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Time-dependent self-correlations in fluids at intermediate wave numbers
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A new type of infinite-order perturbation treatment of the incoherent intermediate scattering function F, (k,t) yields
analytic expressions for the spectrum S, (k,co) and the Van Hove self-correlation function G, (P,t) valid at-
intermediate to very large values of the wave number k. Predictions of this "intermediate-k" theory agree

0

quantitatively with the results of computer simulations of fluid argon for k as small as 6.75 A ' at the triple point
and 2 or 3 A ' away from the triple point. The present theory is qualitatively and quantitatively superior to
competing large-k theories and predicts a scaling of dynamical variables associated with S, (k,co) that differs from
that predicted by generalized Boltzmann-Enskog theory, The deviation of the Boltzmann-Enskog "scaling law"
from experiment is fully accounted for in the present theory, with its new "scaling law. " Relations between the
"intermediate-k" model and previous models in various limits are discussed.

I. INTRODUCTION

P, (k, t} fd're p('k =)G, (F, I), (1b)

in terms of F, (k, t), the (incoherent) intermediate
scattering function and G, (r, t), the Van Hove'
self-correlation function,

N

G, (r, I) et ' I S(r+r,. (0) —=r (t))) .
i=1

Neutron scattering has become a standard
technique for investigating the structure and dy-
namics of condensed phases. ' The incoherent
contribution to the cross section for thermal in-
elastic neutron scattering is proportional to the
(incoherent) spectral function S,(k, (d}}, where gk
and S~ are, respectively, the momentum and
energy transferred from the scattered neutron. "
In turn, the spectral function is expressed as

S (k, )=(Sr} 'f dte p(-I t)P(kt), (Ie), ,

mining the intermediate scattering function F,(k, t),
i.e. , the time-autocorrelation function (TACF}
of the dynamical quantity

A =-exp[ik r, (t)].
Now, assuming that the system obeys the clas-
sical laws of motion, we can rewrite the scat-
tering function as

F.(k, t) = (A(0}A'(t)&

= (A(0) exp(Zt)A*(0)&,

where Liouville's operator is given by

( gH'I g (gH i
-, -I,,-, &l,p

with p, denoting the (conjugate) momentum of the
ith particle and H the total Hamiltonian. We shall
further assume H to be infinitely differentiable
with respect to r; and pj, so as to exclude from
consideration impulsive interactions. Then,
F,(k, t) may be formally expanded in a Maclaurin
series:

In (2} r, is the position of the ith particle, there
being a total of N particles in the system. For a
pure homogeneous fluid, each particle is equiva-
lent, and so the scattering function (1b) assumes
the form

F,(k, t) = P (-1)"a„(k)
(

Note that odd powers of t are absent in (4) on
account of the anti-Hermiticity of 2:

(4)

F,(k, t) = (exp[ik r, (0)]exp[- ik r, (t)]),

where r, is the position of a typical, or "test",
particle.

From (l)-(2) it is clear that the scattering
cross section [proportional to S,(k, (d}}]is in-
timately connected with the test-particle density
fluctuations and hence that neutron scattering is
potentially quite useful in the experimental study
of single-particle molecular motions in fluids. 4

From a theoretical viewpoint the problem of
obtaining S,(k, a}) can be reduced to that of deter-

(x(i I')+& = ((ix)r-~&.

The coefficient a„(k), defined by

a„(k}=- ((Z "A)(g "A. *)&,

is the 2nth moment of the spectrum, i.e.,

e„(k) = f d H "S,(k, }.
Let us momentarily entertain a discursion on

TACF's of a more general nature. Let A repre-
sent the (arbitrary) dynamical quantity of princi-
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pal interest, i.e., the one whose TACF Cz(&)
= (AA*(t)) we set out to find, and define the set
of dynamical functions

a„(t}=2 "A(t), s =0, l, 2,

Next, transform the set (B„)„" 0 into the Schmidt-
orthogonalized set' ' (Z„j"„where

Zo =Bo=A,

+n n +n ~k +k~k +k ~

Now, under the restriction of infinite differen-
tiability introduced above, it can be showne 9

that

where the focussing coefficient &„ is given by

a„=-{Z„S+)(S„,2'+, )-', n~ l.
%e have recently pointed out'0 that the moments
[of the Fourier transform of (AA*(t)) j are related
to the lowering coefficients as follows:

k k~ ~+y

s„=(g ~) Q X, Q A. ~ ~ ~ X„. (7}
k~= X kg= 1

Using (7), we find the first four moments [cor-
responding to the normalized TACF C„(t)
=C„(t)(AA*)-'j to be

gm =A~(X~+X2),

g =A, ~(A. ~+A.~} +X~XIX~,

g4 =A ~(X~+32)~+2A~~A2X ~+& g &2

+2k. A2A, +A, X A. A,

Finally, we note that the Laplace transform of
the TACF can be conveniently represented as an
infinite continued fraction:

based on a, type of "perturbation" correction to the
limit of E,(k, t}at very large wave numbers
0 = jk I in which the &'s, introduced in (6), play a
central role. The procedure, to be presented
fully in Sec. III, is outlined as follows. We note
first that the 2sth moment a„(k}of 8,(k, v} can be
expressed as an even polynomial in k of degree
2s. Neglechng contributions to a„(k) of order
k'"~ and less, we then obtain a closed expression
for s„(k). Next, we effectively solve the nonlinear
equations (7) for the lowering coefficients, ob-
taining &„(k) explicitly to O(k '). By stopping at
this order in k we can guarantee the required
positivity of the &'s for all values of A, an im-
portant feature that is lost at higher orders in k.
It is this fact that sets the present calculation
apart from all other large-k theories. The form
of the lowering coefficients permits us to obtain
an analytic expression for F,(k, t). Finally, we
compute S,(k, cu) and G,(r, f) using relations (l).

