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To every solution of the time-independent Dirac equation for the electron in an arbi-
trary magnetic field there belongs a second solution. A characteristic twofold degeneracy,
suggested by this circumstance, is shown to be excluded for the ground state at the energy
E =mc?, with the further distinction of this state that the current density vanishes here
at all points in space. The conditions under which the excited states exhibit such a de-
generacy are discussed and in the case of its occurrence are shown to allow the construc-
tion of a particularly symmetrical pair of mutually orthogonal solutions.

Among the earliest applications of the Dirac
equation, Rabi! obtained a complete set of solu-
tions for the stationary states of the electron in a
homogeneous magnetic field. Based upon a suit-
able gauge in the choice of the vector potential, his
treatment allows each state at a given energy to be
further characterized by the angular momentum
around an axis in the field direction. One deals
here with an infinitely high accidental degeneracy
insofar as the same energy permits to assign to the
angular momentum any one of its eigenvalues. It
is of particular relevance to the following remarks
that such an assignment uniquely defines a state at
the lowest energy E =mc? but leaves a twofold de-
generacy for all excited states.

A detailed discussion of the special aspects, en-
countered for a homogeneous field, is found in two
papers by Johnson and Lippmann.? In the second
paper they further point out that the existence of a
certain constant of motion in an arbitrary magnetic
field permits a more general twofold degeneracy
and they specify the conditions necessary to actual-
ly deal with a degenerate state. In a more recent
paper by Aharanov and Casher,’ the case of a
homogeneous field is extended to include a mag-
netic field which is still unidirectional but allowed
to maintain an arbitrary magnitude along any line
of force. The exceptional property of the ground
state is utilized to show that the choice of a
divergence-free vector potential directly yields here
a set of solutions . In analogy to the separate
states in a homogeneous field, characterized by the
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angular momentum, they may likewise exhibit a
degeneracy with a multiplicity, however, which is
limited by the total flux of the field. While no
such solutions are available for the stationary
states at higher energies, it is observed for those,
selected to remain constant in the field direction,
that they are degenerate with respect to a reversal
of the spin orientation.

It will be shown that the procedure of Aharonov
and Casher can be generalized to lead in a different
way to conclusions about the stationary states in
an arbitrary magnetic field, including those which
have previously been reached by Johnson and
Lippmann. In particular, it becomes evident from
this procedure that the type of twofold degeneracy
possible for higher energies cannot occur at the
ground state of energy E =mc? and that the
current density is here necessarily zero in all points
of space.

A convenient albeit less concise formulation is
obtained by separating the four components of the
wave function ¥ into functions ¥ and 9 of
two components each, writing 1, for ¢, , and
1/111’,2 for 45 4. For a vector potential A and in the
absence of a scalar potential, the time-independent
Dirac equation then appears in the form of the
simultaneous equations,

¢ TY*'=(E +me* b, (1a)
o TYP=(E —mcHy?, (1b)

where 0" is the vector of the Pauli matrices o, ,
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and where
— — (¢
T=p+—A (2)

(see Ref. 4). The discussion will refer to states of
positive energy E but applies equally to those of
negative energy since the same equations with the
opposite sign of E are obtained by a mere change
of notation, replacing ¢° by ¥* and y® by —y°.

Upon application of the operator co’*7 on both
sides of Eqs. (1), it is seen that they are likewise sa-
tisfied by the functions

¢*=kca 7Y, (3a)
$b=kca 7Y’ , (3b)

with k as a constant of proportionality.’ In view of
Eqgs. (1), the equivalent connection between the
solution ¥*? and ¢*? is given by

¢°=k(E +me* W, (42)
#P=Kk(E —mc?)y° . (4b)

Although the existence of both solutions at the
same energy is suggestive of a twofold degeneracy,
it would be erroneous to thereby conclude upon its
inevitable occurrence. The conclusions actually to
be drawn from this fact will be separately discussed
for E =mc? and for all higher energies.

Starting with E =mc?, this value of the energy
is distinguished from any other positive value by
the fact that both ¢° and ¢° are found to be zero so
that the corresponding state is ruled out. Indeed,
it follows here directly from Eq. (4b) that ¢®=0.
To see that ¢° vanishes, consider the conjugate
complex of Eq. (1a), multiplied on both sides with
yb. Since &7 is a Hermitian operator, one then
obtains

(Y**ca 7Tyt =2mc2(y**yP) , (5)
where the round parentheses here and in the subse-
quent formulas indicate integration over the space
variables and summation over both indices used to

label functions of two components. Since for
#°=0, according to Eq. (3b),

co- ir’:/z” =0,

it follows from Eq. (5) that
(y**yh =0,

and therefore necessarily that

¥*=0. (6)
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In view of Eq. (4a) the result ¢°=0 is thus con-
firmed.

