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A review of quasiprobability methods for transforming chemical and quantum-optical master equations into

Fokker-Planck equations is presented. For cases where conventional representations lead to Fokker-Planck

equations with non-positive-definite diffusion coefficients; e.g., sub-Poissonian statistics, a generalization of the

representation involving an extension to the complex plane enables analytic results to be obtained for certain

nonlinear chemical and optical processes. Alternatively, a different integration measure may be chosen which

ensures a positive distribution and Fokker-Planck equation with positive-semidefinite difFusion coefficients. This

enables stochastic differential equations to be defined. These methods are applied to two-photon absorption and

dispersive bistability in quantum optics where nonclassical photon statistics arise and to two models of nonlinear

chemical reactions where sub-Poissonian statistics occur.

I. INTRODUCTION

In the rather different realms of chemical reac-
tion theory and quantum optics, the methods of
quasiprobabilities have provided technical tools
of great power, which at the same time give in-
sights into the physics of the processes under
investigation. The first quasiprobability method
was that introduced by Wigner' in a quantum-
mechanical context. In quantum optics, however,
the P representation introduced by Glauber"
and Sudarshan4 provided many practical applica-
tions of quasiprobabilities. The development of
quantum-mechanical master equations by Van
Hove, ' Swanson, Zwanzig, ' Prigogine and Resi-
bois, "in forms shown to be on the whole equiva-
lent by Zwanzig' was fruitfully combined with
the Glauber P representation to give a Fokker-
Planck equation for the laser by Weidlich, Risken,
and Haken" "and Lax and Louisell. " A treatment
of the damped harmonic oscillator using Glauber's
P function was presented almost simultaneously
by Louisell and Marburger. '4 Excellent treatises
on the application of quantum-mechanical master
equations to quantum optics have been written
by Lax "Haken '6 Louisell, "Graham "Haake x9

Agarwal, "and Whitney and Scully. "
It was realized long ago" "that the Fokker-

Planck equations which arose from these treat-
ments did not always have positive-definite diffu-
sion coefficients, and thus the meaning and exis-
tence of their solutions was subject to doubt. In
many cases the argument was made that the terms
leading to the non-positive-definite form were

small and could be omitted.
In recent work by the authors and co-workers,

quasiprobability methods were developed for
treating birth-death stochastic master equations,
which had been introduced into chemistry by
McQuarrie" and extensively developed by many
authors. "" Further, Malek-Mansour, Brenig,
and Horsthemke" have applied these kinds of
master equations to the kinetic theory of gases.
The Poisson representation methods' "which
were introduced to transform chemical master
equations into Fokker-Planck equations facilitated
the analytic solution of these problems. " How-
ever, the Fokker-Planck equations did not always
have positive-definite diffusion coefficients. These
non-positive-definite diffusion coefficients could
be handled by extending the domain of integration
into the complex plane. This was initially done
without rigorous justification, but correct results
ensued.

The similarities between the quantum-optical
and the chemical Fokker-Planck equations led to
an extension of the complex-plane techniques to
situations occurring in quantum-optical situations,
which had hitherto been avoided, because of the
non-positive semidefiniteness of the diffusion co-
efficient. A number of theoretical cases were
successfully treated this way, including two-pho-
ton absorption, "sub- and second-harmonic gen-
eration, '6 "and dispersive optical bistability. "
In many of these examples exact steady-state
solutions for the quasiprobability distributions
may be obtained.

More recently it has been possible to provide
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II. MASTER EQUATIONS

A. Quantum optics

Master equations provide a powerful tool for
dealing with dissipation in quantum systems.
Consider a quantum system described by an oper-
ator 0 undergoing a reversible interaction de-
scribed by a Hamiltonian &„„and interacting
weakly with a large thermal reservoir described
by an operator I'. The Hamiltonian for the inter-
action of the quantum system and the reservoir is

H = EI~„+H~

a ., =(or'+o'1).
(2.1)

The quantum theory of dissipation has been devel-
oped by a number of authors. ""An equation
of motion for the density operator of the system
alone may be obtained in the Markoff and Born
approximations in the following form" ":

a rigorous justification for these procedures which

were being used without a formal definition. It
is the purpose of the present paper to review and

compare the results achievable in various eases
in the light of this recent work, and to demon-
strate the great similarity in techniques which

can be employed in quantum optics and in chemical
reaction models.

elements in the number or Fock states [s). For
the above master equation with no driving fieM

(e = 0), this yields a diagonal master equation
for p similar in form to those encountered in
chemical reactions described in Sec. II8. How-

ever, with the driving term included the master
equation is much more complicated, involving
an infinite set of coupled equations for the matrix
elements p„„,.