The treatment just outlined is rigorous only at
very large, yet still finite, wave numbers. In
practice, it appears to give good results even at
intermediate values of k. It seems helpful to view
the approach as defining an "intermediate-A'"
{or 1K) model that becomes rigorously valid only
at very large (but finite} h.

In the next section we shall briefly derive an
algorithm by which (7) can be solved recursively.
We shall next employ this algorithm to obtain an
explicit expression for the 10%'ering coefficients
associated with the IK model.

In Secs. IV and V analytic results of the IK
model will be established and compared with those
of other models, such as free particle, hydro-
dynamic, Enskog, ' and cumulant, in various
limits.

In Sec. VI we shall compare the results of the
IK model with computer-simulation data"'" on
fluid argon.

dtexp(-st)C„(t) =—8+ 8+ 8+

Returning now to our central problem, namely,
the determination of E,(k, t), we observe that a
variety of approximate approaches have been
taken by previous workers. These include meth-
ods based on Brownian-motion concepts, 4 the
generalized Boltzmann equation, '~ the generalized
Langevin equation, "generalized hydrodynamics, 4"
and the cumulant expansion. ~4 In addition, several
molecular dynamics studies"'6 have been carried
out.

The purpose of this article is to present a new
approach to the calculation of &,(k, t), which is

II. DYNAMICAL EMBEDDING~7

A convenient method of solving (7) for the
lowering coefficients in terms of the moments
can be derived from the observation that all of
the information required to compute the TACF
of 8„=2"A, i.e., Cs (t), is already contained in

the TACF of A itself. This ls easily seen by
examining the sequence

l )no(s)

tmn

( l}"os+a (2s) i

dmc
dt2
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(1) (1) (o) (o)

(1) (1) (o) (o)
A, „+A2„-A, „~1 A%2„2, Pg 0

(loa}

(lob)

where the superscripts 0 and 1, respectively,
refer to C„and C„. Note that A.,"'= 0, for all. k.

The embedding procedure can be immediately
generalized. Consider the TACF of 2 ~A:

t 2'
Csn„(t) = (-1)"a'„".

(2nj l

2lft= Q (-1)"an+a (2„)!

We say that Cg is "dynamically embedded" in

C„, inasmuch as the moments of Cg, {a(„')j„",
= {aJ„",form a subset of those of C„({aj„"0). It
can be shown" that the lowering coefficients
associated with C& and C„are connected by the
relations

TABLE I. Embedding table for the Gaussian CG(t)
=exp(-t /2).

1
3
5
7
9

11

entered into Table I as the first column. Clearly,
is the first moment of the Lth embedded TACF

derived from Co, Now from (lib) we have

( )=~( ) —~(' ' l=l 2 5

The generalization of (10) is then

g (a) g(a) g(a-1) g (a -1)
2n -1 2n 2n 2n+1 2

(a) - (a) (a-1) (i-1)
2' + 2m+1 2tf+1 + 2fl+2 2 0 ~

(1la)

(lib)

which generates the second column of Table I.
Next, we rearrange (lla) to obtain

)(() I) )(())Z( )) /)(()- ))
'

l 1 2 3 43 2 1 2

which gives us the third column. Then we return
to (lib) to compute

The moments of the kth embedded (normalized)
TACF are given by

n+)t (a)-—(a) g( r) +1
an+1 "~ ) C (0}

(12)

Equations (11}and (12) constitute a convenient
algorithm for generating the lowering coefficients
of a given TACF from its moments and vice
versa. The procedure is nicely illustrated with
the Gaussian Co(t) =exp(- t'/2} as a model TACF.
From the Maclaurin expansion the moments of CG
are easily found to be a(„') =a„=(2n —1)!!.Then
from (12) the )((,') are calculated (up to l =5) and

g( l -1) g( l) +p(l) g( l -1)
4 3 "2 3 L=1, 2, 3. (13)

Equation (13}yields the fourth column. Con-
tinuing in this fashion alternately using (lla) and

(lib), we eventually fill in the entire embedding
table. Then the lowering coefficient &, of CG
is simply the jth entry of the first (l =0}row.

Of course, the above procedure can be "re-
versed" to calculate the first column of the table,
and from (12) the moments, if we are given the
first row, i.e., the lowering coefficients. We
shall employ dynamical embedding to calculate
the lowering coefficients of the IK model in the
next section.

III. DERIVATION OF THE INTERMEDIATE* MODEL

(14)

We first derive an approximate expression for the 2nth moment of S,(k, ru), namely, a„(k) [see (5)). Op-
erating upon A(0) =exp(tk r, ), with 2" and retaining only terms of order k" * or greater, we find

It„= &"A =A
( ~

+n(n -—1) ') '&i 2+n(n —l}(n —2) '&I tk
d

' /m) 3!
I

ik p, ~ik' F
+3n(n —l)(n —2)(n —3) '

I

'
I 4 im' Em']

where

p, - dr,
m 1 dt'
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dF,
dt

and na is the mass of the test particle. Mathematical induction provides a straightforward proof of (14).
Next, from (14) we compute the approximate (i.e., intermediate-k) expression

+O(k2II 4) (15)

wherein terms of order k~"~ and less have been
neglected. Using the relations

k~ is Boltzmann's constant, and T is the absolute
temperature, we can simplify {15)to

a„(k)=(2n —1)II[&, +s(n —1)p,, /6J &," '+O(k'"~).

p, ={F, F, )&p, p, &',

&, =— k'/mP =a, (k},
!1=—(ksT) '

(16)

((k p, /m)'" 4(k F,/m) )=({k p, /m) " '){(k F,/m) ),
{{k p, /m}'") =(2n —1)!!&,",
((k F,/m)') =k'(F, ~ F, )/(2m') =X,q, ,

where

Note that ~, and p, are, respectively, the second
moments associated with F,(k, t) and the test-
particle velocity TACF.

