a)ax ]—
a a

2+a
2—a

—Ei[(2—a)ax] (50)

p(x}—:x , j'.
a' —l

Ei [(2—a)ax]—

e Ei(3ax} e~[ln3 —Ei(ax}] —e' E—i[(2+a)ax]

—a~ 2+a 3t(x)
2—a a

(51)

Equations (50}and (51) are only valid for values of
a less than 2. The function Ei is the exponential
integral

I

Eq. (4) to calculate P(e) at a singly charged point
in Sec. IV.

00

Ei(y)—:J dz for y &0 .
Z

(52) IV. RESULTS

T(l)=exp[ y'L +I,(1)+I&(1))—, (54)

with y'=y+ yi, and I, (I} is given by Eq. (37) and
Iq(l) by Eq. (53). The result in Eq. (54) is used in

Combining Eqs. (40}, (41), and (47} we have

I2(l) =I2"(l)+I2 "(l)+I2 ' '(l) . (53)

Thus,

The first step in using and evaluating the present
theory is to determine the parameter a. In princi-
ple, the expression for T(1) in Eq. (24) is indepen-
dent of the choice of a. However, in a practical
calculation the infinite series appearing in the ex-
ponent of Eq. (24) is terminated and T(l) is then
no longer independent of the value of a. The pro-
cedure for selecting a is discussed in detail in I.
Briefly, it involves finding a distinct and extended
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range of a values over which the T(l) curve, hence
the P(e) curve, remains stationary. In the stability
region, or a plateau, the second term in the series
is small and the series rapidly converges.

A justification for the a-selection procedure fol-
lows. For a given a, a particular choice of a deter-
mines how much of the central interaction is treat-
ed by a Debye chain or by a virial expansion. The
validity and speed of convergence of such expan-
sions depend on the detailed nature of the interac-
tions treated. A best choice of a will be that
which splits the central interactions so as to optim-
ize both expansions, thus giving a rapid conver-
gence of Eq. (24). Then, a small variation of a
about the best value should not significantly affect
the results provided sufficient terms are retained in
the infinite series.

Using this procedure we calculate P(e) curves
and compare them (Sec. III) with the results of I.
Figures 5 and 6 show P(e) curves for a =1.73 and
a=2.45, respectively. From the plots it can be
seen that the corrections slightly lower and shift
the peaks of the P(e) curves to higher e values. Al-
though not shown here, the contribution from
these corrections become smaller with decreasing
values of a. In Fig. 5 we compare our curves with
Monte Carlo results' and in Fig. 6 with
molecular-dynamic results. ' The agreement for
a=1.73 is quite good. In this case, there exists a
well-defined a plateau.

For a =2.45 the a plateau is reduced to essen-
tially an extremum point making the theory sensi-
tive to the particular choice of a. If we proceed
and calculate P(e) with the extrement point as our
choice for a, then we obtain results which are not
in good agreement with the computer experiments
as shown in Fig. (6). The lack of agreement, to-
gether with our earlier discussion of the a-selection

procedure would indicate the need to retain more
terms in the series of Eq. (24) for a & 2.0.

V. CONCLUSION

We have shown that the previously developed
collective coordinate approach to microfield distri-
butions is equivalent to a hybrid virial-Debye ex-
pansion. The two expansions are not independent;
the long-range collective effects of the Debye
chains modify the short-range virial expansion.
Hence, the range of validity of this formalism,
when applied to systems where particles interact
through long-range potentials, exceeds that of
theories that use either expansion separately. ' The
hybrid virial-Debye expansion formalism can easily
be extended to the low-frequency microfield distri-
butions in a plasma containing multiply charged
ions.

Numerical calculations of P(e) curves including
some corrections neglected in I are presented in

graphical form. These corrections correspond to
correlations between the collective coordinates.
Their contribution can be shown to be equivalent
to keeping the next term in the Gram Charlier ex-

pansion of the Jacobian of the transformation to
collective coordinates. Even though the effect of
the corrections is small, for a=2.45 they improve
agreement with the results of computer experiment.

In Eq. (22) we have ordered the terms in the
sum by the number of particles in a cluster. We
now propose a different ordering based on the
splitting of the central interactions. This split
separates the central interaction into a strong
short-ranged and a weak long-range contribution.
The long-range weakly coupled part requires a
Debye-chain expansion since these infinite range
interactions give rise to collective effects. We treat-

MOD IF IE D

UNMODIFIED
p(E)

0.8-

———modified

0 0
0 0.0 I .2

FIG. 5. Comparison of P(e) curves for a=1.732.
The unmodified curve refers to the results of I. The
modified curve includes the corrections in Sec. III. e is
in units of eo.

