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Ultrarelativistic waves in overdense electron-positron plasmas
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The interaction of singly periodic nonlinear waves of relativistic amplitude and

electron-positron plasmas is investigated by means of fully self-consistent, relativistic,

electromagnetic-particle computer simulation. When the frequency of a superluminous

wave is slightly above the relativistic cutoff frequency, the initial waveform, be it
sinusoidal or sawtooth (a self-consistent cold-fluid-theory solution), breaks up and creates
a very hot plasma with a large particle flux I &2noc in the longitudinal direction. We
find an important deviation from the cold-fluid-theory solution in the form of localized

density spikes at the extrema of the wave magnetic field. For a wave frequency well

above the cutoff, an initial sinusoidal waveform changes little but still creates a large
longitudinal particle flow. Our observations of a large longitudinal flux of high-energy

particles confirms a suggested mechanism for cosmic-ray acceleration.

I. INTRODUCTION

The electromagnetic waves emitted by the rotat-
ing magnetic dipoles of pulsars are believed to be
so intense that the electron momentum in a single
quivering oscillation far exceeds moc, where mo is
the electron rest mass and c the speed of light. '

When the waves are ultrarelativistic, and the ion
quiver momentum is large, the difference between
electron and ion rest mass becomes insignificant
and the plasma may be treated as an electron-
positron medium. In addition, Sturrock has sug-
gested that pulsars may generate primarily an
electron-positron plasma. Thus, for reasons of as-

trophysics as well as basic physics, it is of interest
to study ultrarelativistic waves in an electron-
positron plasma.

Nonlinear relativistic waves have been studied
analytically using the cold-fluid plasma equations

assuming a steady state. ' ' These analyses have
found a nonlinear sawtooth wave solution. The
following simple argument leads one to expect a
sawtooth wave in the steady state: For relativistic

amplitudes, the current density is a square wave,
which by integration of Ampere's law gives rise to
a triangular or sawtooth-shaped magnetic field. '

No experimental verification of such effects is yet
feasible. To our knowledge, no time-dependent
kinetic analysis of nonlinear relativistic waves has
been carried out. Computer simulation has both of
these capabilities. It can follow the exact orbits of
many particles in self-consistent fields. Since corn-

puter simulation controls and diagnoses the experi-
mental medium mathematically, without the physi-
cal limitations of experiments, it can study param-
eter regimes far removed from common experience.
It will be used here to study the interaction of
periodic electromagnetic waves with an overdense
electron-positron plasma. As is known, the rela-
tivistic electromagnetic wave can propagate in an

overdense plasma because the wave fields oscillate
the particles to re.ativistic energies, thereby reduc-

ing the effective plasma frequency (cutoff frequen-

cy}. We use a fully self-consistent electromagnetic
particle code with relativistic dynamics. ' An
electron-positron plasma with equal initial tem-

peratures, cold or warm, is considered. The initial
transverse electric and magnetic fields and particle
momenta are chosen self-consistently. The input
waveform may be either sinusoidal or sawtooth.
The wave thereafter evolves self-consistently in

space and time. These simulations will examine
the effects of the plasma on the input waveforrn as
it propagates, and the plasma's response to the
wave fields. What waveform the input wave
evolves to is of particular interest given the kinetic
nature of the simulations and the theoretical pred-
iction of a steady-state sawtooth solution from
cold-fluid theory.

The following physical picture emerges out of
this investigation: (i) As is expected, the wave-

particle interaction is stronger when the wave fre-
quency is closer to the relativistic cutoff frequency;
(ii) the wave evolved from an initial sinusoid is un-
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steady and modulated by spiky density perturba-
tions; (iii) a sawtooth input waveform with self-
consistent particle perturbation, the nonlinear solu-
tion of the cold-fluid equations, is destroyed in
roughly one wave period by similar spikes; (iv) in-

tense particle acceleration in the direction of pro-
pagation takes place; (v) intense plasma heating is
universally observed in a variety of initial condi-
tions with most of the particles propagating for-
ward; (vi) the system reaches a quasistationary
state consisting of a heated forward propagating
plasma containing a complex wave spectrum.

This paper is structured as follows. A succinct

derivation of the sawtooth waveform is given in

Sec. II, and its consequences for the energetics of
the wave-plasma interaction are outlined. We
describe the simulation model in Sec. III. Section
IV is devoted to the study of sinusoidal input
waveforms with frequencies both well above and
close to cutoff. Section V deals with the propaga-
tion of a sawtooth input waveform in an electron-
positron plasma. Section VI summarizes the ener-

getics of the interaction in all three cases. The re-

sults of the simulations are summarized and their
astrophysical implications discussed in Sec. VII.

II. THEORY

We present a short overview of the theory of ultrarelativistic waves in an electron-positron plasma, with
emphasis on the consequences for the energetics of the interaction. As a model, we treat a linearly polarized
wave where all quantities are functions of 2) =co (t —x /pc), where p=v~ Ic, the phase velocity U~ =co Ik,
with co~ the wave frequency, k the wave number, and x the coordinate in the direction of propagation. Us-
ing Maxwell s equations, equations of motion for each particle species and equations of continuity, the equa-
tions describing particle momenta for each species may be cast into the form'

(la)

Pp~~
—(1+p )' =y(Pu~~ —1)=const,

=(8men c/to )[P (P —I) ')u~,
anal

(2a)

=(8rren c/co )[P (P2 1) ']'~2e~sgnpj, —(2b)

where

e (1 P-2)l/2p

The resulting sawtooth shape of the electric field

where p is the particle momentum in units of m c,
with rest mass m for each species a,
tt =Ulc =p(1+p ) '~, and co~ the nonrelativistic
plasma frequency for each a species, and

~ ~

and j.
refer to directions with respect to the wave vector
k. The relativistic factor y is defined as
1'=(1+p )'~ . The two assumptions made to
derive these equations are charge neutrality and
that perpendicular currents generated by oppositely
charged species are equal. Under the assumption

p » 1 for most rt, Eq. (la) becomes independent
of the rest mass, and an electron-positron plasma
becomes a good approximation; henceforth we take
me =m; =ma.

