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Self-induced-transparency phenomena in systems with multiple atomic or molecular species are investigated
theoretically. It is shown that under certain conditions relating relative concentrations and transition probabilities
that (in the absence of loss processes) complex highly structured solitons can propagate through the system. For
some parameters the inversion of some of the species and the field envelope can have very many maxima. Under
other (more typical) conditions it is shown that a chaotic infinite train of irregular maxima and minima can

propagate.

1. INTRODUCTION

The Hahn-McCall self-induced-transparency
phenomenon involves absorption and stimulated
emission processes which, for a pulse of suf-
ficient amplitude, lead to unattenuated propaga-
tion in an absorbing medium when dissipative
processes are negligible.'® The structure of
these pulses is simple; the electric field pulse
envelope is symmetric and has a single maximum.
Several authors have considered the effect of
degeneracy on self-induced transparency.*® In
these cases the degeneracy was in the levels of
a single species. If the system has more than one
species with the same level spacing but with dif-
ferent concentrations and transition probability
it is reasonable to expect that complex and in-
teresting pulse structures and other phenomena
could result. The purpose of this communication
is to demonstrate that this is, in fact, the case.

In Sec. II we set forth the conservation laws
for multispecies systems in the weakly varying
envelope approximation. The system is special-
ized to the case of 6-function line shape, and
analytical solutions for pulses of complex struc-
ture are obtained in Sec. III. Chaotic infinite
pulse trains are discussed in Sec. IV and conclud-
ing remarks are made in Sec. V.

IL. BASIC EQUATIONS OF MULTISPECIES
SELF-INDUCED TRANSPARENCY

The one-species theory may be generalized in a
rather straightforward way.* Since the purpose of
the present study is to point out that very interest-
ing phenomena can occur, we make the simplest
possible assumptions that retain the essence of
the phenomena. In Sec. V we shall briefly dis-
cuss relaxing some of the simplifications used.

#

A. Assumptions

The following assumptions are made (and are
those usually taken for a simple exposition of the
one-species case; see Refs. 1-9):

(1) The light frequency w is identical with the
frequency of the common energy spacing for all
species.

(2) The line-shape functions for all species are
taken to be delta functions.

(3) The density matrix for each atom is inde-
pendent except as they are coupled through the
light field.

(4) Collisional and other dissipative processes
are neglected.

(5) The slowly varying envelope approximation
is assumed.

(6) No phase shifts in the electric field occur.

Our goal is to find solitons under these assump-
tions.

B. Soliton EOM’s

The derivation of the equations of motion (EOM)
for constant velocity propagation is essentially the
same as for the single-species case and are
sketched in the Appendix. In that appendix we
have introduced characteristic length, time, in-
version, etc., so that the wave equations take
the form

dv

_E;L =p; 6wy, 2.1)

% = —u;8vy, (2.2)

d8 _ <

pri ViV (2.3)
i=1

where ¢ is the time, §,w;,v; are quantities ob-
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served as the wave passes a given point in space,
& is the electric field envelope function, and

wy, iV, v, and u; are the inversion, off-diagonal
single-atom density matrix, mole fraction, and
dipole transition moment of species j of the s
species system. All quantities are made dimen-
sionless as outlined in the Appendix. For a pulse
solutionw;~+1, v, ~0, §~0 as t-+w, For the
one-species case, s = 1, these equations reduce
to the usual results.'=?

C. Conservation laws

The single-species conservation laws are easily
generalized. Multiplying (2.1) by v, and (2.2) by
w; and adding we get, upon invoking the boundary
conditions in advance of the wave’s arrival (¢ -

—c),
v +wl=1. (2.4)

Next, multiplying (2.3) by § and using (2.2) we
get

182= ?_‘, yl-w,). (2.5)

With these laws one can eliminate the {v,} and §
from the problem and obtain closed equations in
the scaled inversions {w,}.