We next utilize the embedding relations (11) to
derive an explicit formula for the lowering co-
efficients. The procedure is precisely analogous
to the one followed in Sec. II to generate Table I.
After one computes the first several columns of
the embedding table, it becomes apparent that,
in general,

~',",'(k) = (2j+ [4js+j (2j 1)p,,/&, J] -a, +O(k '}
&,"&„(k)= [j2+1 +2n +( s+ jB)(2 N+2j +1) p/( SX,)]X, +O(k ').

(18a)

(18b)

In the derivation of (18) all terms are retained
exactly to order k at each stage of computation,
terms of O(k ') being discarded. The rationale
for this procedure is that the inclusion of higher
orders leads to negative values for some of the
lowering coefficients at some values of k. But the
lowering coefficients are strictly positive [see
(6)]. Thus, the embedding procedure provides
a means for disposing of dynamically inconsis-
tent information in a set of approximately de-
rived moments.

As in the case of expression (14) for a„{k), it
is convenient to use mathematical induction (on

j) to prove (18). Finally, setting s =0 in (18),
we have

!,(k) =!i,(k)i+!,j(i - I)/2, j -1. (20)

Employing an identity' from the analytic theory
of continued fractions, we can invert the Laplace
transform (9), with & 's given explicitly by (20),
to obtain

E,""'(k, t) = (sech [(p, /2)'ktQ'~& "~, {21)

where of course the superscript (IK) denotes the
intermediate-k model. Then inverting (1b), we
find

d)+(r, t) =(2&) 'fdkexp(ik r}F,""'(k, i)

I

Now, by definition, we shall take the intermediate-
k (IK} model to be characterized by a scattering
function having lowering coefficients

A. ,(k) =A!. ' =A, (k)j +p,j(j —1)/2+O(k '),
all j. where

= [4sp(t)] 'k exp[- x'/4p(t)], (22)
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S(k, tt)=t ' f dttos(ttt)k(kt),

Substituting (21) into (23) brings S,"")(k,v) into a
more or less standard form, which can be
evaluated' as

(23)

p(t) -=[2/(III&tl, )]»[cosh [(&,/2)'~t]j .
E,$, t) is even in t, expression {la) can be

rewritten as

S(G){k, a)) =exp [- ((u/k1lo) /2 j/()t2wt)1) 0), (28)

(29)

Now fl'onl the secolld 'tel'111 [of O(k )] ill (17)t
we deduce, via (4), the first-order cumulant
~or~ection'" to Eo(k, t), namely,

E(,"(k, t) =(tl, &,/4!)t'exp(- &,t'/2). (3

Thus' we have

E' 0, t) =E.("')(k, t}+E(.I) (k, t), (31)
(24)

Whel'8 I (&) is the gRInlllR fllllC'tioll.

Observe that in (19) the omitted terms vanish
as k-"3. This suggests that the intermediate-k
model can be viewed as a sort of perturbation
expansion in which the order parameter is k. In
the usual theory, the order parameter & vanishes
for the unpex'turbed system and corrections ac-
count for additional interactions that are "turned
on" as ~ increases from zero to unity„ In the
present treatment, the zeroth order is charac-
terized by k =~, The corrections, the "first
ordel' of wlllch ls Ule tel'Ill ill J(j—1}/2 [see (19)]t
account essentially fox the fact that k may be
finite.

We note that for finite k, &I- O(j') in the limit
of large j. It can be shown20 that in this case the
corresponding TACF, namely, E,"")(k,t), though
x'egular at the origin, is not analytic everywhere
in the complex-t plane. On the other hand, the
form of E,(k, t) obtained using (4) with o„(k) trun-
cated at order t)l"~ [E(l. (1V)j is an entire func-
tion. Hence, there appears to be a "price, " i.e.,
loss of analyticity, for whatever advantages may
come with the IK model.

If one retains only the term of order k'", the
intermediate-0 expression (1'l) for the 2plth

moment simplifies to

u„{k)= (2)I —1)ii&i, {25)

which, upon insertion into (4}, yields the well-
known~ free-particle model scattering function

E.(o)(k, t) =exp(- l, t*/2), (25}

the superscript 6 denoting "Gaussian, " The cor-
responding self-correlation and spectral functions
are given, respectively, by

G,(o)(r, t) ={2)I~*,t')-'8exp[- (r/1), t)'/2], (2&)

x exp(- &,t'/2), (32)

which is based on the Zassenhaus formulae for
the "propagator" exp (gt}, also coincides with the
exact Maclaurin series through O(t'). However,
although E,"' and &,( ' agree at short times, they
exhibit very different long-time behavior. Indeed,

iimE.")(k, t)/E,')(k, t) =- 3.

The point is simply that alternate expansions of
the TACF, which are equally rigoxous, may
yieM quite disparate approximations when trun-
cated so as to give the same subset of moments
exactly.