The equation for the electric field can be in-
tegrated to yield

(lb)
I

shown in Fig. 1 is characteristic of super-
relativistic waves. Also shown are the parallel and

perpendicular particle momenta as a function of g.
The sawtooth waveform implies that the Fourier
coefficients of the even harmonics of the wave vec-
tor are zero, while those of the odd harmonics fol-
low the decay law NH, where NH is the odd-
harmonic number. This implies that the energies
of the odd-harmonic modes decay as NH .

Some scalings can be obtained from the above
equations. For instance, the maximum momen-
tum achieved by the particles in the field of the
wave is

p,„=(vent/4)[P'/(0' 1)]' ', —

where the wave strength parameter

v=(eE~/moco~c) g& 1,
with E the maximum field amplitude. Since

p && 1, this relates the relativistic factor y of the
particles to v and vz. From Eq. (lb), p~~ =P 'p

and the maximum parallel momentum is then

(4)

One also extracts from the theory that the parti-
cle flux 4~ =moc3+ J d Vp and the electromag-



25 ULTRARELATIVISTIC WAVES IN OVERDENSE. . . 1025

Ew

V
4

FIG. 1. Schematic illustration of the sawtooth waveform. The wave electric field, the parallel and perpendicular
momenta for electrons and ions are drawn. The ordinate labels represent the excursion limits of the above quantities.

netic flux

=(c/4ir) I (EXB)dV,

integrated over the volume V are equipartitioned so
that

ticles have a Gaussian form factor with a charac-
teristic radius of 16 to minimize noise. The wave
amplitude E, its frequency co, and the speed of
light c are chosen so that the wave strength param-
eter

(c /12nP——)E.
Finally, all charged particles are transported in

the direction of wave propagation with the average
velocity

v~)/c=c/U& .

The natural upper bound on v~~ is in any case the
speed of light c.

We can measure all the quantities listed above in
our kinetic particle simulations. The simulation
model in which this is done is described next.

III. SIMULATION MODEL

A one-and-two-halves-dimensional (one spatial
and three velocity and field dimensions) version of
our relativistic electromagnetic finite-size particle
simulation code is used. The basic numerics may
be found in Langdon et al. or Lin et al. Only
one direction of spatial variation, the x direction, is
allowed. The system size L„is either 2566 or
5126, where 6 is the cell size. Ten particles of
each species per unit ce11 are loaded uniformly on
the periodic spatial grid in the x direction. The
particles of each species have equal mass and a
charge of opposite sign so as to form an electron-
positron plasma with equal temperatures. The par-

v=eE~/mo~~c &g 1,

with the rest mass mo, and e the positron charge;
the particle quiver velocity eE /moro normally
exceeds the speed of light. The transverse fields
and transverse particle momenta are specified self-
consistently. The subsequent evolution of the sys-
tem in space and time is followed over many wave
periods.

Two aspects of the numerics deserve some com-
ments. The time step ht is limited essentially by
the time for light to cross one grid length which is
the largest propagation velocity of the electromag-
netic wave and the largest particle velocity on the
mesh (the Courant-Friedrich-Lewy condition). A
more stringent limitation arises from the relativis-
tic character of the waves. An upper bound in the
time step is also set by the highest frequency co,

„

in the problem, so that co,„ht& —,. Here, it is the
relativistic cyclotron frequency co =eB /m oy(i )c,
where B is the maximum magnetic field strength
[8 =(kc/co )E ] and y(i) is the relativistic factor
of the ith particle associated with such fields. It is
maximum for particles with zero or small momen-
tum, i.e., y(i)-1, and the upper bound on the time
step is then ht &moc/2eB~. A typical value of
eB~/mac is 100co~, so that At & 0.005co~', where
co~ is the plasma frequency with the rest mass.
This ensures the proper rotation by the Lorentz
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force of all the particle momenta.
For the low-wave frequencies ~ &~~~ we will

concentrate on, this means an extremely small time
step ht and therefore a costly number of time steps
for runs extending over a few wave periods. How-

ever, most of the particles have large relativistic
factors when 8 is large, and they dominate thc
wave-particle interaction because of their large
Lorentz force contribution. Only the few particles
at or around zero momentum associated at the
same time with large values of the magnetic field
require such a small time step. Our tests in a few
critical cases, such as the sawtooth wave propaga-
tion, indicate that there is no major difference in
the physics even after a larger time step
ht-0. 1m~' is used. Also, scaling down the wave

amplitude to values of v where the operation of the
code is well known and trusted has reproduced the
same qualitative features of wave propagation and

plasma response observed in the present regime of
very large v. One possible reason why choosing
larger time steps does not lead to unphysical conse-
quences may be that a particle which is not ade-

quately described is most likely to move into the
appropriate parameter regime at the next time step,
since the acceleration is very large but the position
error is at worst 2cht. At worst, inaccurate treat-
ment of particles with small moments will intro-
duce some noise in the system or a background
fluctuation level, which is not altogether alien to
nature. VYC have therefore chosen ht =0.1m~' in
most of the runs.

Strictly speaking, thc particle size should also
contract as the particle acquires large momenta.
This is, unfortunately, costly to do because it in-
volves the calculation of a different form factor for
each particle at every time step. %e have, there-
fore, introduced another approximation by keeping
the size of the particle equal to one grid spacing in
our model. This tends to overexaggerate the
reduction of the plasma frequency mode by a fac-

—k~u ~/2tor e ' ~, where a is the fixed particle size and
k the wave number. This form factor is in any
case dose to 1 (within 10%). On the other hand,
a more important physical reduction of the plasma
frequency, a legitimate one, completely dominates,
i.e., the relativistic momentum of the particle.
Therefore, keeping the particle size fixed does not
alter the physics to a great extent.

Our studies of the propagation of sinusoidal and
sawtooth input waveforrns in an electron-positron
plasma, using the simulation model just described
are presented in the next sections.