It is convenient to introduce a polar representa-
tion'~® such that

wy=cosf,, v,=sing,;. (2.6)
With this we obtain

do :

L

Tl 8. (2.7

From this it is clear that the angular variables
are related to the pulse area, i.e., since §,(—)
=0,

0,(8) =1y f‘ dat 8. (2.8)

The field-inversion law (2.5) becomes

3 12
8= (2 z y,(1 = cos 9,)) , (2.9)
t=1

and hence (2.7) can be reexpressed as a closed
set of equations relating the angular variables,
namely,

] 1
‘fii =p, (2 Y 7.(1-cos 9,)) . (2.10)
i=1

A final, very useful, relation can be obtained
among the 6; by dividing both sides of (2.7) by a
similar equation for §;; we obtain [using 6,(-«)

i3
6= 9,,

(2.11a)
K5

Our =10, m,=1. (2.11b)

D. Constant phase pulse criterion

The boundary conditions for pulse propagation
wy(+o)=1 imply

9‘(—‘"’) = 0,
(2.12)
9‘(+°°) =2nl,,

where I, is some integer. From this we get
0y (+=)/0,(+)=1,/1, and combining this with
(2.11) we find

LIRS (2.13)

By
Hence for propagation of a pulse through a multi-
species medium, all the transition dipole moment
ratios u,/p; must be rational fractions. This
does not prove that pulse propagation is impossible
for irrational ratios— we simply assert that they
cannot propagate at constant phase. (See the Ap-
pendix for a definition of the phase.) We shall
treat the more general case of varying phase
phenomena elsewhere. Indeed it has been neces-
sary to include the phase in the coupling of self-
induced transparency to excitons.!® Let us now
concentrate on the most experimentally accessible
case of two species to understand the nature of
the rational fraction pulses.

HI. TWO-SPECIES PULSES

For the two-species case a number of interest-
ing pulse structures emerge. Let p=p,/u,, ¥
=v,» The equation of motion for the 9, variable
then takes the form

%-921 ={2[y(1 -cosf,) + (1 —y)(1 - cosug,)]}'%2.
(3.1)

Note that y = N,/Ny = the mole fraction of species
1 and hence is a readily controllable experimental
parameter. Let us now discuss several special
cases.

A. The case u=2

For this case trigonometric identities may be
used to reduce (3.1) to a form given in the tables.!!
Letting 7 = 2(4 - 3y)'2¢ and choosing the origin
of coordinates such that w,(0) = ~1 we get

- - 4(4-3y)
wl(T)—COSOI(T)— l—m—, (3.2)
w,(T) = cos26,(r)=2w3~1, (3.3)
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FIG. 1. Two-species self-induced transparency for the case up/uy =p=2. The parameter v is the mole fraction of
species 1. Notice that as v decreases the character of the pulse changes from essentially the one-species singly
peaked pulse (y=1) to a doublet of strongly interacting pulses. Asy—-0 the pulse breaks up into two essentially single-
(species 2) species pulses. (a) y=1.0, () y=0.5, () y=0.75, (d) y=0.25, and (e) ¥=0.1.

8y(4 -3y)%(1 + coshT) as

&= [T+ coshT)+ 81 —) I ° (3.4)

8(r)={2[y(1 = cos9,) + (1 —y)(1 - cos uo,)]}%2.
It is clear from (3.2) that w, () has a single min- (3.5)
imum. Hence w, must, as seen by (3.3), have :
two minima. Most interesting is the electric field From this it is clear that since cos 8, goes through
envelope § which can be expressed more generally one minimum, cos 26, has two minima and hence
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FIG. 2. Examples of two-species self-induced-trans-
parency solitons for differing dipole moment ratios.
The complex structures propagate with constant velocity
and can be transformed significantly by varying the di-
pole moment ratio (u) at y=0.5. The multiple maxi-
ma in the field envelope cannot be thought of as a train
of independent pulses (except as one of the species are
of negligible concentration); u=0.75, 3, and 10 in (a),
(b), and (c), respectively.

if v is small, then § will be double peaked. In

Fig. 1 we see several examples of mole fractions
v for the u = 2 case. Notice that by changing y we
can change the § profile from a single- to a dou-
ble-peaked pulse. For y #0 the pulse structure is

not that of two one-species pulses but a strong
interaction between the field, inversions, and off-
diagonal density matrix.

