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The stationary convection instability of a superfluid mixture is considered. The criteria for the instability onset in a
superfluid region of the *He-‘He phase diagram and in different limiting cases are obtained. It is shown that in
different regions of the phase diagram, depending on the magnitude of the kinetic coefficients, the stationary-
instability criterion is similar to that of either the regular binary mixture with abnormal thermal diffusion, to the
pure liquid, or to the compressible pure liquid. The stability is also strongly dependent on concentration and
temperature, and the critical temperature gradient rises sharply with decreasing temperature and concentration. At
very low temperature (betow 0.5 K) and concentration (dilute solution) the superfluid solution becomes stable with
respect to stationary convection. Asymptotic behavior of the criterion in the vicinity of the A line, the tricritical

point and for infinitely dilute solutions is also estimated.

I. INTRODUCTION

The Rayleigh-Bénard problem has been the sub-
ject of considerable interest in recent years both
theoretically? and experimentally.>** From an
experimental point of view, as shown by Ahlers,®
cryogenic fluids have an advantage for investiga-
tion of hydrodynamic instabilities due to a high-
temperature resolution and low extraneous heat
transport. The He®*-He* mixture in a superfluid
region between the X line and coexistence curve of
separation represents an unusual two-component
system due to a very wide variation (several or-
ders of magnitude) of the thermodynamic and ki-
netic properties.® The superfluid nature of this
mixture also renders it a unique Bénard system.

It is well known that in an He®-He* superfluid
mixture a temperature gradient can exist in equil-
ibrium in contrast to pure HeIl (Ref. 7). This
temperature gradient leads to a corresponding
concentration gradient

Kl s>
K= ——-———-'-<o (1)
—(—> 'P,T

where p, T, and C are the density, the tempera-

ture, and the weight concentration respectively,

S is the entropy per 1 cm?® of solution and Z

=p(lg = K ), K is the chemical potential, and sub-
script “0” corresponds to mechanical-equilibrium
conditions.

Thus, the superfluid He* component moves to
the warm boundary and causes the light He® atoms
to be concentrated near the cold boundary. A sim-
ilar concentration distribution occurs in a regular
binary mixture with a large abnormal thermodif-
fusion effect 2> 0 (Ref. 8); in our case we also
have

VC,=KVT,,

kr_ VC

o .
7= = —K>0. (2)

0

Such systems are unstable with respect to sta-
tionary convection when heated from above and
with respect to oscillatory convection when heated
from below,”!° and differ significantly from the
Rayleigh-Bénard instability in a pure liquid. In
the latter case the instability occurs due to a den-
sity gradient which becomes unstable in the gra-
vitational field. But in a binary mixture it also
may be caused by the separation of the time
scales in relaxation of temperature and concen-
tration fluctuations.!!

The physical reason for this instability is clear;
in the system heated from above the concentra-
tion perturbations are destabilizing whereas the
temperature perturbations tend to stabilize the
system. In the case where the relaxation time of
the concentration fluctuations is much larger than
the relaxation time of the temperature fluctua-
tions the system becomes unstable with respect to
stationary convection at the certain critical value
of the temperature gradient. A similar explana-
tion holds for the oscillatory instability (oversta-
bility) onset in the system heated from below.

As for a regular binary mixture with abnormal
thermal diffusion, it is natural to expect the onset
of a stationary instability in the superfluid mixture
when heated from above and the onset of an oscil-
latory instability when heated from below. In this
paper I will discuss just the stationary stability
of a horizontal layer of a superfluid He®*-He* mix-
ture. The oscillatory instability of this system
will be the subject of the following paper.

The hydrodynamic equations in the Boussinesq
approximation are discussed in Sec. II. In Sec.

. III the two limiting cases of stationary instability

are considered: for one the dissipation of super-
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fluid motion due to the second viscosity is large
(m>1), and for the other it is small (m<1). In
the first case, the superfluid motion is negligible,
and the fluctuations of the chemical potential u,
relax diffusively like in a regular binary mixture.
The difference from a regular mixture shows up
only in relation (1) as a result of superfluidity.
This causes a difference in the expression for the
instability criterion compared to the regular mix-
ture case.