IV. SINUSOIDAL %'AVES

Our first set of computer experiments investigat-
ed the evolution of a uniform input sinusoidal
wave. %C are primarily interested in overdense
plasmas (coN &c0~), since this is where the most in-

tense wave-particle interactions are expected.
A linearly polarized sinusoidal waveform pro-

pagating forward in the positive x direction is im-

posed at t =0 and the corresponding transverse
fields are written as

E~(x)=E~sinkx,

8,(x}=(kc /co~)E&(x), (7b)

E,(x) =8~(x)=0 . (7c)

The dimensionless field quantities are expressed in
units of (mco~h/e), so that E~ =vere~, and

8~ =(kc /co )E~. The electrons' and positrons' mo-

menta are perturbed for each ith particle with

charge e; according to

p„(i}=p,(i}=p, ,

p~(i) =sgn(e;/e)vc cos[kx(i)]+p, ,

(8a)

with k =2~%/L„,where X is the mode number of
the perturbation. The momenta are expressed in
units of mou~h. Initially, pz and 8, are 90' out
of phase. The quantity p, is obtained from a
Maxwellian distribution of mornenta. %e have
found that whether it is present or not makes little
difference to the results.

Thc frequency of the electromagnetic waves is
modified from its nonrelativistic definition of
(co~+k c )'~, where co~ =co~+co~~;=2'~ (for
clcctrons and posltrons) by relativistic mass cffccts.
These commonly lead to the definition of the rela-
tivistic wave frequency as

(
2

/y +k 2c 2) 1/2

where y is the maximum relativistic factor the
particles achieve in the field of the wave, and

y,„=vinitially. This would yield a cutoff fre-
quency for the electromagnetic wave of
~~ =v 2co~

/v'~ . However, the plasma particles
span a range of y's from y= l to y=v in the field
of the wave, and since the wave interacts with the
whole plasma, we have settled upon a physically
more appealing definition which involves the aver-
age of the relativistic factor over all of the plasma
particles, (y), so that

c0 =(co&/(y)+k c )'c,
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and an electromagnetic wave cutoff frequency of 200.0
- (a)

Electron Phase Space Time= 40QJpe }

(10)cp =~2'~/(y)' '&V2rp

This fine tuning of the wave frequency does not,
however, lead to any significant differences in the
results [as long as the wave frequency is truly
above the global cutoff given by Eq. (10}]. Here
we choose v=100 and c =4co~h (or c =4vT„if the
initial thermal electron velocity vT,

——co&,h). The
average relativistic factor is ( y) =63.6 and the
cutoff frequency is then, according to Eq. (10),
co„=0.177m~. The wave frequency is determined
from Eq. (9) once the system size L„is known and
the mode number N of the perturbation (fixing the
wavelength of the input wave} has been chosen.
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A. Wave frequency well above cutoff

Our first run has N =4 for L„=2566,so that

kc =0.39 & re~/(y) 'i
& co„=0.177coq,

-100,0

1.0
(c)

Transverse Magnetic Field

~ ~

or co =0.43co~. The wave frequency is well above
the relativistic cutoff frequency, although the plas-
ma is overdense. The wave period v is 14.6'~'
and the run extends over 14 wave periods, i.e., up
to co~t =200.

Figure 2 illustrates the state of the wave-plasma

system at co~t =40. We have plotted in Fig. 2(a)
the momentum in the direction of propagation nor-
malized to mpc for each electron (represented by a
dot) as a function of the distance x in units of the
cell size 6, or the p„-xphase space; and in Fig.
2(b) the p~-x phase space of these same electrons.
Figure 2(c) is a plot of the z component of the
wave magnetic field B„normalized to its max-
imum initial amplitude 8 as a function of dis-
tance x.

Figure 2(c) indicates that the wave shape at
co~t =40 is almost identical to the input sinusoidal
waveform. In fact, there was no departure at ear-
lier or later times from the original sinusoid. This
is understood as follows. Plasma effects come into
the Ampere-Maxwell equation through the plasma
current J,:

—icoE, +4m. J, =ci k ~B, ,

where the subscript t denotes the transverse com-
ponent of the respective quantities, expressed here
as Fourier-Laplace transforms in space and time.
The maximum current density is of the order of

~
J, l

=2n pc where n p is the average number of
particles per cell: The particles are readily ac-

0.6

0.2 —.
S o.o —.

-0.2--

10
1.0 100.0

X
200.0 256.0

celerated to +c by the large amplitude electromag-
netic wave. When ro is large enough that
co

l E,
~

&4m
~
J, ~, the character of Eq. (11) is

predominantly that of the vacuum, i.e.,
—iE, =cik )&B„andthe plasma current effects are
a secondary modification to the electromagnetic
wave equation. For a nonrelativistic wave which
propagates only in an underdense plasma, the
larger the frequency of the wave the closer to the
vacuum photon the character of the electromagnet-
ic wave in the plasma is. For a relativistic wave,
which can propagate not only in an underdense
plasma but also in an overdense plasma, a similar

FIG. 2. Sinusoidal wave with frequency well above

cutoff: (a) the p —x phase space of electrons at time

co~t =40; (b) the p»
—x phase space of electrons at

co~t =40. The momenta are normalized to m0c; the dis-

tance to the cell size h. (c) Wave magnetic field B, nor-

malized to its initial maximum B as a function of the
distance x at co~t =40.
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tendency holds: The character of the wave is still
close to a vacuum photon as long as co is suffi-
ciently above co„because of the relativistic mass
effects.

The phase-space plots of the electron momentum

p„in Fig. 2(a) show substantial longitudinal ac-
celeration up to y-200 in the direction of wave
propagation. The positrons' behavior and accelera-
tion is identical to that of the electrons. Twice as
many forward streaks appear, at the positions of
the maxima and minima of the magnetic field Bz0

They are initially associated with the vy XBz force,
which maximizes there because the transverse par-
ticle velocity vz changes from +c to —c when B,
goes through a maximum or a minimum, and pz
and 8, are 90' out of phase. Heating in the x
direction is also quite prominent; particles fill the
large phase space (p -x) originally encircled by the
cold energetic streak particles. Figure 2(b) indi-
cates that the momentum in the y direction ap-
proximately preserves its original sinusoidal shape
and magnitude. This tendency holds for the
remainder of the run (up to co~t =200). At
co~t =120 for instance, the particles have been ac-
celerated forward in the x direction up to
p„/moc -300 but the input waveform propagates
essentially unchanged.