One may be concexned that +( ' does not agree
w1th Ek given by {21)t sillce both fullctlolls Rl'8

derived from (15). The crucial difference, how-
ever, is that F,' ' is based on the moment ex-
pression {1V), whereas E,""' derives from the ex-
pression (20) for the lowering coefficients. This
distinction may be appreciated more fully as
follows. Recall that the IK model is defined by
(20). The corresponding moments may be calcu-
1Rted by substitlltlllg tel 8 glvell l)y (20) Bl'to (7).
It is clear that the 2nth moment computed in this
way is an even polynomial in 0 encompassing all
powcL-~f-k from 0 to 2n. These exact IK model
moments cannot, therefore, agree with those
given by (17). However, in the limit k- ~,
&„-&,)I [see (19)]. Since these limiting lowering
coefficients correspond exactly to the llm1ting
moments given by (25), it follows that

l.mE((((l(k t} E(G)(k t)

Thus„ in view of the intermediate-k model as a
first-order perturbation treatment presented in

where the superscx'ipt C refers to "cumulant. "
Expression (31)agrees with the exact Maclaurin

expansion through O(t'), i.e., gives the second
moment of S,(k, e) exactly. An alternate approxi-
mat j.on

E,'"(k, t) =(1+(t I&,/4!)[4exp(- tl, t'/2) —3] t'j
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'Sec. III, we can regard E,' ' as the "zero-order"
scattering function.

In closing this section, we summarize, for
future reference, the hydrodynamic model4 (i.e.,
k-0 limit}:

F '(k t) =exp( D-,k't},
G," (k, t) =(4&D4t) 'kexp(-r'/4D4t),
S (k, (u} =s 'D, k'/[(u'+(D4k'p]

where D, is the self-diffusion coefficient.

(33}

V. ADDITIONAL ANALYTIC RESULTS FOR THE INTERMEDIATE4 MODEL

We begin with the (normalized) longitudinal self-current TACF, defined by

C, (k, t)= ([k p (t)/mJexp[ik' r, (t)J[k' p, (0)/m J exp[-ik r~(0}J)([k' p~(0)/m J )

B F,(k, t) t BKF,Q, t}
Btm E Bt* (34)

Employing the relation

Q(t) = limC, (k, t),
k~0

(ss)

where Q is the test-particle velocity TACF, we
obtain

g~«&(t) =sech'[{p,,/2}'ktJ. (s6)

The implied self-diffusion coefficient is given by

(IK) U2 ', IK) t dt ~2 2
0

In terms of (37), we can rewrite (36) as

(37)

From (34) and (21) we compute

C,""'(k, t}= (sech [(p,,/2)'kt])'"~ "~

x ((1 +2~, /p, ) sech*[(p.,/2}'st] —2&,/g, j.

from which we deduce the following limits:

1 —p, t'/2+O(t4), small t
0""'(t)-

exp(- 2w
trna/ D,""'), large t. (39)

g2 (4o)

Thus, the velocity TACF implied by the IK model
exhibits free-particle-like behavior at small
times and Enskog-like" behavior at large times.
Note that the small-time expansion is exact
through order t2.

It should be emphasized that D, " cannot be
identified with the macroscopic diffusion coef-
ficient D, given by

p~'+(t) = sech'('0't/D""' ) (ss)

I

It has been shown" that D, can be cast as

4 = Uo I™&s&4Pe' ' & &fan/PqPqP4
'

PQf $(l mj+') (41)

where f, is a known functional of (p~j~",' and t4, is the jth lowering coefficient associated with Q{t}. Then
from (37) and (41) we compute the ratio

/D. = »m (2A, }' p, p. Vm, ,(p2$„)' /A2u4ue pm, f/,(IK) ~
~ ~ .

which is clearly not equal to one, except possibly for some special thermodynamic states. 2~

Using (29) and (37), we can rewrite the Van Hove self-correlation function (22) for the IK model as

G,""'(r, t) = [4v(D""') /'0 ] k(in[cosh('0 t/D,"")]] ~kexp(-U r /(4(Dp~) in[cosh(g*t/ ,' D)]jK). (42)

Again calculating the limit of G",K'(r, t) at small
and large times, we find

(2&M~at*) ~k exp(- r*/20 tm), small t
g(IKI{r t)

~

(4&6""t) ' exp(-r /4DI,'"jt} large t

{43}

Thus, again in the small-time limit, the inter-
mediate- k model displays free-particle behavior;
at large times it mimics the hydrodynamic model
[see (33)], except that the macroscopic diffusion
coefficient is replaced by D(,'".)

The mean-square displacement in the IK model
is given by
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(~'(t))„,= fd'rr'd. '"(r, t)

which are, respectively, the free-particle and
hydrodynamic limits.

To make additional connections with previous
models, it is helpful to introduce the quantity

y ' -=W2kD(,(")/ga, (45)

which takes on the significance of the collision
parameter appearing in the linearized Boltzmann
treatment of single-particle motions in the hard-
sphere fluid, '~ provided that we interpret the

= 6(D(P)}' ln [cosh(u*t/DP)}]/V '„(44)
where the second line of (44) follows from the
first by inserting expression (42). Then, as ex-
pected on the basis (43), we find

3'U~ot~, small t

( ( ))((K)
I6D('"I large t

quantity 'Umo/D()")= (p, /2}'k as a "collision fre-
quency. " Such an interpretation can be made
plausible by the following argument. Note first
that

t e((K)(t)
o

(46)

can be taken as a characteristic time for single-
particle momentum relaxation. Were P'"'(t} a
decaying exponential, for example, then the in-
tegral (46) would be the decay constant Si.nce
the momentum of a particle generally relaxes
after a few collisions, it is reasonable to take
v ' =(p, /2)'k as a rough measure of the frequency
of collisions. The collision parameter also ap-
pears in the Enskog kinetic equation for hard
spheres, ""except that D,""' is replaced by D~.