In the second case (m<1) the superfluid motion
is essential for the convection onset. It means
that fluctuations of the chemical potential u, are
very small and negligible. Thus, in this case only
the entropy fluctuations are considered. This is
analogous to the pure liquid, where only the temp-
erature fluctuations are important. But unlike
pure liquid the steady-state density gradient de-
pends on both temperature and concentration gra-
dients. On the other hand, due to the superfluid
motion divV # 0 even for an incompressible mix-
ture. As a consequence of this the convection
equations of a superfluid mixture are similar to
the convection equations of a compressible vis-
cous heat-conducting fluid. As shown for a com-
pressible liquid,'? consideration of the relation
divV # 0 in hydrodynamics leads to an additional
dissipation, and as a result it leads to additional
mechanical stability. In Sec. IV the results are
given in convenient thermodynamic variables and
numerical estimates and comparison with experi-
ment are presented.

II. THE CONVECTION EQUATIONS FOR A
SUPERFLUID MIXTURE

Let us consider for the sake of simplicity a typ-
ical Bénard geometry with free boundaries sepa-
rated by a distance ! along the vertical Z axis
which are good heat conductors.

As is usual in the Boussinesq approximation of
the Rayleigh-Bénard problem?!? it is assumed that
the perturbations of the total mass density p are
small and can be neglected in the hydrodynamic
equations except in the buoyancy term describing
the influence of the gravitational field in the
Navier-Stokes equation.? Also any variation of
properties with pressure can be neglected. The
convection equations of a superfluid mixture in a
general form were first presented in Ref. 14. But
in Ref. 14 the fluctuations of chemical potential
k, are neglected, and, at the same time, it is as-
sumed that divV =0. As will be shown below,
this approximation is valid only in a certain con-
centration and temperature range of the He®-He*
phase diagram.

In the convection-free steady state the density

IR

gradient is

dp,

aT
= = —Par(l+¢)==2

dz * (3)

Here

and

$= iK
ar

is the separation parameter like in a regular mix-
ture.®!! In the concentration and temperature
range of the phase diagram considered below the
separation factor is [¢|>> 1. Therefore, the den-
sity gradient is mainly determined by the concen-
tration gradient from (1) and is independent on
sign of a,:

ar,

apy
= = PBK dz

dz

Thus heating from above generates an unstable
stratification (dp,/dz> 0) as in a regular mixture
with a large abnormal thermodiffusion effect.® 1!
An important point in solving the problem is
choosing the appropriate variables in the convec-
tive equations. Two variables follow from the
conditions of mechanical equilibrium’

VP():poE, V[J.40=§ (§= _g:;)y (4)

where P is the pressure and 7 is the unit vector
along z axis. The third variable 0=S/pc is the
entropy per gram of He® atoms and is chosen in
order to simplify the energy equation as shown in
Ref. 14. Thus the thermodynamic perturbations
can be written as

ap ap
pl=(_) 0"+( ) P-’
90 /p,u, Oiy)pg  *’
oc adc
c'=(—— a’+(——) ) (5)
1y Piugy Ok, Pp +

T’=(£‘> o’+(8—T-) [T
90 Jp,u, Oiy/pg

According to the linear stability theory the convec-
tion equations for superfluid solutions after some
transformation can be written as (all symbols are
the same as in Ref. 7)
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divi’=0, j'=p,Vi+psVs,

%Jt_"' VP'’= nA'\7'+ go'+ (50 - Sp =5V divvg ,

gs -é;dIVV"’ Apg= (6, =pE)AdIVY],

I -
l(a_c) 20" 1(80) ui, V() ), giy =
c\90 /p,u, at dly/py 82 pc

a0’ Xets [(3T aT)
—+ Ao, V!==—|| — Ao’ + auyl.
= (I GRS

Since in this communication we will discuss the
onset of stationary convection, only the set of
equations (6) may be written for stationary per-
turbations in the scaled variables as'®

(Vdiv —A)Av",= (Vdiv —A)[ ,,o+<ll ) Lu,,]y ,

3 -
(l) Ap,= madivV [or<l> u4=mdivV"], :
Iy I, e

3
ar vV 7+(l) divV, -P aR Ac+(l) P——Tn,LAu4 ,
"\ L,/ P,

- . I\}Ld
=A =)= .
V.Y o+<l°> R Auy

Here the scaled variables are used, z by I, ¢ by
pnl?/n, V} by /1, ¢ by (do,/dz)l, and p} by gl; al-
so the following symbols are used:

R l(gg) pugl' dog | _ X (aT)
* PN\30/p,,, MK dz ’ pcT\oc /p,,,’