An examination of the energy of each magnetic
normal mode as a function of time indicates that
the input wave number, mode N =4, has energies
at least 4 orders of magnitude above all other
modes, including its harmonics at all times. This
confirms that the wave-number spectrum remains
monochromatic and the wave shape sinusoidal
throughout. We will now show that this is not the
case when the frequency of the input sinusoidal
waveform is close to the relativistic cutoff.

B. Wave frequency close to cutoff

When the wave frequency is close to the rela-
tivistic cutoff frequency, the wave characteristics
deviate considerably from those in vacuum or in a
tenuous plasma. Such a simulation is now present-
ed. The cutoff frequency is still co =0.177co~ for
v=100 and c=4co~h, so that (y) =63.6 as be-
fore. Two wavelengths (i.e., mode number N =2 is
excited) fit into the system of size L„=2566,so
that co =0.265co~, and kc-co&/(y)' . This
means that co

~
E,

~

&4n.
( J,

~

in Eq. (11), and
plasma effects dominate.

Multiple aspects of the data returned from this
numerical experiment are presented in Figs. 3
through 7. Figures 3 and 4 show the state of the
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FIG. 3. Sinusoidal wave with frequency close to cut-
off. Early time development (co~t =0.8) of (a) the

p —x phase space of electrons, (b) their u —x phase
space, and (c) their v„—x phase space. The velocities
are normalized to the speed of light c.

system very early (t &2nlco~) Since .
pz an.d B, are

of relativistic amplitude and 90 out of phase, v~

will change from +c to —c, where p~ changes sign
and B, is maximum or minimum, to form the
square-wave pattern of Fig. 3(c). Where v~

changes from +c to —c, the longitudinal accelera-
tion (ev~ XB,/mc) changes its sign from almost
+eB~/m to —eB~/m. Since v~ is proportional to
eE~ initially, the direction and magnitude of the
acceleration are charge independent. This accelera-
tion gives rise to the large localized longitudinal
momenta (p„)of Fig. 3(a). Hence, whereas the ini-
tial longitudinal velocity v was initially zero, it
quickly acquires values very close to +c or —c, as
shown in Fig. 3(b), where vz changes sign at the
extrema of B,. Therefore, the density is
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FIG. 4. Sinusoidal wave with frequency close to cut-
off. Early time development (co~t =0.8) as a function
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current density J» normalized to n0ec, and (c) the wave

magnetic field 8,.
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FIG. 5. Sinusoidal wave with frequency close to cut-

off: (a) the p„—x phase space of electrons at time

co~t =20; (b) the p» —x phase space of electrons at
co~t =20; (c) wave magnetic field B, as a function of the
distance x at co~t =20.

compressed there and in fact, from Fig. 4(a), it in-

creases to three times the average density.

This delta-function density profile feeds back to
the current density and almost completely obli-

terates its original square wave character as shown

in Fig. 4(b), which if maintained would have re-

sulted in sawtooth magnetic and electric fields.
The spiky character of the current density in turn
modifies the transverse fields, as shown in Fig.
4(c), and eventually leads to the breakup of the in-

put waveform.
The lang-time developement of the system

presented in Figs. 5, 6, and 7 bears this out. From
Fig. 5, even at t =2%o~', strong distortion of the
input sinusoidal waveforrn and phase space has set
in on a time scale shorter than one wave period
(r -24cu~'). At this time, there is as much for-
ward as backward acceleration (y-100) in p„.The
phase difference between p~ and 8, is no longer
90'. Some departure in p~ from the initial
sinusoidal perturbation is observed. From Fig.

6(c), the initially sinusoidal transverse electric field

(E„)has also acquired spiky perturbations. As
displayed in Fig. 6(a), the initially uniform particle
density exhibits substantial localized compression.
Likewise, the current density in the y direction
[Fig. 6(b)] is no longer akin to the initial square
wave but is now dominated by a spiky structure
correlated with the density spikes. The snapshots
at t =18Gco~ of Fig. 7 show that the wave mainly
accelerates particles forward in p„up to y-200.
By this time, intense heating in p„has taken place,
so that the thermal velocity is of the order of the
speed of light. This is accompanied by slight heat-

ing in pz and a significant departure from the ori-

ULTRARELATIVISTIC WAVES IN OVERDENSE. . .
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ginal sinusoidal shape of the wave. The transverse
magnetic field B, is modulated by spikes. This
also holds for the electric field. The particle densi-
ty at this late stage (t = 18(ko~') shows a decay of
the density spikes and a chaotic structure of less
pronounced peaks.

Moreover, whereas originally the spikes in densi-
ty occurred at the maxima and minima of the
transverse fields (Fig. 4), they do not propagate at
the group velocity of the wave c/P, where
P=vz/c=1. 3 in the present run: They lag the
electromagnetic wave; this dephasing produces in
time the choppiness of the transverse fields. The
velocity of the compressional wave is about 0.70c,
while the group velocity of the electromagnetic
wave is vg=0. 77c. A similar phenomenon is ob-
served for a sawtooth start and its significance will
be discussed there in detail. Overall, the evolved

208.0 (a)

Electron Phase Space Time = 180+pe '

waveform in the late stages has steepened com-
pared to its initial sinusoidal one. It seems fairly
steady but does not exhibit a tendency toward a
sawtooth formation, as we shall now confirm.

The character of the wave, whether it is
sawtooth or otherwise, can be established by scru-
tiny of the time-averaged wave-number spectrum,
i.e., the magnetic energies of the normal modes
averaged over the length of the run, which are
plotted as a function of wave number in Fig. 8.
This diagnostic shows that the input wave number
(mode number N =2 or odd harmonic number

NH ——1) is not the only prominent one, as it would
have been if the sinusoidal shape had been
preserved. However, only the odd harmonics of
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FIG. 6. Sinusoidal wave with frequency close to cut-
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(b) perpendicular plasma current density J» versus dis-
tance x at co~t =20; (c) wave electric field E» normal-
ized to its initial maximum E„asa function of distance
x at ~~t =20.

