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Self-induced-transparency phenomena in systems with multiple atomic or molecular species are investigated

theoretically. It is shown that under certain conditions rdating relative concentrations and transition probabilities

that (in the absence of loss processes) complex highly structured solitons can propagate through the system. For

some parameters the inversion of some of the species and the field envelope can have very many maxima. Under

other (more typical} conditions it is shown that a chaotic infinite train of irregular maxima and minima can

propagate.

I. INTRODUCTION A. Assumptions

The Hahn-McCall self-induced-transparency
phenomenon involves absorption and stimulated
emission processes which, for a pulse of suf-
ficient amplitude, lead to unattenuated propaga-
tion in an absorbing medium when dissipative
processes are negligible. ' ' The structure of
these pulses is simple; the electric field pulse
envelope is symmetric and has a single maximum.

Several authors have considered the effect of
degeneracy on self-induced transparency. 4 ' In

these cases the degeneracy was in the levels of
a single syeeies. If the system has more than one

species with the same level spacing but with dif-
ferent concentrations and transition probability
it is reasonable to expect that complex and in-
tex'esting pulse structures and other phenomena

could result. The purpose of this communication
is to demonstrate that this is, in fact, the case.

In Sec. II we set forth the conservation laws

for multispeeies systems in the weakly varying
envelope appx'oximation. The system is special-
ized to the case of 6-function line shape, and

analytical solutions for pulses of complex struc-
ture are obtained in Sec. III. Chaotic infinite

pulse trains are discussed in Sec. IV and conclud-

ing remarks are made in Sec. V.

11. BASIC EQUATIONS OF MULTISPECIES
SELF-INDUCED TRANSPARENCY

The following assumptions are made (and are
those usually taken for a simple exposition of the

one-species case; see Refs. 1-9):

(i) The light frequency &o is identical with the

frequency of the common energy spacing for all

species.
(2) The line-shape functions for all species are

taken to be delta functions.
(3) The density matrix for each atom is inde-

pendent except as they are coupled through the

light field.
{4) Collisional and other dissipative processes

are neglected.
(5) The slowly varying envelope approximation

1s assumed.
(6) No phase shifts in the electric field occur.

Our goal is to find solitons under these assump-
tions.

B. Soliton EOM's

The derivation of the equations of motion (EOM)

for constant velocity yropagation is essentially the
same as for the single-species case and are
sketched in the Appendix. In that appendix we

have introduced characteristic length, time, in-
version, etc., so that the wave equations take
the form

The one-species theory may be generalized in a
rather straightforward way. 4 Since the purpose of
the present study is to point out that very interest-
ing phenomena can occur, we make the simplest
possible assumptions that retain the essence of
the phenomena. In See. V we shall briefly dis-
cuss relaxing some of the simplifications used.

d8
YjPj=l

where t is the time, S,gy,-, ej are quantities ob-
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served as the wave passes a given point in space,
g is the electric field envelope function, and
mz, iv~, y&, and g& are the inversion, off-diagonal
single-atom density matrix, mole fraction, and
dipole transition moment of species j of the s
species system. All quantities are made dimen-
sionless as outlined in the Appendix. For a pulse
solutionwf-+1, v, -0, g-0 as t-+~. For the
one-species case, s = 1, these equations reduce
to the usual results. ' '

C. Conservation laws

(2.4}Vg +pl) —1 i
2 2

Next, multiplying (2.3) by 8 and using (2.2} we
get

—,'S'= Q y, (1 —w, ).
/=1

With these laws one can eliminate the (v&) and g
from the problem and obtain closed equations in
the scaled inversions (w~).

It is convenient to introduce a polar representa-
tion' ' such that

(2.5)

wf = cos8„vf = sin8, .
With this we obtain

d8, g.