Now in terms of the collision parameter y '
we can recast the IK model scattering function as

P, (k, t}= [sech(u t/d, '"'}]'k~

which possesses the temporal limits

1 —&~t /2+)). , (P, +3k, )t /4! +O(t ), small f

+ Q, )-(
~

exp(- k'D",'"'t), large t. (47)

Thus, at small times the IK model scattering
function agrees with the exact one through fourth
order in t. Again, the hydrodynamic limit [see
(33}J obtains at large t, but with D",")replacing
the macroscopic diffusion coefficient.

In (47) the large-time limit holds, regardless
of the value of A. As a consequence, one would
expect a plot of ln E,(k, t) against t to be linear
at large times over those ranges of k for which
the IK model is valid. Computer-simulation data'6
representative of liquid argon in the thermo-
dynamic state p*=0.3, T*=2.16 display such be-
havior for values of k up to 1.55 A ', the largest
value of k considered. It appears that, at least
for some thermodynamic states, the large-time
limit given in (47}may be qualitatively correct
for all k. These results suggest the existence
of a function D, (k) with the following properties:

E,(k, f}-exp[- k'D, (k)t], large t

where

JD, R-0,
D,(k)-

E.

Indeed, Zwanzig" has demonstrated the existence
of such a function, generalized to include fre-
quency dependence in order to treat S,(R, u)}. The

(2y, )'k4 g, (u}-=3, (y, u)

=& ' [ (I/4y')/I'(I/4y'+-')]

"11("("...~) (48)

where the reduced frequency is now given by

u = u)/(2p, )'S,

and the collision parameter y is defined by (45).
Thus, the IK model conforms to a (u, y) scaling
law. Chen and Rahman' have shown that Enskog
(x, ys) scaling breaks down at high densities and
low temperatures for large k. Results presented
in the next section show that (u, y) scaling cor-

I

intermediate-k model naturally gives rise to this
generalized diffusion coefficient, which in the
limits of large wave number and small frequency
ls D(IK)

In connection with the Enskog kinetic theory' '6
one introduces a reduced frequency x= &()/v 2 k'U„
which, along with the collision parameter
ys =-Z, /v 2 kDs [see (45}], allows the spectral
function to be written as S,E'(k, (())(x: S,E'(x, ys),
i.e., as a function only of the reduced variables.
Thus, in the Enskog theory the scattering func-
tion obeys an "(x,ys} scaling law. " This law does
not apply to the intermediate-k model. Rather,
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rectly describes this thermodynamic regime and
is essentially indistinguishable from the Enskog
result at lower densities and higher temperatures,
swithin the range of svave numbers cohere the IK
model applies.

The IK model is capable of yielding spectral
functions S,'("'(k, (d) that display a wide variety of
functional dependences. For example, if 1/2y'
=u, where n is integer, then (48) simplifies" to

S',("'(I/2m'k, u) = [4 u/[2(2m —1)!sinh(&u)j}
m-1

x Q (u'+l ), n =2m
1=1

8'("'(I /2 (m +I/O)'k, u 1 = (4 / [(2m)! cosh (nu)]]

n =2m+1.

From these expressions it is evident that 8","'
exhibits rather strong variations in its co depen-
dence as k varies. This contrasts sharply with
the cumulant and Zassenhaus results, neither
of which conform to (u, y) scaling. From (26)
and (30)-(32) we compute"'

Sp(k, &u) = (I/2v&, }'&f1+ [p., /4! (4&, )j H,(&u/(2A, )'k)j exp(- &u2/2&, )

and

S,"'(k, &u) = (I/2((A. }'&(I—[3y,/(4!4&,)]H,(~/(2& )'k)J exp(- u('/2&, )

+ [I/2v(p, , +&,)J'k(p. ,&,/[4! (t(, +A. ,)']] H(~/[2(p, +&,)j'k) exp[- &o'/2(p, , +a, )],

where H4 is the Hermite polynomial of the fourth
degree.

To gain some insight into the origins of the wide
variations in &u dependence of S,(k, v) permitted
by the IK model, face-to-face with the cumulant
and Zassenhaus models, consider the velocity
TACF's implied by the various models. That
which corresponds to the IK model is given by
(38). Then from (34), (35), (39), and (40) we com-
pute

K,'z'(k, t) =exp(- v, t / 2)2

=exp[-(t(, +2&,)t2/2], (53)

I

Now, K,(k, t) itself is a TACF of the so-called
"random force" with associated lowering coef-
ficients given by'0

P. =A, .+1 ~

The leading term of the Zassenhaus expansion
of K, is then

(;&«&(t) =1- p, , t /22 (49) and from (52) we compute

and
Q(» (t) =1 + [3tz, —4tz, exp(- V, t'/2) Jt'/2.

+ (3y, ', t'/2 —t(', t'/6) exp(- t(, t '/2) . (50)

t
F,(k, t) = —A( dt'K, (k, t')F, (k, t —t'),

0
(51)

where the normalized memory function K, satis-
fies the relation"'

1im K,(k, t) = Q (t) .
k~0

(52)

Clearly, since both P~ and Q' ) diverge quad-
ratically at large t, the implied diffusion coef-
ficients, given by (37), do not exist. It seems
reasonable to attribute the differences in the ~
dependence of S, to these disparate temporal
dependences of the velocity TACF [see (49) and
(50)].