FIG. 7. Sinusoidal wave with frequency close to cut-
off: (a) the p„—x phase space of electrons; (b) the p» —x
phase space of electrons; (c) wave magnetic field B, as a
function of distance x. All are plotted at co~t =180.
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FIG. 9. Sinusoidal wave with frequency close to cut-
off. Simulation dispersion relation, frequency co versus

mode number N =kL„/2m.. The dots label the simula-

tion frequencies, the solid curves follow the theoretical
prediction r02=r0~/(y)+k c .

the fundamental wave number contain significant
energy. Although this might indicate a tendency
towards establishing a sawtooth (triangular)
waveform, the sawtooth scaling law 1' is not
obeyed by spectral intensities of the odd harrnon-

ics. As is shown in Fig. 8, the ratio of these spec-
tral intensities is much gentler than NH . This
confirms the fact, apparent from Figs. 5, 6, and 7,
that even though the wave has steepened (prom-
inence of the odd harmonics), it has not evolved
towards a sawtooth (the odd-harmonics spectral in-

tensities do not decay as XH ).
Temporal autocorrelations of the transverse elec-

tric fields and of the transverse magnetic fields
over the length of the run have also been taken.
The calculation of temporal autocorrelations in-

volves a certain degree of time averaging. The
simulation dispersion relation obtained from the
frequency spectra of the various modes, the
Fourier transforms of the temporal correlation
function, is displayed in Fig. 9. The simulation

dispersion relation is in good agreement with Eq.
(9). This was also the case for the high-frequency
sinusoidal input waveform. Here, even though the
wave shape is distorted beyond recognition, the
dispersion relation of the spiky waveform still con-
forms to the simple linear theory expression of Eq.
(9), at least in a time-averaged sense.

We have also excited sinusoidal waves with fre-
quencies purposely below cutoff (co =co„/2and

co =co„/4)to see how the plasma would react,
since it is usually thought that electromagnetic

waves with co &co~ and relativistic ones with

coN &co„cannot propagate in the plasma (the wave

vector becomes imaginary and the wave evanes-

cent). Needless to say, the sinusoidal is destroyed
in time and the evolved spiky waveform contains
many wavelengths shorter than the input one.
Heating in p„occurs and only very few particles
achieve large forward parallel momenta
(p„/mcc-200). However, the interesting observa-

tion is that the wave oscillates from propagating
forward (its Poynting flux is positive), to backward
or being reflected (its Poynting flux is negative), to
forward again. Overall in time, the Poynting flux
is positive and the wave propagates forward. Here,
of course, the wave energy and momentum are al-

ready imbedded in the plasma at m~t =0. Also,
since the plasma is much below cutoff (c0 &&co„),
it is so for both the forward propagating waves im-

bedded in it at co~t =0 and the backward waves

generated by reflection; hence this oscillating direc-
tion of propagation. That it comes out to be for-
ward overall is due to the preferential forward
direction forced upon the plasma initially.

The results of the computer experiments on

sinusoidal input waveforms can be summarized as
follows: (i) Irrespective of the frequency of the ini-
tial wave, substantial acceleration of the particles
in the direction of propagation is achieved through
the vy )&Bz force (ii) Substantial heating accom-
panies this acceleration. (iii) For wave frequencies
close to cutoff, a delta-function density wave des-

troys the original sinusoidal wave field. (iv) A1-

though the evolved waveform of 8, has steepened,
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it is not sawtoothlike, a waveform one would ex-

pect if the square-wave current density profile is
maintained.

The numerical experiments with a sawtooth in-

put waveform described in Sec. V lead to similar
conclusions.

p&
——sgn(e;/e) [(1—a )(1—a +q)]'~

2

—1&0(1

p, =0.

(12b)

(12c)

V. SAWTOOTH WAVE PROPAGATION

A. Sawtooth initialization

Since a spatially varying linearly polarized elec-
tromagnetic wave (E„,B,) of relativistic amplitude
immediately accelerates both electrons and posi-
trons to a speed very close to c in the transverse
direction a square-wave velocity pattern results

and, given a uniform density, so does a square-
wave transverse current density J„=+noec. In the
steady state, B,=+4m.enox and the electromagnetic
wave assumes a sawtooth (or triangular) wave
shape as schematically illustrated in Fig. 1. The
formal analysis of Kennel and Pellat also yields
the self-consistent initial perturbation of the
momentum in the direction of propagation. Their
solution of the cold-fluid equations yields the fol-
lowing relationship between fields and particle mo-
menta:

p =c[V„O+(av/2p)(1 —a~)], (12a)

We present a set of experiments where the input
waveform is that given by the cold-fluid theory,
i.e., a sawtooth waveform of B, (or Ez) with self-

consistent particle momenta. The previous experi-

ments showed that a sinusoidal waveform does not
evolve into the cold-fluid steady state, the sawtooth

solution, but into a relativistically hot plasma with

twice as many peaks in density as in the fields,
whose density peaks were caused by the v~ XB,
force. Although the initial sinusoid evolved into a
seemingly quasistationary state, it may not have

been an equilibrium start. This section will exam-

ine the evolution of a relativistic wave-cold plasma

system, where the fields and particle momenta at
time zero are theoretically in steady state. This
equilibrium start is briefly presented and then the
results of our numerical experiments under the
equilibrium start are described. The sawtooth
evolves to a final state similar to that of the
sinusoid.

The parameters in the above are defined as

a =E„/E,B,=E~/P,

P2 P2/(P2 1) P2 P2/(P2 1).

2 2a = —,co~ /co~,

q =4y /av, V„0=y'/P,

(13a}

(13b)

(13c)

(13d}

where E is the peak wave amplitude. The disper-

sion relation is written as

~y"/2 =av . (14)

We have chosen c=4co~h, y =v'3/2, p=v 3,
and two wavelengths to fit into L» =5126, so that
A, =2565. This fixes co~ =0.17'~, a=1.44
&10,q =1.913)&10,v=133.06, and conse-

quently E =90.50 and B =52.25. Moreover,
theory predicts that with these initial conditions
the density should be uniform and the particles'
velocities in the x direction equal to V„oat t =0.
The initial sawtooth is shown in Fig. 10. It was

verified that v„=V„oat t =0. Uniform spatial
loading ensures uniform density. From the wave

point of view at t =0, there is no energy to speak
of in the even harmonics of the principal mode
number N =2, and the energy content between odd
harmonics follows the 1/NH law characteristic of
a triangular wave.