= =0 e
PT p"K’ P pr lo gP,,’
(8)
$a—pPEs gl(ap\)
= —— L=2—
m P,, n ’ ) 8[-1. Pﬂ’
doy . aT, . dC, .
Voo'-:d_zo?” VT,= d079 VC°=—dz—°y,

_Pn (8c/30)p,u - kr (8T /80)
c (8p7ao)P'“4 a‘-a[1+ ; (Bc?Bo)i'u4]’
(30/3 KLa)Po n=n [1+k_;‘ (?31;-/83’::);'2 ]’
4/Ppo

C (Bp;auq)}’ﬂ
(8T /8 ua)p, (89/80)p, uy

(8T /80)p,,, (8P/B14)p, *

The difficulty in solving this problem resides in
the fact that Eqs. (7) are non-self-adjoint. Since
the eigenvalue problem is defined only for a self-
adjoint operator, one would have to transform the
non-self-adjoint operator to a self-adjoint form;
however, there is no such procedure in general.
For the set of Eqs. (7), I succeeded in performing

d=

(6)

7o) oo [ G # 6]
+\= Ao'+ | — ) +=(— Apul
)P.u4 T\8c Pou, Oy/ps T Ok, /ps Mgy

[

this procedure in two limiting cases with respect
to the parameter m.

If m<1 it is possible to neglect the right part of
the second equation in (7). Then one obtains

p,=0, divV,6#0. (9)

This case corresponds to small dissipation of
superfluid motion. Therefore, the superfluid mo-
tion is essential, and any perturbations of the
chemical potential relax with the second sound
velocity. Then these perturbations can be neglec-
ted. The second case corresponds to large dissip-
ation of superfluid motion (m>1). So from the
second equation of set (7) it follows that

divV, =0, p,#0. (10)

Here the fluctuations of chemical potential relax
diffusively, because superfluid motion is negligi-
ble.

III. CRITERIA FOR THE ONSET OF STATIONARY
CONVECTION

Now let us obtain criteria for the stationary in-
stability in both limiting cases.

A. m<1

m<1 means the small dissipation of superfluid
motion. Assuming that the variable fluctuations
are given by

[V ,er0l=[0(2),0(2) ], (11)

where k= k 1+ k ] is the horizontal wave vector
and T'= x1+y] is the horizontal radius vector, we
obtain the following set of equations with eigen-
value R, for variables v(z) and o(z):

do

D?y= -R k% + R Dzd

(12)
Do=v,

with the free boundary conditions
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2

v
v=——=0=0 at z=+3.

daz?

Here

- ,0)3
6’(1
The system (12) is non-self-adjoint. In order to

transform it to a self-adjoint form let us rewrite
the set (12) in the following form:

a P az
a(—aip—:- ), D=m=k, K=kj+K.

(13)
Ly==Rp2, L =L _ o4

—_— b2
dz? Sdz ke

By substituting ¢= ¢ exp[(6R,/2)z], the operator
L can be written in the self-adjoint form

Dzv = eénaz/z‘p R

2
eéRa’/”[D - (%) ] = =R k%

and

(14)

v _ .1
v=@=¢—0 at z=zx3.
Now to find the eigenvalue R (k) it is possible to
use the direct variational method (Galerkin’s

method).® As the trial function one can use
¢=Acosllz,

which satisfies the free boundary conditions (14).
As a result of the application of Galerkin’s meth-
od to Eqs. (14) one obtains the following equation
for R,(k) as a function of wave number k:

4k2 M2+ k%

R%-R, 5% (% + kz)z"‘ 4 52

0. (15)

The minimal value of R (k) is the criterion for the
onset of stationary convection. Let us analyze
(15). As seen from (12), 6~(l,/l)® and in the case
of a relatively small “dissipation” length [, we
have 6<< 1. From Eq. (15) it is clear that for 6=0
the criterion is!’
4 2

R‘:’=g7—f— at k§=% . (16)
This approach implies small dissipation of both
superfluid and normal motion. Equations (12)
with 6=0 and the corresponding criterion (16) are
the same as for a pure liquid!®; as seen from (8),

&L dpo (1
e VK dz o, ‘

The same result can be obtained for a pure liq-
uid.}® However, for a pure liquid dp,/dz =

- pB(dT,/dz) and unstable stratification occurs on-
ly when heated from below, unlike the present

#

case where it occurs when heated from above as
shown in (3).