(2.6}

(2.V)

From this it is clear that the angular variables
are related to the pulse area, i.e., since 8,(-~}
=0

The single-species conservation laws are easily
generalized. Multiplying (2.1) by v~ and (2.2) by
sez and adding we get, upon invoking the boundary
conditions in advance of the wave's arrival (t-

m)

&x=1- (2.11b)

D. Constant phase pulse criterion

The boundary conditions for pulse propagation
w&(a~) = 1 imply

8g(-") = o,

8, (+ )=2xl„
(2.12}

where l j is some integer. From this we get
8, (+ ~)/8~(+ ~) = l, /l~ and combining this with
(2.11) we find

(2.13)

III. TWO-SPECIES PULSES

For the two-species case a number of interest-
ing pulse structures emerge Let p. = p,/g„y
= y, . The equation of motion for the 8, variable
then takes the form

Hence for propagation of a pulse through a multi-
species medium, all the transition dipole moment
ratios g, /p~ must be rational fractions. This
does not prove that pulse propagation is impossible
for irrational ratios —we simply assert that they
cannot propagate at constant phase. (See the Ap-
pendix for a definition of the phase. ) We shall
treat the more general case of varying phase
phenomena elsewhere. Indeed it has been neces-
sary to include the phase in the coupling of self-
induced transparency to excitons. " Let us now
concentrate on the most experimentally accessible
case of two species to understand the nature of
the rational fraction pulses.

t
8)(t) = p, dt $(t') ~ (2.8)

d8,' = (2[y(1 —cos 8,) + (1 -y)(l —cosp8, )]}'+.
(3.1)

The field-inversion law (2.5) becomes
8

2 yf 1-cos8j
f=a

(2.9)

and hence (2.7} can be reexpressed as a closed
set of equations relating the angular variables,
namely,

2 y, (1 —cos 8, )j=l
(2.10)

A final, very useful, relation can be obtained
among the 8, by dividing both sides of (2.V) by a
similar equation for 8,.; we obtain [using 8~(-~}
=0]

Note that y = N, /Nr = the mole fraction of species
1 and hence is a readily controllable experimental
parameter. Let us now discuss several special
cases.

A. The case @=2

For this case trigonometric identities may be
used to reduce (3.1) to a form given in the tables. "
Letting i = 2(4 —3y)'+t and choosing the origin
of coordinates such that w, (0}= —1 we get

w, (~) = cos8, (v) =1 —
7 h, (3.2)
4(4 —3y)

8 —7y + y coshT '
8 =~8f (2.11a)

w, (r) = cos28, (r) = 2w', -1, (3.3)
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F&G. 1. Two-species self-induced transparency for the case p2/p&
—= @=2. The parameter p is the mole fraction of

species 1. Notice that as p decreases the character of the pulse changes from essentially the one-species singly

peaked pulse (y=1) to adoubletof stronglyinteractingpulses. As@ 0 the pulse breaks up into two essentially single-

(species 2) species pulses. (a) y=1.0, (b) y=0.5, (c) y=0.75, (d) y=0.25, and (e) p=0.1.

Sy(4 —Sy)'(1 + cosh')
[y(1+ cosh') + S(1 -y)]' ' (3.4}

as

J(v) =(2[y(1 —cos 9,) + (1 -y)(1 —cos pe, )]/+.
It is clear from (3.2} that w, (~} has a single min-
imum. Hence w, must, as seen by (3.3), have
two minima. Most interesting is the electric field
envelope 8 which can be expressed more generally

(3.5)

From this it is clear that since cos 8, goes through
one minimum, cos 20, has two minima and hence



970

2.0

p ORTOLEVAS ~ L ~ SCHMIDT AN

1.0 lses but a strongnot that of tw
ld 'nversions, . a d

o one species pu
offnteraction betweenn the fie

diagon density matri

1.0

0.0
0 10 15 20 25

0.0

-1.0

1.0

B Mpre cpmplex ratipM P

tAs pointed out above one m ay find cons™
's a rational frac-phase pulse so

b 1 ties we have ~
utions when g

nthe poss» ition.
al lutions of

To illustrate
3 1) tor variousseveral nu

The results ar
meric so

m-c;
2 Notice tha

hoices of param ~

t f r a given trans'-marized in Fig. ~

'
h lse can be changemoment ratio the ption dipole mo

the mole fraction ydramatically by v y

CHAOTIC FRONTS

2.0

1.0 0.0
W

0.0
0

-1.0
7

2.0

I" .1I

I

I

1.0—
I

I

I

I

I

I

I I

I

I

II II0.0
0 1

h lh
I I ll

II
II II II I

I' I I I
I I I

II
II
I

I
I

I
'. I I I I I I

:. I I

I fI I I I
I I

I
f

I. II il II I,
I I.: I

I I I( I

I l1 II

II II ', ll II II

2 3

II l,~

I'I

I

I

I

I

I

I

I
I
I

I
I

I
III

II
II
II
II
)I

4

I

.l
I

I

I I
I I

I I

II
II
I

I
II
I„

5

1.0
/
I
I
I
I
I
I
I
I
I
I

I

—0.0

-1.0

ed. Inwill be double peaked.
oleveral exampIes o m

y o
rof'le fromc ng p
For y4 eble-peaked pulse.