Before considering y°, the preceding result can
be used to arrive at a separate conclusion. At the
end of Rabi’s paper! it is noted that the current
density vanishes in the ground state. This fact is

‘not limited, however, to the special case of a

homogeneous field which he considered, but can be
seen to describe a characteristic property of the
ground state in an arbitrary magnetic field.
Indeed, the notation used here leads to the expres-
sion

1 =ec(y™ TYP+y** ¢
@r the current density and hence to the result
i =0 as a consequence of Eq. (6). This result can
be regarded as the counterpart to the classical fact
that the lowest energy corresponds to an electron
at rest and remaining at rest in any magnetic field
due to the absence of a Lorentz force.

As a further consequence of Eq. (6), one obtains
from Eq. (1a) the equation

¢F FYP'=0 (7)

for the determination of 9 (see Ref. 6). Combined
with the result of Eq. (6) for ¢®, a single-valued
normalizable solution of Eq. (7) describes a station-
ary ground state at the energy E =mc?. In case of
an accidental degeneracy, each of the different
solutions is to be characterized by the eigenvalues
Q' of an operator € such that

QUP=Q'y° . ®8)

The choice of the operator depends on the particu-
lar symmetry properties of the vector potential so
as to fulfill the condition

[Q,0-7lYy=0, 9)

which is necessary for Eq. (8) to be compatible
with Eq. (7).7 In the absence of any such symmetry,
Eq. (7) is sufficient, on the other hand, to uniquely
determine the function ¥ so that one deals then
with a nondegenerate ground state.

In contrast to the ground state, it follows for
E >mc?, in view of Egs. (4), that to every single-
valued and normalizable solution ¥*? of Egs. (1)
there belongs a solution ¢*® which is likewise
single-valued and normalizable with a finite value
of the factor k. This fact alone is not sufficient,
however, to prove a twofold degeneracy since it in-
cludes the possibility of a mere repetition of ¢?=1*
and ¢®=1y?, seen to be allowed by Egs. (4) with
k=+(E?2—mZ%*)~1/2. One therefore has to con-
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clude upon the absence of such a degeneracy if
there is no other choice than the identity of ¢*°
and ¥»°. It will be seen, on the other hand, that
this identity may appear merely as a particular
solution among a set of linearly independent func-
tions which then allow to select a pair of normal-
ized orthogonal solutions representing two different
states at the same energy.

For this purpose, let

Y=Af°, (10a)
b1
tﬁ-kf , (10b)
with
E +me? 1/4
A= | —— , 11
E —mc? ()

so as to obtain the reformulation
¢ Tfo=(E2—m%*\2f? (12a)
cTTfl=(E*—m%*'%fe, (12b)

of Egs. (1). The previous recognition of ¢*° as an
alternate solution to ¥*? then reappears in the fact
that Egs. (12) remain satisfied if ¢ and f? are in-
terchanged. Indeed, with

$°=Af2, (13a)
b_i a
¢°= ),f , (13b)

obtained from this interchange in Egs. (10) and
with A from Eq. (11), one verifies the relation be-
tween these two solutions, expressed in Egs. (4), by
choosing k =(E*—m?2c*)~1/2. Moreover, the gen-
eral solution of Egs. (12) is seen to be given by

fl=au+pv, (14a)
fl=au—pv, (14b)

where a and f are arbitrary constants and where u
and v are solutions of the equations

cF Tu=+(E*—m2H 2y , (15a)
cFFo=—(E*—m?2H"% , (15b)

which arise from those for the sum or difference of
corresponding sides in Eqs. (12a) and (12b).%

The property of a stationary state at the energy
E is thus determined by the solutions of Egs. (15).
Similarly to the ground state, the occurrence of an
accidental degeneracy leads to the characterization
of different solutions by the eigenvalues Q' of an

operator (1, to be chosen according to the particu-
lar symmetry properties of the vector potential.
Denoting by w either of the functions ¥ and v, one
has then,

Quw=Qw, (16)
with the requirement
[Q’E'F]w =0, (17

in order to be compatible with Egs. (15). No fur-
ther degeneracy occurs if either Eq. (15a) or Eq.
(15b), but not both, have a single-valued normaliz-
able solution at a given value of E, so that either
v =0 or u =0, respectively. In the first case one
has from Egs. (14), f®=f"? with the consequence,
in view of Egs. (10) and (13), that the alternate
solution ¢*® amounts merely to a repetition of
¥». Whereas in the second case f°=—f?, no
different solution results here either since it yields
no more than an irrelevant change of sign.

On the other hand, there remains a twofold de-
generacy if Egs. (15) permit a single-valued nor-
malizable solution for u as well as v at the same
value of E, both uniquely defined either in the ab-
sence of an accidental degeneracy or pertaining to a
given eigenvalue Q’, according to Eq. (16).° Even
then it does not follow that ¢** necessarily
represents an alternate solution to ¥*® since the
particular choice $=0 or a=0 of the constants in
Egs. (14) still results in f°=f%or f%=—f",
respectively. The fact that, nevertheless, one deals
here with a degeneracy shall be explicitly demon-
strated by means of another suitable choice of these
constants which leads to a pair of mutually orthog-
onal functions, ¥*® and ¢*?, related to each other
by Egs. (3) or (4).