As is shown next, the sawtooth waveform does
not survive.

B. Simulation results

As is clear from Figs. 11, 12, and 13, early dis-
tortion of the input waveform sets in for
t -r =37co~'. Spikes again appear in the trans-
verse fields that almost completely obliterate the
triangular pattern. Density plots reveal a compres-
sion region, again associated with maxima of B„
where Uz changes from +c to —c, just as in the
sinusoidal start. At time t =120co~, the particles
have acquired y-200 in the direction of propaga-
tion. Note also the longitudinal heating with a
thermal spread of the order of the speed of light.
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FIG. 11. Sawtooth wave. Snapshots of the system at
co~t =40: (a) electrons p„—x phase space; (b) electrons

p» —x phase space; (c) wave magnetic field 8, versus dis-
tance x. The shaded regions correspond to the density
maxima.

FIG. 10. Sawtooth wave. (a) initial profile of the
wave electric field E» as a function of distance x; (b) ini-
tial p» —x phase space of the electrons; (c) initial p„—x
phase space of the electron.

The initial development of the system was diag-
nosed and the same scenario as for the sinusoidal
waveform holds: onset of a delta-function density
wave which obliterates the square-wave current
density; hence, disappearance of the input sawtooth
waveform. The breakup of the sawtooth by the
spikes did take longer, however, (of the order of
one wave period r =37co~'). The group velocity
of the sawtooth is slower than that of the low-
frequency sinusoidal wave, i.e., vs ——c/v 3 for the
sawtooth compared to c/1. 3 for the sine wave, so
that the dephasing did not become apparent until a
later time. This dephasing is emphasized in Fig.
13 where the shaded regions indicate the position
of the spikes in density at co~t = 120. Once the

spikes are formed, the wave never recovers its ori-
ginal sawtooth shape. The spiky waveform has
been found to persist in runs covering 50 wave
periods. This behavior has been verified to be in-
dependent of the system length, the mode number
excited, the number of particles per wavelength,
and whether the plasma is hot or cold at co~t =0.
Runs with impractical time steps satisfying
4t & moc/2e8, as stipulated in Sec. III, also gave
almost identical results to those with coarser time
steps. This is also true of the sinusoidal input
waveforms presented in Sec. IV.

The appearance of delta-function-like density
compression at the extrema of 8, is intriguing and

ULTRARELATIVISTIC WAVES IN OVERDENSE. . .
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interesting. First, in the cold-Quid theory, the
longitudinal momentum equation reads

~P ~P 8 e
dt Bt Bx c

+ux px = vy X&s ~

The sawtooth solution, Egs. (13) and (14), equates
U (BIBx)p„to (ele) vy &(8, at t =0. Therefore, p„
does not initially change in the laboratory frame.
At the same time, the continuity equation at t =0
reads

8 Bn 3—n+ nu„= +n —u„=0,
Bt Bx Bt Bt

where we used n is constant at t =0. Since u„is
uniform in Eq. (16), n does not change either in
the laboratory frame at t =0. A perturbation in
u„,however, can destroy the sawtooth waveform in
a scenario similar to the one presented in Sec. IV.
It may be worth pointing out that the so-called
space-independent frame for a superluminous
wave ' (sometimes called the frame where photon
momentum is zero and only photon mass remains }

FIG. 13. Sawtooth wave. Snapshots of the system at
co~t =120: (a) electrons p„—x phase space; (b) electrons

p„—x phase space; (c) wave magnetic field 8, as a func-
tion of distance x. Me shaded regions correspond to
the density spikes.

leads to invariance of density. This is only true,
however, if the wave number of the density modu-
lation is associated with that of the photon.
Therefore, once the perturbation contains a wave
number different from N =2, in our case, it is no
longer space-independent (invariant), and there is
no reason to believe that the density remains con-
stant.

Time autocorrelations of the transverse electric
and magnetic fields did yield a dispersion relation
similar to Fig. 9, again indicating, that however
distorted the waveform, its dispersion still follows
the linear theory estimate of Eq. (9). We have
plotted in Fig. 14 the time-averaged spectral inten-
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FIG. 14. Sawtooth wave. Time-averaged magnetic
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of mode number N and odd-harmonic number NH. The
open circles indicate the energies of the odd harmonics,
the dots the energies of the other modes. The solid
curve follows the sawtooth decay law NH . The simula-

—NHI2. 5 .
tion decay law e is plotted as a dashed line.

sities or mode energies as a function of mode num-
ber (N) and odd-harmonic number (N~). At
co~t =0, the wave-number spectra of the wave elec-
tric and magnetic fields obey the N~ law between
odd harmonics of the input mode N =2. It is also
true that initially the even harmonics have negligi-
ble (i.e., thermal) energies. Figure 14 indicates that
the even harmonics do not contain or gain a signi-
ficant amount of energy throughout the run.
Furthermore, the time-averaged energies of the odd
harmonics are at least two orders of magnitude
above the even. However, Fig. 14 shows that the
odd harmonics do not follow the N& decay law
that preservation of the sawtooth input waveform
would have required. The decay is much gentler,
as it was for the low-frequency sine wave, and here—0.4$H
approximately scales as e

'
for the first few

harmonics, except for NH ——3. The third harmonic
achieves roughly the same energy as the fundamen-
tal mode N =2 or NH ——1. It is possible to specu-
late that the nonlinear interaction between the two
defined modes observed at early times leads to a
"stochastic" spectrum at late times, such as that
found by Wersinger, et al. ' We have not checked
this suggestion in detail.

Even though the sawtooth wave shape is not
preserved, particles are both accelerated in the
direction of propagation to large momenta and
substantially heated. We examine in Sec. VI the
energy, momentum, and flux exchange between
electromagnetic waves and particles for both
sinusoidal and sawtooth starts.

The behavior of the maximum momentum in the
direction of propagation, the partition of energy
between fields and particles, the average velocity
the plasma acquires in the field of the wave, and
the partition of flux between waves and particles is
compared with the theoretical estimates of Sec. II
for both input sinusoidal waves and sawtooth
waves. We also present an illustration of the ener-

gy distribution of the particles accelerated in the
direction of propagation, of interest for the pro-
duction of cosmic rays.