B. More complex rational pulses

As pointed out above one may find constant
phase pulse solutions when u is a rational frac-
tion. To illustrate the possibilities we have run
several mimerical solutions of (3.1) for various
choices of parameters. The results are sum-
marized in Fig. 2. Notice that for a given transi-
tion dipole moment ratio the pulse can be changed
dramatically by varying the mole fractiony,.

IV. CHAOTIC FRONTS

For irrational p and nonzero y we have shown
that there are no constant phase pulse solutions.
However, we have found other very meaningful
types of solutions that can propagate with constant
velocity and phase. These phenomena are in-
finite trains of highly coupled pulses that occur
at irregular intervals and intensities. A typical
case is shown in Fig. 3 for a u =2 chaotic
front.'? Notice that the field envelope has no ap-
parent simple predictable pattern. A situation
closely related to this case has been studied ex-
perimentally by using Zeeman induced degeneracy
of Na vapor; it was not possible to observe com-
plete chaos since only an isolated input pulse was
used although initial breakup was observed.® Also
for this case, unlike in the present study, the mole
fraction of the species is not at the control of the
experimentalist.

The irrational case corresponds to evolution
of the 8 field envelope as a nonlinear combina-
tion of functions of two noncommensurate periods.
It has been shown'® that such multiple noncommen-
surate periodic motion is transformed to true
chaotic motion by a slight change in the dynamical
equations. Thus we have used the word chaos to
describe the phenomenon. The space-filling
character in §, w,, w, space is also seen in Figs.
3(b)-3(d). The attractor is the surface defined
by (3.5) for ~1<w,, w,<+1 as seen in the pro-
jections of the attractor (or more precisely the
trajectories corresponding to the wave profiles)
on the three indicated planes.

Figure 4 shows how a general case approaches
the rational case as yu converges on a given sim-
ple rational case. Notice that the wave tends to
bunch up into p = 2 -like double pulses as y - 2,
although all doublets are seen to still interact
strongly through the inversions. Between any
two rational fractions there are infinitely many
rational fractions. However, most of them are ra-
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FIG. 3. A front is defined as being a propagating disturbance that leaves a system in a different state in its wake
than in advance of its arrival (Ref. 12). In part (a) we see such a phenomenon corresponding to a semi-infinite sequence
of irregular electric field intensity pulses. The inversion fluctuates, at irregular intervals, between +1. Parts (b)—(d)
show the space-filling character of phase plane trajectories for irrational cases.

tios of such large numbers as to lead to essen- numbers can, however, lead to readily observable
tially infinitely long chains of pulses and will, structures, as seen in Figs. 1 and 2.

because of fluctuations, be impossible to discrim-

inate from the irrational case. Ratios of smaller V. CONCLUDING REMARKS

Multiple-species self-induced transparency al-
lows for an interesting set of phenomena. Our re-
sults show that for the rational u case pulses of
complex structures may propagate unattemated
in the absence of relaxation processes. Further-
3 more, chaotic fronts in the form of a semi-in-
finite irregular pulse train may propagate in the
irrational u case. In both cases the wave form
depends strongly on the mole fractions of the

20

y=0.5
u=21 components.
An experimental verification of the present
o905 N P ) 30 0 50 phenomena is as follows. Let us assume that p
T for the two-species case is a ratio of integers,

FIG. 4. Note the tendency to break up into (u=2)-like at least one of which is Sufficiently small. Let

doublets similar to those in Fig. 1. However, in this ,us impose a pulse of light at one end and measure
case there is a strong interdoublét coupling. the velocity A, through the medium and the maxi-
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mum aplitude §,,, of the excited soliton. In the structure of the pulse makes &,,, 2 more con-
one-species case the velocity is simply related venient parametrization. For example, in the

to the pulse width. Here, however, the complex case i =2 we get

]
c
A'2(')’1: 5:.;“) = ; [&'ﬁu /(Srfnx +71A)] (71 > %) ’
= S116(1 -7,) 82/ 16(1 =7,) 8 + (4 =3y, PA) (1, < D), (5.1)

where A = 2wc?u,N 7% /n® and v, is the mole fraction of species 1. This dependence is shown in Fig. 5(a),
wherein A, n/c is plotted as a function of y, at fixed Ny and &,,,/A. The concentration dependence of the

doublet spacing A is also a characteristic quantity

Alyy, Emax) =0 n >3)

8-9

=[87n(c = n,)/c?uou,wN 5]/ ?cosh™? (—Y—l) (<3, (5.2)
1

and is shown in Fig. 5(b). These types of mea-
surements are direct tests of the theory.