FIG. 6. Comparison of P(e) curves for a=2.45. The
unmodified curve refers to the results of I. The modi-
fied curve includes the corrections in Sec. III. e is in
units of eo.
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ed the strongly coupled part given by the X bonds
and the effective interactions resulting from the
summation of Debye chains in a virial expansion.
However, instead we may identify a cluster by the
number of X bonds it contains, and by the com-
plexity" of the weakly coupled contributions. For
example, the lowest-order terms in complexity are
the ring graphs, " and the simple chains in Fig. (3).
A systematic correction procedure in Ref. 15
discusses at length the summation of graphs of
higher order in complexity. Therefore, we propose
to order the terms in Eq. (24) by the two parame-
ters: P bonds and complexity of the weakly cou-
pled interactions.

In the preceding discussion we have implicitly
assumed that the noncentral interactions constitute
a weakly coupled system. This, of course, is only
true for value of a « 2.0. However, our original
conjecture is that the microfield distribution is not
very sensitive to the noncentral interactions. In
this sense the noncentral interactions can be weakly
coupled to the zeroth particle.

From Fig. (4) we see that in this new ordering
scheme the graphs in (b2) and (c2) are of zeroth
and first order in the strong coupling parameter,
the number of X bonds. These graphs are higher

order in complexity of the weakly coupled contri-
butions than the graphs in (a), (bl), and (cl). We
see that the graphs in (b2) and (c2) of zeroth and
first order in X bonds are to be grouped with the
ring graphs in (a) and the graphs in (b1), respec-
tively.

From our results in Sec. IV, we believe that by
including terms containing three 7 bonds and
lowest order in complexity in the Debye chains we
can extend the validity of our results to values of
a )2.0.

As a final remark, we note the similarity be-
tween the hybrid expansion presented here and
those developed in Ref. 2 for evaluating the osmot-
ic pressure and the radial distribution function.
However, there the short-ranged interactions are
due to internal structure of the particles; more im-
portantly the short-ranged contributions are includ-
ed in the interactions between all pairs of particles
whereas in this development they are present only
in the central interactions.

Research supported in part by a grant from the
Department of Energy, and subcontracts from the
Lawrence Livermore Laboratory and Laboratory
for Laser Energetics.

APPENDIX A

In this appendix we are concerned with explicit evaluation of the effective interactions, Pu (r, I), indicated
in Fig. (3). The simple chain summation which produces —Pu (r, i) has the following analytic form:

—Pu'(rp] 1)= P ( up] rl) —P g ( —]]3p)j ' f f dr2 . . dry u(rp2, 1)v(r33) v(rj])
J=2

i 1.VO —Pu(rp] ) —P g ( —Pp) ' f . . f dr3. . . dr~ u (rp2)v(r33) v(rj ])
j=2

Introduce the Fourier transforms

p(r)=, f dqe' 'p(q),
(2~)3

where p(r) stands for u, u', v, or v'. Then, using the Faultung (convolution) method obtain for the
transform of u'(r &0 l),

(A2)

u'(q, l) = 1 — u(q)/e(q) .
e (A3)

The dielectric response function e and the transform of u (r) and v(r) are defined by
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e(q}= I+pPv(q),

4ne a
u(q) =

q [a +(Aq) ]
Are

v(q) =
q

Similarly, for the noncentral effective interaction,

v'(q) =v(q)/~(q) .

Equations (A3) and (A5) may be inverse transformed to yield

(A4)

(A5)

2 2

us(r)
a e

(e r/i e -a-r/A,
)

a —1 r

e 2e —r/A,

v'(r) =
(A6)

APPENDIX B

In this appendix we evaluate the term To(A/To(0). To do this we first evaluate the ring graph sum

presented in Fig. 4(a):
2 IXt

pp)1-i ' f -. . f dr, . drlu(roi l) (vri)2''' (vjrii)u(rjo, I}.

As in Appendix A, we make use of the Fourier transforms to write

2

lnTO(l)= f u(q, l)u( —q, l}e '(q) .
(2n )

Since To(0) simply requires Tv(1=0), it follows that

lnTD(l)/To(0) = f e '(q)[u(q, l )u( —q, l) —u (q)]
(2m }

'2

(q) u2(q)
(2n.) e

—a aL3 2

L
4(a+ 1)

where in Eq. (B3)

L = leap' a =rp/A ' E'p=e /r p,2

and rp is the ion sphere radius defined by the expression

4m

3
rpp= 1 .

(Bl}

(B2)

(B3)

(B4)

(B5)
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