For the input sinusoidal wave well above cutoff
of Sec. IV, both electrons and positrons gain equal
and large net momenta from the waves. Energy
and momentum exchange between the waves and
the particles saturates at co~t =100 or after 7 wave
periods. A steady state has been reached with the
maximum momentum achieved by the particles in
the x direction remaining nearly constant at
p„/moc=300, as compared to its value of zero at
co~t =0. Note also that initially the maximum
perpendicular momentum pz /mac =v= 100 here.
The maximum parallel momentum achieved
exceeds the theoretical estimate p„/moc 175 from
Eq. (4) of Sec. II. The total kinetic energy sa-
turates at twice its initial value and thus represents

I 1

—, of the wave energy (an equal amount, i.e., —,,
1

goes to electrons and positrons} as compared to 6

initially.
A particle flux is generated only in the x direc-

tion, indicating a transfer of momentum from
wave to particles only in the direction of propaga-
tion. We have plotted in Fig. 15(a} the average
velocity v~~ in the direction of propagation for elec-
trons (an identical value holds for positrons) as a
function of time. The steady-state velocity is
measured to be v~~/c =0.52. Equation (6) of Sec.
II yields v~

~

/c=0. 9, so that the simulation value is
60% of the theoretical estimate, which may there-
fore be an upper bound.

We have also measured the transfer of flux be-
tween fields and particles. In the simulation, the
total flux is defined at each instant of time as

C =c/4nf(EXB)dx+. c'g f p dx, (17)
x x

where the first term on the right-hand side is the
electromagnetic flux 4,~, the second the particle
flux 4z, and the sum over a includes both electron
and positron contributions. The integration is per-
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yields p„/moc -90. While the simulation value
exceeds the theory by a factor of 2, there is a ten-
dency for the maximum parallel momentum to de-
crease as the phase velocity increases [since
p„/moc=(vn/4)[c /(v~ c—)]'~ from Eq. (4)),
between the high-frequency sine wave run

(p„/mac -300 and uz/c=1. 095) and the low-

frequency sine wave run (p /mac -200 and

uz/c=1. 35). Likewise, the net increase in kinetic
energy is only a factor 1.3 here as compared to a
factor 2 for the high-frequency sine wave.

The parallel velocity of the electrons v~~/c and
the total particle flux 4& and electromagentic flux

are displayed as a function of time in Fig. 16
for the input sinusoidal waveform with frequency
close to cutoff. The steady-state value of the aver-

age parallel velocity is v~~/c=0. 35. The theoretical
prediction is v~~/c=0. 75 from Eq. (2); the simula-

tion value is then about 50% of theory. Neverthe-

less, the tendency to decrease as the phase velocity
increases also appears in the simulations. The
reduction factor is, however, 1.5 times the ratio of
the phase velocities between the high-frequency

0.6

FIG. 15. Sinusoidal wave with frequency well above
cutoff: (a) average parallel velocity v~~/c as a function
of time; (b) electromagnetic flux 4, and particle flux

4~ normalized to the total flux 4 as a function of time.
v /c

0,4

0.2

0.0

1,0

formed over the system length L„.The total flux
4 as defined in Eq. (17) is conserved in the siinula-

tion. We have plotted in Fig. 15(b) 4,~ and 4z
normalized to the total flux 4 as a function of
time. Equipartition of flux, as predicted by Eq.
(5), is not achieved in the steady state:
nevertheless accounts for a substantial 25% of 4,
as compared to a negligible 0.6% at early times.
There is then substantial transfer of energy,
momentum, and flux from waves to particles even

though the wave remains sinusoidal throughout the
interaction.

The energetics of an input sinusoidal waveform
with frequency close to cutoff can be summarized
as follows. Both electrons and positrons gain equal
energy and momentum from the waves. An ap-
parent steady state is quickly reached around
co~t =40 or about two wave periods. The max-
imum parallel momentum achieved is

p /moc -200. Equation (4) on the other hand

0.80

@em'C'

0.60

0.40

0.20

0.006
150 2000 100

tlu

FIG. 16. Sinusoidal wave with frequency close to
cutoff: (a) average parallel velocity v~~/c as a function
of time; (b) electromagnetic flux 4 and particle flux

4~ normalized to the total flux 4 as a function of time.
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sine wave run and the low-frequency sine wave
one. Moreover, while equipartition of Aux between
particles and fields is not achieved in Fig. 16(b),

4z now accounts for about 50% of 4,~ in the
steady state as compared to a negligible fraction
initially and to 25% for the sinusoidal input
wavcform with frequency weB above cutoff. More
flux is then transferred from the fields to the parti-
cles as the frequency gets close to cutoff and the
waveform has steepened from its original
sinusoidal shape.

For the sawtooth input waveform of Sec. V, the
energy and momentum exchange between the wave
and the particles presents an oscillatory behavior,
with field and kinetic energies settling down to
their initial values in the apparent steady state.
Note that initially the kinetic energy is 1.75 times
larger than the wave energy. There is nevertheless
a net forward acceleration of the particles, with a
maximum parallel momentum around p„/moe
=200, as compared to p„/moe =75 initially. The
average parallel velocity is maintained at its initial
value of 60% of the speed of light. Equipartition
of Aux is approximately satisfied initially and,
while oscillatory, the Auxes preserve a rough
equipartition in time. At m~t =0, energy, momen-
tum, parallel velocity and Aux satisfy the theoreti-
cal prescriptions laid out in Scc. II. Even though
the sawtooth wavcform is not preserved, these
prescriptions are approximately satisfied through-
out the simulation, save for the oscillatory
behavior of these quantities and the net gain in
peak parallel momentum.