By increasing 5, the value of R’ increases
from 27(11%/4) proportional to 6%, but the value of
critical wave number %, decreases from I1/2
proportional to 6. The maximal value of 6 for
which a solution R!® exists is

&*=0.006 . m)

Corresponding numbers for the criterion and the
critical wave number are!?

R'®=13.45T1* at k2=0.4501%. (18)

Therefore the criterion for stationary instability
changes with changing 6 or [, as

4
27—4HSR‘;"< 13.450%, (19)

and the critical wave number as
H2
2—2 k2= 0.4511%. (20)

Thus, the convective stability of the superfluid
mixture arises due to additional dissipation con-
nected with the superfluid motion (m<1, the
small dissipation of superfluid motion) when the
dissipation of the normal motion increases and
becomes comparatively large (6# 0). The fluctua-
tions of thermodynamical variables cause the
superfluid flow that, in its turn, dissipates
through the normal motion connected with it.

For a large dissipation of the normal motion

6> 6* the system becomes mechanically stable.
This effect is similar to the influence of compres-
sibility on the convective instability of a compres-
sible, viscous, and heat-conducting pure liquid.!?

B.m>1

m>1 means the large dissipation of a superfluid
motion. Since in this case the superfluid motion
is insignificant, the fluctuations of chemical po-
tential have to be taken into account. The mech-
anical stability of the system should be reduced
because the chemical potential perturbations are
dangerous for stability when heated from above.
Thus, there are two thermodynamic variables, o
and u,, in this case, as in a regular mixture.
Assuming as noted above that their perturbations
are given by

[V.er0, k= [v(2),0(2), £(2) e ®F, (21)

one can obtain the following set of equations:
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3
D% = =R k% -(li) L%,

0

aP.Ry=a,P R,Do+ anTL(é)QDg , (22)
Ldf1\
U=Do+§:<l—o) D¢ .
Hence the equation for the eigenvalue problemis
D%y = -ﬁakzv ,
where (23)

Prn, —a;) =aPg(d ~1)
Pr(n, -a,d) )

éa=Ra¢p ¢1=

For free boundary conditions, the criterion of
stationary instability from (23) is given by

Ro= at k2=— (24)

27114 2
4 2

and looks similar to one for a regular binary mix-
ture.®

IV. ESTIMATIONS, COMPARISON
WITH EXPERIMENT

A. Obtained results

Let us write the obtained results in convenient
thermodynamic variables and estimate the value
of the critical temperature gradient. The expres-
sions from (8), (12), and (23) can be written as
(see Appendix A)
argpz[cp.c"'KzTig_ZP_) ]
R,=- : € /pr

dT,
4220
— (1+ @) r

P
1+ ‘/"”Fc;‘Po

zpl=—————, ¢0=

_ﬁ_ (o IJ-4/BT)P,c

1+ ¢, an (apq?ac),,'r ’
- _B_ k_T 3 _ X ot t
(p—-aT T ’ lo- (25)

gp"pCP'c(l '%) ,

ad_(0p4/8T)p,. (80/8C)p,r
n  (9u,/8¢)p r (80/8T)p . °

6=(l_0>s£n_ YP.Pr+¢o(1 =P PF .
1/ pcB 1+ ¢,

Typical values of parameters affecting the onset
of convection for several concentrations and tem-
peratures below the A line and to the left of the co-
existence separation line of the He3-He* phase
diagram are tabulated in Table I (see also Appen-
dix B).

As it has been shown both criteria R, and R, en-
sure the positive critical temperature gradient ir-
respective of the sign of @, (Ref. 20) because

| o/ >1 always. Besides, as seen from (25), 3, >1
and therefore the chemical potential fluctuations
decrease the stability like in a regular binary mix-
ture. The difference in the expression for 9, is
that for a regular mixture ¢ = ¢,.°

It is important to estimate where on the phase
diagram the parameter m is greater or less than
one. This is not easy because experiments for
second viscosity coefficients in He®-He* mixtures
are almost lacking. One can only use the first
and second sound-absorption measurements for
the estimation of the second viscosity coefficients,
but also not separately.” Asn is known from flow
experiments, measurements of the first sound ab-
sorption determines £,. Then, since thermal con-
ductance and the value (¢)n + £, are known, meas-
urements of second sound absorption determine
(pt3-t,). These data are sufficient to evalutate
the paramenterm. The estimations for pure Hell
show that ¢, is a complicated function of tempera-
ture, pressure, and frequency. Above 1.2K and
not close to T, experiments reveal that ¢, is in-
dependent of w and approximately ten times lar-
ger than ) but decreases when the temperature
increases.?’ Below 0.6K theoretical calculations
give for all second viscosity coefficients neglig-
ibly small values.”. Between 0.8K and 1.2K, ¢,
has a weak maximum for low frequencies. Al-
though there are no measurements, it is expected
from theory that ¢, £,, and ¢, all diverge near
Ty as €3°*% v~ 2, and that ) remains finite (¢,
= T)\ - TV/T)\).22