' s self-induced-trans-of two-species se -i

an ca

a train
f }1

l gable concentration); p, = 0.7,of negli e
(b), an c,d ( ) respectively.

we have shownand nonzero yFor irrational I"
hase pulse solution ~that there ar e no constant phase pu

tber very meamngHowever, we have found o er
pagat e with co~~ tant~ ns that can prtypes of solutio

henomena are in-velocity and p
1 d pulses that occu

hase. These P eno
re trains of hig y

't'es. A typical
coup e

als and intensat irregular inter
= ~ cbaoticcase is shown

h field envelope has no p-nt. ~' Notice that t
A situation

fro ~

red ctable pattern.parent simple pre
h been studied ex-this caseco1 sely related to

duced degeneracyusing Zeeman»perimentally y '
'bl to observe coas not possif Na vapor; it wa

ed input Pulse waspiete chaos since o y
as observed Alsoalthough initial bre

d the mole
fraction of the species is not at e
experimentalist.

onds to evolutional case corresponThe irration
nl'near combina-f the S field envelop e as ano

surate periods.of two noncommensut' n of functions o wio
wn" that such mu ilt'pie noncommen-

hus we have use e
menon The space-fiQingd cribe the phenomenon.

to th rf d f d

i 1 thattractor (or more p
e ' s nding o e
i

t t11 ofii )raje ctories corre po
lanes.the three indicated p

approachess how a genera]. caseFigure 4 shows ow
as converges on a given sim-

th tth t d
= 2-lik do bl 1p
blets are seen o
h the inversions.

oug ou e

nf' t 1

f thrational fractions. ow



COMPLICATED PULSE STRUCTURE AND CHAOTIC FRONTS IN. . . 971

2.0 1.0

W1

0.0—

I

50
I

100 150
Ej

@=le
250

-1.0
0.0 1.0 2.0

1.0 2.0

g= 0.5::,::,'::

p. =M2:::::::

W2

1.0

-1.0 0.0

w,

1.0
0.0

-1.0
I

0.0

W2

1.0

FIG. 3. A front is defied as being a propagating disturbance that leaves a system in a different state in its wake
than in advance of its arrival (Ref. 12). In part (a) we see such a phenomenon corresponding to a semi-infinite sequence
of irregular electric field intensity pulses. The inversion fluctuates, at irregular intervals, between +1. Parts (b)-(d)
show the space-filling character of phase plane trajectories for irrational cases.

tios of such large numbers as to lead to essen-
tially infinitely long chains of pulses and will,
because of fluctuations, be impossible to discrim-
inate from the irrational case. Ratios of smaller

numbers can, however, lead to readily observable
structures, as seen in Figs. 1 and 2.

V. CONCLUDING REMARKS
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FIG. 4. Note the tendency to break up into (p= 2)-like
doublets similar to those in Fig. 1. However, in this
case there is a strong interdoublet coupling.

Multiple-species self-induced transparency al-
lows for an interesting set of phenomena. Our re-
sults show that for the rational p. case pulses of
complex structures may propagate unattemated
in the absence of relaxation processes. Further-
more, chaotic fronts in the form of a semi-in-
finite irregular pulse train may propagate in the
irrational p, case. In both cases the wave form
depends strongly on the mole fractions of the
components.

An experimental verification of the present
phenomena is as follows. Let us assume that p,

for the two-species case is a ratio of integers,
at least one of which is sufficiently small. Let
us impose a pulse of light at one end and measure
the velocity A.„through the medium and the maxi-
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mum aplitude g of the excited soliton. In the
one-species case the velocity is simply related
to the pulse width. Here, however, the complex

structure of the pulse makes g a more con-
venient parametrization. For example, in the
case p, = 2 we get

~,(r„h )= —„[C /(~' +y,&)] (r, &5)

= —[16(1—y,) 8~/ 16(1 -y, ) 8~ + (4 —sy, ) A] (y~ & s), (5.1)

where A =2urc'p~rII/n' and y, is the mole fraction of species 1. This dependence is shown in Fig. 5(a),
wherein X,s/c is plotted as a function of y, at fixed Nr and h /A. The concentration dependence of the
doublet spacing b, is also a characteristic quantity

&(r„& ) =o (r, &f)

t'8 -9y,& 4=[8Ss(c '-nX, )/c'p, ,g,&uNr]'~'cosh '~ ') (y, & 5),
yl

(5.2)

and is shown in Fig. 5(b). These types of mea-
surements are direct tests of the theory.