A number of variations and extensions of this
work are in progress. We are investigating solu-
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FIG. 5. Dependence of (a) velocity A, and (b) peak
separation 4, for p=2 doublet pulse on the number den-
sity of species 2, N,, at constant N; and maximum pulse
amplitude &,,,,.

I

tions transient situations—i.e., what is the fate

of a pulse of given shape imposed from the out-
side on the multispecies absorbing medium. Other
critical issues being addressed are the effects of
loss processes, of spectral densities of finite line-
width, and of allowing the phase to vary. Experi-
mental verification of these phenomena is also
under investigation. The phenomena shown here
have possible applications in producing finite
trains of extremely narrow pulses whose ampli-
tude may easily be controlled by varying concen-
tration ratios.
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APPENDIX

Assumptions (1)-(5) of Sec. II imply for propa-
gation in the z direction

2, n \g_ ey

(az T at)g 2n v (A1)
o, m ), weu

8(az *e 8t>¢ 2n Us (42)

for the complex electric field envelope 8e'® and
polarization envelope U + iV. Here w, u,c, and
n are the light frequency, magnetic permeability,
speed of light in free space, and index of refrac-
tion of the background medium. The polarization
envelope functions U and V are related to the in-
dividual species polarization functions u;, v; (¢
=1,2,...,s) via



R

e

where u; and v; are related to the density matrix
p for species i ; the latter satisfies

9 .
216 ~p1= 2600 - o1/,

()
Eaetn_ = —iwpl) + i u®E[p® -pH)], (A4)
p“) + p(') 1, p(liz) = p(z‘l)* ’

where E = Re(8e % “~#%) is the electric field
strength and p®= (1] ]2)® is the matrix element
of the dipole moment operator for the two states
of species i in resonance with the electric field.
With this we define u; + iv; via

1
G) = ; i(kz + wt + &)
pd) = (u+1iv,)e (A5)
21 ZNj J i ’
Njuj[pn"pzz] =Wy, (A6)
where N; is the number density of species j. From
the equation of motion (A4) we get
du 9
—l =
ot Viat’ (A7)
v 9¢ U
A A AT ot §
Y Ty = Sw,, (A8)
aw 8
_87L =3 Hivse (A9)

With the above definitions (A1) and (A2) become

2 )

i=1

(A10)

(a11)

E Uy
i=1
In the present study we shall seek solutions of

constant velocity and constant phase, ¢ = 0.
We find for the case of constant phase

(A13)
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n d ) wepy &
2 )g=_ XClg
(63t+3z)g 2n i};l"j'

Thus since u; is initially zero it is always zero
for the constant phase waves and will be deleted
henceforth.

Next we seek constant velocity waves. Defining

a time coordinate p = ¢ —z/A, where X is the speed,
we have

(A14)

where w;(+=) = N,u;, 8§ =v,(x=)=0 for a pulse.
Defining dimensionless variables via

A =an/c,
=v,/N;uy,
wi=w;/Nyu;,

S 1R
t= t(czuouiw > N,/Zh’nz(l/)d -1)) ,
i=1

s 1/2
é”=é’(2n2(1/7\'—1) Ko 2 Ni> ’

i=1
S
71=Ni/z Ni’

i=1
pj= ”‘j/“l)

and noting that 8/8p = 8/8¢ for a constant profile
solution we obtain

dvj

at’ - wi&wi,
dw!

—Ldt' -uni8'vy,

gﬁ’--ivuv’
dtl ‘=1]jj!

where wj(t=) =1, v}(x=)= (=)= 0 for pulses.
Finally, in the main text we drop the primes.
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