The second viscosity coefficients decrease ra-
pidly with increasing concentration and pressure.®
Also it is expected from theory that all second
viscosity coefficients diverge near the A line as
€3}, %% but near the tricritical points their behav-
ior is not known at all. The temperature and con-
centration dependence of the parameter (1,/1)° is
much simpler. It increases with decreasing tem-
perature and concentration, but becomes large
only for a very dilute solution and 77 <1K. The re-
sult of calculations of the critical temperature
gradient according to the estimates of the par-
ameters are exhibited in Figs. 2 and 3. The only
experiment work that represents results of con-
vective instability investigations in the He3-He*
mixture below the A line is that of Ref. 23.

The onset of stationary convection in a eylindri-
cal cell with diamter 2.5 cm and spacing 0.2 cm
between two horizontal copper end plates heated
from above was observed. The experiments were
performed with a 15 molar percent mixture of He®
in He*, the lower plate was maintained at T,

- 0.095K, and a heat current was directed down-
ward through the upper plate. The authors assert
that the convection occurs at a heat current less
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than 0.2 yW. This number corresponds to a crit-
ical temperature difference AT, <10 pK. The tem-
perature and concentration at which the experi-
ments were run correspond to values of the par-
ameters which yieldm>1 and (1,/1)® <1, as seen
from Fig. 1. Therefore, we have to use the cri-
terion (23). As mentioned above, for the rigid
boundary conditions the eigenvalue has to be in
this case, like for a regular mixture, 1708.° For
the critical temperature difference it gives AT,

~ 8 uK (R,/PAT ~ 1X10') in good agreement with
the experimental data.

B. Mechanical stability near A-line and tricritical point

As is apparent from Fig. 2 the mechanical sta-
bility of the system rises with reducing tempera-
ture. When the temperature approaches the A line
or the tricritical point (7; = 0.867K, X, = 0.675K)2?
the stability drops. In these two limiting cases it
is easy to derive the temperature dependence of
the criterion (its anomalous part).

Using the singularities of the thermodynamic
and kinetic properties in the vicinity of the A line
of He®-He* mixtures®:2* one can easily find the
anomaly for the criterion. According to Refs, 22
and 24 one has

-1
kT ~ 6;\“, (%chﬁ)pﬂ ~ E;\a ’
-1
(%%Q)P’T ~€;\d R D~ e-)'\o.84 ,

E1abs™ext,

T I T T
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X

FIG. 1. The phase diagram of He3-He* mixtures in
the T-x plane and different regions of parameter values
[m and (/1)) affecting the onset of stationary convec-
tion.
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FIG. 2. Temperature dependence of the critical tem-
perature gradient defining the onset of stationary con-
vection for different He® concentrations: (1) 0.01% mol
He?, (2) 0.1% mol He®, (3) 1% mol He®, (4) 10% mol
He3, (5) 30% mol He®, (6) 50% mol He®.

where
T)\(x) -T
= e a= 0. .
€ oo 0.02
Then we have
m~ext, B~e%, 5~e¥’, R, ~ePC. (26)

Thus, the critical temperature gradient drops as
€3* when the X line is approached, but remains
finite. Near the tricritical point the anomalies

of thermodynamic properties are stronger,? but
transport properties in this region have hardly
been investigated at all. There is nothing known
about singularities of the second viscosity coef-
ficients. From the recent prediction confirmed by
the analysis of acoustic attenuation experiments?*
the tricritical singularity of diffusion coefficients
is expected to be D ~e,‘/3. The effective thermal
conductivity shows only a weak variation with tem-
perature for the tricritical mixture.?* On the other
hand, both temperature and concentration grad-
ients relax with the same time constants, which
indicates strong coupling via k,.%*

Therefore, in the tricritical region the chemical
potential fluctuations are insignificant, m <1, and
the first limiting case pertains. According to
Refs. 22 and 24, there are the following singulari-
ties of thermodynamic and kinetic properties near
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the tricritical point:

8Z/p\t L [\t L -y
9c E' ’ ac €t ’
AT P,T

~e-l ~ 13
kr~ety, D~¢”,

where

€=T_L_T
! T

Then we have
L~e, 6~€®, R, ~¢?, @7

and, respectively, the critical temperature grad-
ient tends to zero as €?.