A number of variations and extensions of this
work are in progress. We are investigating solu-

0.145

0.130

tions transient situations —i.e., what is the fate
of a pulse of given shape imposed from the out-
side on the multispecies absorbing medium. Other
critical issues being addressed are the effects of
loss processes, of spectral densities of finite line-
width, and of allowing the phase to vary. Experi-
mental verification of these phenomena is also
under investigation. The phenomena shown here
have possible applications in producing finite
trains of extremely narrow pulses whose ampli-
tude may easily be controlled by varying concen-
tration ratios.
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(b) APPENDIX

Assumptions (1)-(5) of Sec. II imply for propa-
gation in the z direction

1.0

(8 n 8 ~cg,
i

—+ ——8= —' V,
~az c at 2n (A1)

(A2)

0.0
1.00.0 0.5

)j
FIG. 5. Dependence of (a) velocity &2 and (b) peak

separation Q for p =2 doublet pulse on the number den-
sity of species 2, N2, at constant N~ and maximum pulse
amplitude Sm~.

for the complex electric field envelope ge'~ and
polarization envelope U+ iV. Here , p„c, and
n are the light frequency, magnetic permeability,
speed of light in free space, and index of refrac-
tion of the background medium. The polarization
envelope Ainctions U and V are related to the in-
dividual species polarization functions u„v, (i
= 1, 2, . . . , s) via
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(A3)

[p(() p(&)] 2f p(&)[p(&) p(()]/lf
Bt

B (~)
p( ) j p( )E[p(') p( )]

Bt.
(A4}

where u, and v, are related to the density matrix
p' for species i; the latter satisfies

Thus since u& is initially zex'o it is always zero
for the constant phase waves and will be deleted
henceforth.

Next we seek constant velocity waves. Defining
a time coordinate p = t -z/)(. , where X is the speed,
we have

p(&) + p(&) —1 p(&) —p(&) 4

where E = Re(ge'ee' '~') is the electric field
strength and p(') = (1[/ ~

2)(') is the matrix element
of the dipole moment operator for the two states
of species i in resonance with the electric field.
With this we define u,. + iv~ via

Bv&
Sw i/S,

Bwy = —P, Sv,./I,

—1 Bg n Bg +cg, ~+ V~)
Bp c Bt 2n

(A14)

pe) = (~+iv )e'e" '~)1
2I 2N p

Ng pg[pii p22] =wg ~
9) 9)

(A5)

(AS)

where w&(a~) = N&p&, h = v&(+~) = 0 for a pulse.
Defining dimensionless variables via

8 14' 8 Q
Bt ' Bt ' (A7)

where N,- is the number density of species j. From
the equation of motion (A4) we get

)(.
' = Xn/c,

vy = vy/Ng pg q

w& =w, /N& p, , .

Bt ~ Bt
+ —g(d (AS)

S ih
t'= t c p. op. , & N, 2hn' 1 ~'-1

j =-1

BWy g
(A9)

With the above definitions (Al) and (A2) become

S S/2
8'= 8 2n 1 A, '-1

j=i.

y~=N) N],
j =1

(B n B l wc', ,
I

—+ ——Ig=-
c Bt) 2n

B n B 'I ~cp,g —+ ——Iy= 'g u, .
8z c Bt] 2n

(A10}

(A11}

VJ = Vg/9 ii

and noting that s/s p = s/() f for a constant profile
solution we obtain

In the present study we shall seek solutions of
constant velocity and constant phase, &j&

= 0.
We find for the case of constant phase

dvj p p p

BQ—j= 0,
Bt

8vy = p g Swy/h ~

Bt
—p ~ gvg/I q

(A13)

dg' =Z
f =1

where w](+~) = 1, v~(a~) = g(a~) = 0 for pulses.
Finally, in the main text we drop the primes.
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