It is possible to employ the Zassenhaus formula
in connection with the generalized Langevin
equation (GLE) to obtain yet another model for
which the implied diffusion coefficient does exist.
The single-variable GLE for F,(k, t) is"'

Q(zM&(t} =exp(- ttz/22),

where the superscript ZM denotes the Zassen-
haus formula applied to the memory function K,.
The diffusion coefficient implied by this model
is computed [by means of (37)] to be

D(zM) g2(((/2t( }1k (54)

F(zM) (k t)
exp(- k2D', "'t} large t, small k

(ssa}
~
exp[- k(v/4mp)'kt] large t, large k.

(ssb)

It is interesting that although the ZM model
yields a hydrodynamic (i.e., small k) limit, with
D,' "' replacing D„ it fails to give the correct
free-particle limit (see Appendix). This example
illustrates that not every model for which the

Now using the Zassenhaus memory function (53)
in (51), we can solve for F( "' in the large- and
small-k limits. The method is detailed in the
Appendix. We obtain
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implied diffusion coefficient exists leads to the
broad range of qualitative agreement found for the
IK model.

We close this section with a brief consideration
of the limiting properties of S,""'(k, &u}. Recalling
from the definition (45}of the collision parameter
that the limit k-0 corresponds to y-~, we
have'~

I'(1/4y') - 4y',
w'k/I'(1/2 +1/4y') -1,
16y~u2/(4ny2+1) -u2/n~, nc0, k-0.

Thus,

st!"'(y, )-w-'( ) g (1+—
)

4y' u
1+16y4u' sinhru '

which becomes Lorentzian for sufficiently small
u, i.e., for u such that

(u«(2p )'k/w

VI. COMPARISON OF INTERMEDIATE% MODEL
WITH COMPUTER EXPERIMENTS

We shall base our comparisons largely on the
shape of the spectral function S,(k, tu}, two mea-
sures of which have become essentially standard.
One measure is the half-width at half-height
W normalized to the hydrodynamic limit

h(k} = W(k}/k'D

TABLE II. Thermodynamic states of "computer" ar-
gon and corresponding normalized mean-square accel-
erations p~ and the 'self-diffusion constants. Units are
those of Ref. 15.

D

IR

II~
III"
IV"

0.8442
0.2976
0.8442
0.65

0.679
2.15
0.722
1.827

5.5'
1 84c
5.68
5.15

0.0045
0.1197
0.0048
0.031

Data from Ref. 16.
Data from Ref. 15.
These values of p~ are extrapolated from data of

Ref. 15.

at p,*=0.36, T,*=1.36, and the triple point at
p," =0.8422, T,*=0.722, although others" esti-
mate that T,*=0.68; Thus, states labeled I and
III correspond to the triple point, II corresponds
to a dense gas, and IV corresponds to a liquid
of intermediate density.

Figures 1-2 display plots of L(k) vs k for these
four thermodynamic states. The values of the
b, (k) for the IK model were calculated to a pre-
cision of about one percent by generating S,""' (k, &o)

from expression (24}. Without exception, we find
quantitative agreement between IK-model and com-
puter results long before the free-particle limit
is attained.

Of course, we expect the IK model to be valid
only for sufficiently large values of k, or more

the other is the peak height at zero frequency
normalized to that of the hydrodynamic limit

Z(k) =wk'D, S,(k, 0).
If the implied diffusion coefficient is D„ then

lim h(k) =D,/D, ,
k~o

1.8-

1.4—

25 35

limt(k) =D,/Dz.

Thus, a model for which D, =D, yields the correct
hydrodynamic limit. Although the small-k limit
is of little relevance to our comparisons with
experimental data, we note, for sake of complete-
ness, that D, is finite and positive for the IK
model, +~ for the free-particle limit [since
y&G'(t} = I], and for the Zassenhaus expansion,
but ~ for the cumulant expansion.

Two sets of "data" on S,(k, cu} for computer
"argon" are available xs, ie The thermodynamic
states and corresponding values of p, and D,
are listed in Table II. Note that Chen and Rah-
man" place the critical point of computer argon

1.0—

0.6—

0.2-
I I

3 5
~(A ")

FIG. 1. A(k) vs k for the thermodynamic state I (see
Table II). Curves labeled with a correspond to the
abscissa at the bottom of the graph; those labeled with b
correspond to the abscissa at the top of the graph. 0,
simulated data; 0, free-particle limit; o, the inter-
mediate-k model.
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TABLE III. km' ~ dmin~ and ymax for which the "inter-
mediate-k" model yields quantitative agreement with
computer experiment. Thermodynamic states are
given in Table I.

kmn(~ ') '/min Xmax

0.5

I
0

III
IV

6.75
2.5
8.0
5.0

2.71
3.52
3.92
4.28

0.43
0.38
0.36
0.34

0.2

precisely, only for values of k so large that

q =—2&,/p, = 2k'/mPp, » 1 . (56)

We now define k,.„as the smallest value of k for
which bP"'(k) agrees quantitatively with the simu-
lated h(k}, by which we mean here that the plots
of Figs. 1-3 have merged. In Table III we listk, and the corresponding q . calculated from

min

(56}for the various thermodynamic states con-
sidered. One sees that q . varies only slightly,
from about 3 to 4. The corresponding range of
the collision parameter y [see (45)] is from 0.34
to 0.43. Thus, in summary, the IK model yields
a b, (k) in essentially quantitative agreement with
the simulated spectra for the collision parameter
in the range 0- y-0.4.