C. Concentration behavior of criteria

Another parameter whereby it is possible to
consider a limiting behavior of the instability cri-
terion is the concentration. Indeed as the concen-
tration approaches zero the critical temperature
gradient also must tend to zero because, as men-
tioned above, in pure Hell mechanical equilibrium
is possible only when dT,/dz = 0. But as seen
from Fig. 3 the critical temperature gradient does
not tend to zero when the concentration is reduced.
Taking into account that’

S2 M.D
xeff = p—ﬁlg%‘l_ (28)

=gp M!‘l% [or Ra= (l—)S%‘z lZ—Z‘Q]’d)‘=

*“nDRIM, " dz

In as much as value of formula (28) for x,; is
available only in the approximate temperature
range 1K < T <T,,® the expressions (29) are also
available only in this temperature range. For
pure Hell the condition 7 >1 occurs at tempera-
tures 7>0.8 + 1K, while the condition (I,/1)*>1
for reasonable values ! should be fulfilled at T
<0.8K. Thus, for dilute solutions we have to use
the criterion R, at T>0.8K and the criterion (15)
with 6 #0 at 7 <0.8K. For very low temperatures
(T <0.5K) a dilute solution becomes mechanically
stable.

Both criteria R, and R, tend to constant value
when the concentration tends to zero. The contra-
diction with the assertion made above, that the
critical temperature gradient should tend to zero,
may be explained in the following way. On the one
hand, for a dilute superfluid solution a thermo-
diffusion ratio is

By S
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FIG. 3. Concentration dependence of the critical tem-
perature gradient for different temperatures: (1) 0.5K,
(2) 1K, (3) 1.5K, (4) 2K.

(R is the gas constant, M, is the He? molecular
weight, and S, is the He* entropy per gram), it
is easy to derive for dilute superfluid solutions
the following expressions (see Appendix C).

.

My(y _SaMs ' s 1D My o 91D 1
M. 270
3

“3Ra, T g0, M’ T gol

] N
and constant for a given 7.% On the other hand,
we have for the thermodiffusion ratio the expres-
sion (2). Since for an infinitely dilute solution in
the convection-free steady state dc/dz ~c, it fol-
lows from (2) and (30) that d7/dz ~dc/dz ~c. As

a result the critical temperature gradient tends to
zero as the concentration. It is in the thermo-
diffusion effect that a difference between a reg-
ular binary mixture and a superfluid one shows up
clearly. Through the superfluid component the
thermodiffusion ratio remains finite for a dilute
solution as opposed to a regular binary solution
where the thermodiffusion ratio &, ~dc/dz ~ ¢ and
tends to zero, but dT,/dz #0.®

V. SUMMARY

I would like to emphasize here that the station-
ary convection in a superfluid He®*~-He* mixture
commences when heated from above only. Two
parameters, m and (I,/1)°, define the areas of ap-
plication of the criteria (15) and (23). Small dis-
sipation of a superfluid motion# <1 occurs at
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TABLE II. Typical values of parameters affecting the onset of stationary convection in a dilute solution at different

temperature.
kr
3 4

T C40 S4o p"/p OZT D n T Pc lo wl Ra/l “To/dz)
K Jmol™'K-! Jmol l1K-! K-1x10"% cm?sec™! puP K™t cm?® em-3K™1

1 0.4 0.067 0.01 0.46 10-2 40 6x10"% 2.8 4x10"7 2.7 1.5 x10%

1.5 4.52 0.8 0.12 -2 1073 13 4.8x10-2 0.75 10~? 2.2 4.8 x107

2 20.7 3.76 0.55 -12 2x10-4 14 0.17 0.9 5x10711 2.1 3.4x10°

T 25 6.24 1 ~er® 10  18.6  0.26 1.3 1.8x1071 1,74  1.4x10%

lower temperatures and larger concentrations.