The sawtooth wave theory, ' while it does not
reproduce the exact behavior of field and particle
quantities in the simulations, might still be used as
a rough guideline to the energetics of the interac-
tion between an ultrarelativistic electromagnetic
wave and an electron-positron plasma. However,
kinetic simulations yield results beyond the reach
of the cold-fluid theories. We illustrate this by
showing the energy distribution of the particles ac-
celerated by the waves in the direction of propaga-
tion. This is done using the momentum distribu-
tion of the particles f(p ); since p„/moc » 1,
f(p„)represents the distribution of relativistic fac-
tors or energies of the plasma particles. We have
plotted three such distributions for electrons in the
steady state at co~t =200 in Fig. 17 for (a) the
sinusoidal input wavcform with frequency well
above cutoff of Sec. IV, (b) the sinusoidal input
waveform with frequency close to cutoff, and (c)
the sawtooth input waveform of Sec. V. The ener-
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60.0-

—40.0-

0.0

200
(c

150-

50

0
-100 f00 200 300

P„/rnoC

FIG. 17. An illustration of the energy distribution of
the electrons in the steady state at m~t =200. The
parallel or p„momentum distribution function f (px) as
a function of p, for (a) the sinusoidal wave with fre-
quency well above cutoff, (b) the sinusoidal wave with

frequency close to cutoff, and (c) the sawtooth wave.

VII. DISCUSSION

A recent theory by Asseo et a/. "proposed a
Weibel-type instability' to explain the breakup of
the sawtooth. Since pq»»p~~ initially, the wave
will grow at the expense of pq (or p~ here). This
did not happen in the simulations. Moreover, it is
improbable that a %'cibcl-type instability will lead
to the compression in density observed. We have
also ruled out electrostatic interactions as a cause

gy distributions from all three experiments are
qualitatively similar: A high-energy and high-
density tail appears in the direction of propagation.
Heating is also apparent from the broad width of
the distribution around p„/moc =0. Relativistic
waves with frequency well above cutoff yield morc
of the most highly energetic particles than the oth-
er two cases.
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of breakup since the electrostatic energy never ac-
counts for more than 10 of the wave or kinetic
energy because of the lack of charge separation be-
tween electrons and positrons. {Ifthe ions were
not positrons, electrostatic effects would indeed
contribute to the breakup of the input waveform
through various parametric instabilities. '

) One
possibility might be that the dielectric function of
the plasma changes as the particles exchange ener-

gy with the waves through relativistic effects:
Temporal modulation of the wave-particle interac-
tion may then result. This mechanism should at
least require a time of the bulk energy change to
give rise to a major wave modification. As we
have seen in the previous sections, however, a long-
itudinal density wave sets up in a time much short-
er than the above. This is what leads to a breakup
of both sinusoidal and sawtooth input waveforms
through strong modulation of the perpendicular
current density.

Irrespective of the initial waveform, the final
quasistationary state seems to be a plasma very hot
in the p„direction, with twice as many peaks in
the density as in the fields. The p~ momenta exhi-
bit much less heating and preserve the original
shape to a certain degree.

Irrespective of initial waveform and frequency,
the relativistic wave accelerates the particles in the
direction of propagation through the v t(B force.
The maximum momentum achieved p„/moc is a
few times the strength parameter v in rough agree-
ment with theory. ' We recently simulated the in-
teraction of an ultrarelativistic electromagnetic
pulse in an underdense electron-positron plasma. '

There the extent of the pulse was only about 1/100
of the plasma size, whereas here the wave extends
over the whole plasma. For the pulse, the max-
imum momentum achieved through v XB accelera-
tion scaled as p„/moc-v . It would then appear
that a continuous wave induces a maximum
momentum about 1/v smaller than a pulse of the
same peak amplitude.

Irrespective of initial waveform and frequency,
the relativistic wave in an overdense electron-
positron plasma generates or maintains a large
longitudinal particle flux I (2noec. The longitu-
dinal flux decreases as the wave frequency ap-
proaches relativistic cutoff. However, this decrease
is steeper than the ratio of the phase velocities
predicted from theory. The tendency towards
equipartition of electromagnetic and particle fluxes
is more pronounced as the wave shape steepens to-
wards a sawtooth one; in the sawtooth start this

equipartition is preserved even though the wave is
destroyed. In addition, when the wave is initially
and uniformly immersed in the plasma with fre-
quency below the cutoff, the wave can still pro-
gress overall in time and accelerates particles for-
ward.

In 1967, Pacini' suggested that angular momen-
tum and rotational energy would be carried away
from rotating magnetized neutron stars by an elec-
tromagnetic wave of immense amplitude. After
the discovery of pulsars, it was found that the
wave model accounted semiquantitatively for the
observed lengthening of pulsar periods. Unfor-
tunately, this model cannot be correct in its sim-
plest form, because Goldreich and Julian' showed
that surface field emission would fill the surround-
ing space with charged particles. Thus the elec-
tromagnetic wave propagates not in vacuum but in
a plasma. Subsequently, Sturrock showed that
electron-positron pairs would be produced on
current carrying field lines near the pulsar polar
cap, and Ruderman and Sutherland' argued that
those magnetized rotating neutron stars we observe
as radio pulsars all have copious pair production.
As the pulsar ages, it decelerates rotationally and
eventually passes below the threshold for pair pro-
duction, at which point it is radio silent. However,
by far the majority of rotating magnetized neutron
stars would be defunct pulsars, according to this
reasoning.

The above developments motivated a line of
basic research aimed at delineating the properties
of nonlinear plasma waves of ultrarelativistic am-

plitude. Reasons of analytic tractability limited
this research generally to plane waves in two-fluid
theory. The results of this program have been
summarized in Kennel et al. '; it appears that pul-
sars above pair-production threshold produce too
dense a plasma for at least plane waves to pro-
pagate. However, defunct radio pulsars could radi-
ate ultrarelativistic plasma waves. In addition,
other astrophysical objects, such as radio galaxies
or quasars, could conceivably radiate such waves
into the tenuous plasma presumably filling inter-
galactic space. For these reasons, the continued
development of the theory of ultrarelativistic plas-
ma waves remains desirable. Our present results
may be of interest to astrophysics in the following
way. Regardless of the wave frequency or
waveform, and whether or not the waveform is
preserved, the original wave energy was rapidly
converted into a mixture of ultrarelativistic parti-
cles and waves. Thus, wave energy should be effi-
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ciently converted to cosmic rays. However, it
seems likely that a single wave of immense ampli-
tude will not exist long enough to be observable.
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