Similarly good agreement is observed for the
cumulant expansion, although the Zassenhaus

2 3
I (A")

FIG. 2. 6 {k) vs k for thermodynamic state II. Curves
labeled as in Fig. 1.

formula gives quite poor agreement. In fact,
reasonable coincidence between the Zassenhaus
and simulated results does not obtain until well.
after the free-particle limit is reached. Over the
range of k values for which the intermediate-k
and cumulant treatments are valid, both yield a
b, (k) in better agreement with the simulated E(k)
at the triple point than does the linearized
Enskog-Boltzmann approximation. " Away from
the triple point all three approximations are in
agreement with the simulation, over the approp-
riate range of k.

Considering now Z(k), we find the intermediate-
k results to be superior to those of the cumulant
expansion in several respects. In Figs. 4 and 5
are plots of Z(k) vs k in various approximations
for thermodynamic states III and IV. One sees
that the IK model Z""' converges to the simulated
Z well before the cumulant Z«~. Indeed, it ap-
pears that Z' & converges to the free-particle
Z& ' before Z' merges with Z, whereas Z""'
seems to converge to Z well ahead of Z' &. Final-
ly, we note that Z' ' converges to Z at about the
same value of k as & ' merges with ~.

In closing we compare the mean-square dis-
placement predicted by the IK model [see (44)]
with the simulated result. Figure 6 shows plots

1.5-

1.0
1.0

0.5
0.5

FIG.3. A(k) vs k for thermodynamic states III and IV.
0, simulated data; 0, free-particle limit; ~, the inter-
mediate-k xrodel.

3, 5
k(k )

FIG. 4. Z(k) vs k for thermodynamic state III. 0,
simulated data; 0, free-particle limit; ~, intermediate-
k model; 6, cumulant expansion.
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of (r'(t))/6Dt for the thermodynamic state II.
Note that D =W for the simulated result and
D =D&'"&* for the IK model. (The star denotes
the use of reduced units. ) The disparity in
slopes at small t stems from the difference in
magnitude between D,* and D","'*, whereas at
larger f differences in the shapes of Q""&(t) and
the simulated Q also come into play. Larger
qualitative differences in the two plots are ex-
pected near the triple point since f('"}fails to
mimic the negative minimum observed in the
simulated Q at higher densities.

VII. SUMMARY AND CONCLUSIONS

In Sec. II we presented a general approach to
the calculation of time-autocorrelation functions

C3

05
V

I

4010 $0
t(p~~)

FIG. 6. (r (tg/6Dt vs t (in units of Ref. 15) for
thermodynamic state II. Q, computer simulation result
(D=D~~= 0.1&97); , intermediate-k model (D=DK~*
= 0.03).

30

3 5
k(k )

FIG. 5. Z(k) vs k for thermodynamic state IV. Curves
are labeled as in Fig. 4. Dashed line corresponds to both
open and filled circles in range when the intermediate-k
and simulated curves coincide.

(TACF's) based upon the concept of dynamical
embedding (itself a specialization of the quotient-
difference algorithm'~}. The significance of (11)
lies in the fact that it provides an algorithm to
construct, from appropriate knowledge of mo-
ments, the infinite continued-fraction representa-
tion of the Laplace transform of the TACF to
which the moments correspond. Such a procedure
lends itself to series summation, particularly
when the series has a finite radius of conver-
gence. In the latter case, the continued fraction
represents the analytic continuation of the series
into the region (of t) where the series fail to
converge e

In Sec. IG we applied dynamical embedding to
develop a model for the incoherent thermal in-
elastic neutron scattering function E,(k, f) [and
corresponding spectrum S,(k, w)] valid for large,
finite wave numbers k. The analysis began with
a calculation of the moments of S, {k, &u) to order
O'" '. We then "cycled" the moments through
the embedding relations, keeping terms through
order 0' at each stage. It should be noted that
this procedure loses information contained in the
original moments since terms of order k ', 0 ',
etc., are neglected on each "cycle." We arrived
finally at the lowering coefficients (20) which de-
fine the intermediate-k model. Since the form
of these lowering coefficients coincides with an
identity from the analytic theory of continued
fractions, we were able to obtain an analytic
expression (24) for E,(k, t); i.e„we were able
to invert the Laplace transform analytically.

In Secs. V and VI we found that the intermediate-
% model gives broader and better agreement with'
certain previous theoretical models and with
simulated data than does either the cumulant or
the Zassenhaus expansion. We argue that this
agreement is not fortuitous, as one might suspect,
since less information appears to be used in the
IK model than is contained in the cumulant ex-
pansion. From the definition (6}, it is clear that
the lowering coefficients are all strictly positive.
Inasmuch as this positivity follows solely from
the fact that the system obeys the classical equa-
tions of motion, we may regard it as a law of mo-
tion in the same sense as the conservation of total
energy, or of total momentum, is a law of mo-
tion. To illustrate the deficiencies of the cumulant
expansion, we consider a thermodynamic state
(near p*=0.85, T*=O.V6) for which p, =6 and a
value of 0=1.65 L '. Then &, =-,' and from (I'7}
we have the moments of the cumulant expansion

u„(k}= (2s -1)!![I/2+&(s -1)]2'-".