In this region the superfluid motion is significant,
hence the chemical potential fluctuations are neg-
ligible, and the temperature and concentration
gradients are coupled via k. Only the thermo-
dynamic parameter o need be considered in the
convection equations, just as only the temperature
need be considered in a pure liquid.

As shown by calculations (see Table I and Figs.
2 and 3) in a major part of the considered temp-
erature and concentration range of the He®-He*
phase diagram the dissipation length I, is rather
small so that the condition (I,/1)®<1 should be ful-
filled for a realistic layer height I. Form <1 and
(1,/1<1 (small dissipation of superfluid as well
as normal motion) the criterion (16) is available
(6 = 0). For very low temperatures and small
concentration the dissipation length increases
drastically so that the condition 1,/7)*>1 should
be fulfilled for a realistic layer height. This is
explained by a large kinetic coefficients increase
(as D and «) and the normal density p, decrease
(several orders of magnitude, see Tables I and
o). For small dissipation of superfluid motion
(m<1) and large dissipation of a normal motion
[(2,/1)*>1)] the inclusion of the superfluid motion
in the hydrodynamics (div V,, +#0) becomes neces-
sary. This mechanism leads to an additional in-
crease of dissipation of normal motion and, thus,
an additional increase of mechanical stability.

For very low temperatures (T <0.5K) the system
becomes mechanically stable due to this effect.
This amazing result is obtained for a dilute super-
fluid solution.

For T >0.8K in a major part of the superfluid
He®-He* phase diagram the conditionm>1 is ful-
filled (Fig. 1). It means large dissipation of
superfluid motion, and the chemical potential fluc-
tuations become essential. The system and the
stability criteria (23) in this case are very similar
to a regular binary mixture with large abnormal
thermal diffusion. In conclusion, it should be no-
ted that in order to show the main features of a
stationary instability in a He®*-He?* superfluid mix-
ttire, I have considered here only the case of

free boundaries. The analysis can be extended to
deal with more realistic boundary conditions.
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APPENDIX A

Let us write all thermodynamic derivatives
used in (7) in convenient thermodynamic variables
as follows:

_ P (Bpa/3T)p . (0s/0T)p,c |
=0 (G u,/ock, ¢ (aT—B(Bu.l/ac)p,T) ’
(A1)
_ _’f_r (al-hl/ac)p,r
aea (-3 GEARRE), 42)
_p, (80/8T)p . (80/8T)p,. \™
(s (ao/ac);T (“T'B(ac/ac);> ;@3
_ kr (30/8¢)p,
m—n(l—TWYT’:-)’ (a4)
ad _ (8414/8T)p,; (80/0C)p 1
n = Bhy/50),  (80/5T),, ° (45)
do, _11Cpe 22/p) ]d_Tg
—d_zo_c[; +K2( ¢ )p,r dz * (46)
APPENDIX B

Since most of the experimental results are per
mole of solution, let us write thermodynamic re-
lations between the thermodynamic functions per
gram of solution that have been used in the convec-
tion equations and per mole of solution. Thus,
one has
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oMy (2) e
TaMg+ (L=xM,° \ox/,,. M, x*°’

() _ax(u)
p\c/pr My p\ox/p o

(x= N;/N,+ N,) is the molar concentration). The
entropy per mole of solution is

S=[xMy+ (1 —=x)M s,

where 8 = S/p is the entropy per gram of solution
and, respectively,

(as) S _x (18) (52)
s-c|{— = — .
o Jpr My My\0x/p
By analogy, there are for the heat capacity:
("’_s - Cre (.ﬁ _Cosx
8T Jpo T ’ \8T)p, T’
(B3)

Cp, o= [xMy+ (1 =x)M]Cp.

APPENDIX C

Let us write some relations for infinite dilute
solutions (here we use all functions per gram of

24
solution):
RT RT
My= #40"'_1‘;[—4", Mz = #30"?3"9 (Cl)
M.
X 17: c, (c2)
SaoM
= _SaMs
K RT ° (C3)
a(s/c) _Cp,
8T ~ T (C4)
ad SiMs  ad _
n —choc ’ ", ==1 (C5)
a_ 3S40,T ( a,;TR )" _
7" Cuc 1—3840M3 , a,=0 (Cs6)
C4o '&2 n_l_ Sg 3 .
"TTa TS, p ' m RCyr’ €n
glay p
L=2—-—".— C8
S Pa’ (ce)
- _ p_pMs
P,= pD’ P, PcM4 (Cc9)
- SaMs (C10)
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