Assuming u and v to be normalized so that

(u*u)=(v*)=1, (18)

and considering, in view of Egs. (15), that they per-
tain to different eigenvalues of the Hermitian
operator co' -7, u and v further satisfy the relation
of orthogonality

(u*v)=(v*u)=0. (19)
Using these relations, it follows from Egs. (14) that
FofO=(r"fD=a|*+|B]?,
and hence, from Egs. (10) and (13) that
(P9 + (PP Y0 = (66" + (6" ¢%)
=(A2+1/A%(|a|*+ |B|D .
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The normalization of both ¥*® and ¢*? is thus
achieved if

(A+1/A0(|a|*+ |B| D=1,
or, in view of Eq. (11), by letting
|a|?+ |B|*=(E*~m?2*)'*/2E . 20)

Similarly, the mutual orthogonality of these two
solutions requires

(7% 6%) + ($**4?)
=(A24+1/A%)(|a|*— |B|H=0,
and hence
la|?—[B|*=0. (21)
By means of the special assignment
a=B=(E2—m¥c*)/*2E\2 (22)

satisfying Eqs. (20) and (21), and upon insertion of
(22) in Egs. (14), one thus arrives through Egs.
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(10), (11), and (13) at the functions

1 [ Eqme? 172
mec
Y= 5 T (u +v), (23a)
» 1 |E—mc? v
(' => | (u —v), (23b)
1 [E me? 172
a_1 | L1mec” _
o= > E (u —v), (24a)
» 1 | E—mc? 2
¢ =3 E (u +v), (24b)

as a particularly symmetrical pair of normalized
orthogonal solutions.'°
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of Ref. 3 for the functions Uy, and Ugows With the
subscripts chosen to indicate opposite orientations of
the spin as a consequence of the special circumstances
considered. It is not possible, however, to generally
assign a definite spin orientation to the functions
denoted here by ¢ and .

SEquations (3) represent the generalization of Eq. (16) in
Ref. 3, both being valid due to the absence of a scalar
potential . While its presence would merely add a
term e® to the energy E in our Egs. (1), it would
prevent the operator ¢-7 from commuting with the
expression contained in the parentheses on the right-
hand side of these equations and hence invalidate the
recognition of ¢° and ¢° as alternate solutions.

6Equation (7) is the generalized form of Eq. (7) in Ref.
3.

"The symmetry in the treatment of Ref. 1 for the homo-
geneous field calls for the operator

with eigenvalues Q' =#i(m -+-—;—) representing the angu-
lar momentum around a given axis in the z direction

of the field and where 6 is the angle measured around
the axis. For the more general case, considered in
Ref. 3, one is led to the replacement by the non-
Hermitian operator

where, in the notation of that reference, the vector po-
tential is given by 4, =—3% /3y, 4,=93P/dx with &
as a function of x(r,6) and y(r,0). For the commu-

tator of Eq. (9) one obtains here

- = .e 39
[Q,0'11']=21:—cr,(a,1r,+ay‘rry) .

a0
The vector potential in Ref. 1 can be derived by
choosing ®=Hr?/4 so that 3®/30=0. As a result,
the commutator vanishes in that case identically so
that Eq. (9) is here applicable to any function ¢°. For
3P /36540, however, Eq. (9) is valid only insofar as ¢
satisfies the condition (0,7, +0,m,)*=0 which is
characteristic for the ground state and its specific de-
generacy noted by Aharonov and Casher.

8Equations (15) correspond to Eq. (9) in the discussion

of an arbitrary magnetic field by Johnson and
Lippmann in the second paper of Ref. 2. Indeed, the
quantity F on the right-hand side of that equation
represents the eigenvalue of (&'-7), given in view of
their Eq. (7) by F =+(1/c)(E*—m?**)!/2. In the
treatment presented here this is evident insofar as the
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functions u and v can be interpreted to pertain to the
positive and negative value of F, respectively.
9Given such a solution u of Eq. (15a), one can in this
case introduce an operator R such that

v=Ru

yields the corresponding solution v of Eq. (15b).
Equivalent to the content of Eq. (15) in the second pa-
per of Ref. 2, a sufficient condition for the existence of
this operator is then seen to be formulated by the re-
quirement

{R,0-T}u=0,

where the curly bracket indicates the anticommutator.
In order for this requirement to be compatible with
that for ), expressed in our Eq. (17) through applica-
tion of the commutator to both u and v, it can further
be seen that it is necessary to have
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[R,Q]u=0.

10The distinction of this pair by an opposite orientation

of the spin is a special feature of the circumstances
considered in Ref. 3. Indeed, with m,=p, for 4,=0
and for the solutions assumed to depend only on x
and y, the term o,m, in &7 is to be omitted. Due to
the anticommutation of the Pauli matrices, one has
then

{o,,0-7}=0,

thus allowing the operator R in Ref. 9 to be identified
with o, and to yield v =0,u. Upon insertion of
(u+v)=(110,)u in Egs. (23) and (24), it then follows
with o2=1 that o,y*=4#, o, ¥P=—vP, but

0,6°= —¢°, 0,¢*=¢" as the formulation for the solu-
tions ¢*° and ¢%° to differ in this case through a re-
versal of the spin orientation.