Using the embedding relations (11)and retaining
ull terms, we find the corresponding lowering
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coefficients: ~, = ~, &, =V, and ~, =- „.We
conclude therefore that the cumulant expansion
somehow uses information about the moments
in a manner that is not dynamically consistent,
since it yields negative lowering coefficients,
thereby disobeying the "semi-invariants" of
motion ~z &0. The merit of the intermediate-k
model is that its lowering coefficients are mani-
festly strictly positive [see (20)]. It would ap-
pear that whatever extra information is born by
the approximate moments (IV), and subsequently
lost in the transition to lowering coefficients (20),
is irrelevant, and indeed deleterious, to the
dynamical description of self-correlations at
large wave numbers.

Perhaps even more important than the good
agreement between thy IK-model and -simulated
results is the qualitatively correct description of
test-particle dynamics even at small k. For ex-
ample, the implied single-particle velocity TACF
is given by

y((")(t) =sech2(g&t/D()"))

Thus, one finds an Enskog-like" behavior at
large t reconciled with evenness in t via the hyper-
bolic secant. Such forms have been previously
suggested~ for similar purposes, but the inter-
mediate-k model provides a more or less rigorous
basis for this form, at least in the present con-
text. The hyperbolic secant has also been sug-
gested'6 ~ as an interpolative unsatz for Raman
line shapes. Equally interesting is that the IK
model obeys a different kind of scaling law for
S,(k, &u) than that predicted by Boltzmann-Enskog
kinetic theory. Away from the triple point both
theories give the same results at large k and both
are in good agreement with computer experiment.
At liquid densities, and particularly near the
triple point, Boltzmann-Enskog scaling is known
to break down, most notably at large k. The in-
termediate-k scaling, on the other hand, is in
quantitative accord with simulated data in this
regime. Further, neither the cumulant nor the
Zassenhaus models give the proper scaling law.

As note/ in Sec. D?, the intermediate k, in
contrast to other models, predicts wide variations
in the functional dependence of S,(k, &u) upon (u.

Unfortunately, no data over the appropriate range
of wave numbers are available to permit an un-
ambiguous test of the competing theories. Given
the broad range of both qualitative and quantitative
agreement of IK-model predictions with previous
results, we believe this feature [i.e., wide varia-
tions in functional form of S('"'g, (()}] merits
serious consideration as a discriminant among
the various theoretical models considered. For
this reason, in addition to those delineated by

Chen and Rahman, "we believe it is desirable
to have neutron-scattering data for argon at its
triple point at wave numbers in the range 8 to
15 A-'

5(u) = lim(2o/x)'~exp(- os'/2) 0 &u & ~.
Taking o =(t),, +21)'/mP), we obtain from (Al)

i; , ) («)(—;}«/(«=»-, » &'}'

x pe+ k, ] N}g gg}

=- k(w/4m p)'SE, {k, t), (A4)

APPENDIX: DERIVATION OF RELATIONS (55)

Substituting (53) into (51) and replacing &, by
0'/mP [see (16)], we obtain

~ - a2 2u' u"
E,{k t) =- duE, {k t-u) exp-i p +

mp, ' ' . g' mp

{A1}
It is easily seen from (15) that the Maclaurin
expansion coefficients of E,(k, t) after the first
are factored by O'. lt follows from (Al) that in

the limit of smaQ k, E,(k, t) is slowly varying for
t«(mp/tt')'+ Obs. erve that t can be made as
large as one wishes simply by choosing k suffi-
ciently small. Let us now expand E,(k, t -u) in a
Taylor series about t:

E,(k, t- u) =E,(k, t) —uE, (k, t)+O (u') . (A2)

The leading term of the Maclaurin expansion of
E,{k, t} is k't/mP. -Since 0 &u- t, the second
term of (A2) is negligible for sufficiently small k.
Then (Al) becomes

2a' u'
E,(k, t) =- E,(k, t) duexp -iit(, +

mP

(AS}

Equation (55a) immediately follows since in the
limit of small k the integral factor in (AS) is
proportional to D(~") [see (54)] for t large enough.
Note that this argument does. not depend on the
form of E,(k, u}. Thus the same argument can be
employed rigorously to derive, from the genera-
lized Langevin equation, the small-k solution in
the form

F,(«, )=e)p(-«f d» f dw)«, («, »)},
PPl 0 0

from which the hydrodynamic limit (large t) is
easily obtained.

To derive the large-h limiting form (55b), we

employ the following representation of the Dirae
delta function~8:
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(A5}

the last line following in the limit of large k

and large t. Equation (55b) follows immediately
upon integrating (A4).

Fourier transformation of (55b) suggests that
the line shape function in the limit of large k
takes the form

S'™(kta&) =& 'k(s/4mp)'k/[u& +(mk~/4mp)]

and the associated (reduced) width and height are,
respectively,

g*lo(k}= (4mP/s}'+D, k, large k

h&~"& (k) = (w/4m p}'~/D, k, large k.
These results may be compared with the correct
limits [see (28)]

Z(k) =(~mp/2)'kD, k, large k

K(k) = [2 ln(2)/mP] '+/D, k, large k.

Thus, although the proper limiting k dependence
is displayed by the ZM model, the numerical
prefactors in X' "' and ~™are too small by fac-
tors of 0.90 and 0.75, respectively. This failure
of the Gaussian kernel in connection with the GLE
has been noted in a slightly different context, "
but still within the generalized Langevin equation
formalism.

These derivations contain an element of irony.
The delta-function kernel is usually invoked for
the small-k limit' on the basis of a time-scale
argument. We find this unnecessary. Instead,
we exploit the fact that the moments vary as
polynomials in k', which allows a rigorous
small-time expansion in the small-k limit. An

important result is the reconciliation of evenness
in time with exponential decay asymptotically.
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