An alternative route is to use a representation
for p in terms of quasiprobability distributions.
This allows the quantum-mechanical master equa-
tion to be converted to a c-number equation of
Fokker-Planck form. The various possible rep-
resentations of p are discussed in See. IIB.

B. Chemical systems (Refs. 22-27)

The stochastic master equation approach to
chemically reacting systems is a phenomenologieal

approach, in which a time-development equation
is derived for p(«, f}, the probability of there be-
ing g molecules of chemical substance g in the

system at time g. One assumes that reactions
occur because of collisions, and the probability
per unit time of a reaction proceeding, in a sys-
tem of sufficiently small volume, is given by the

number of ~propriate collisions per unit time
multiplied by an intrinsic reaction probability.
For example, for the dimerization reaction

~ = .z [p,a ]+~([op,o']+[o,po'])1 2X, (2.5)

+ p ([o,o'pl+ [po, o']» (2.2)

where ~ and p. are constants proportional to ex-
pectation values of the reservoir operators. Con-
sider, for example, a coherently driven harmonic
oscillator damped by interaction with a thermal
reservoir. The interaction Hamiltonian for this
system is

(2.3)Hj = f+(ta —e*a) +aI' +a 1',

where a, a~ are the annhilation and creation op-
erators for the harmonic oscillator and g is the
amplitude of the field driving the harmonic oscil-
lator. The master equation for the density opera-
tor of the harmonic oscillator in the interaction
picture is" "

~8~ =[ea'- a*a, p]+ ~ (2a'pa- pa'a -a'ap)

+yrg(a~pa+apa'-atap —paat), (2.4}

where y is the damping rate and s= 1/(e" +r —1)
is the mean excitation number in the reservoir.
The above operator master equation is best solved

by transforming to a convenient c-number form.
One possible representation is to take matrix

the probability of collisions between two X mole-
cules is proportional to —,

' «(« -1), the number cf
possible pairs of X molecules. The reaction rate
from left to right would be simply proportional
to the number y of T molecules. Thus we write
the transition probabilities per unit time as

(a) r-2X: f'(«, y)=k, y,

(b) 2x-r: f («, y)=a, «(« 1)—(2.6)

+k, (y+1)P(« —2, y+1, f)

-[a,«(«-1)+u, y]P(«, y, f), (2.&)

where the terms on the right are interpreted as
flow af probability from the states («+2, y -1}
and («-2, y+1) into the state («,y) from which

is subtracted the flow of probability from the state
(«,y) to these other two states.

A simple Markovian picture is now introduced,
whereby the probability P(«, y, f +sf) is given by

summing over all possible transitions from states
whose probabilities were given by p(«, y, f). This
leads to the chemical master equation

sP(«, y, f) = k, («+ 2)(«+1)P(«+ 2, y —1,f)
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An essential characteristic of the master equa-
tions of this type, in which the transition probabili-
ties are given by simple combinational forms
like those in Eq. (2.6), is the Poissonian nature
of the stationary solutions in chemical equilibrium.
For, in this case, detailed balance is satisfied,
which means that in any reaction, the flow of
probability from one state to another is exactly
canceled by the flow in the reverse direction.
This means that the Poisson distribution

(2.8)

haved positive function (although Klauder and
Sudarshan" have shown that it does exist in terms
of distributions with singularities). Such non-
classical fields have been observed in experiments
on atomic fluorescence by Kimble et al."and
Leuchs et a/. "following the predictions of Car™
michael and Walls~' Alternative quasiprobability
distributions which avoid some of the problems
Of the P representation exist. The signer func-
tion which was the first quasiprobability method
may be obtained from the P representation by the
following integra, l:

plays a central role in the study of such systems,
and gives rise to the Poisson representation" "
explained in See. III.

III. QUASIPROBABILITY REPRESENTATION

A. Quasiprobability methods in quantum optics

The quantum statistics of a single mode of the
electromagnetic field (as well as other quantum
problems involving bosons) is equivalent to that
of a harmonic oscillator with annihilation and
creation operators (g, gt). All physical observa-
bles are obtained from the multinomial moments
and correlations of (g, g ) which for most cases
in quantum optics are in normally ordered form.
These in turn are determined using the quantum-
density operator p, and it is often simplest to
represent p using a distribution function over a
g-number phase space. It is usual to expand p
with the aid of the coherent states, defined as
eigenstates of the annihilation operator

(3.l)
The Qlauber-Sudarshan P representation is an
expansion in diagonal coherent-state projection
operators' '

p= dQ R Q PO. , Qf~ ~

W(a) = — P(P)e 'I' -"d'P2
(3.4)

The signer function always exists as a nonsingular
function but may assume negative values. The
%'igner distribution simplifies averaging symme-
trically ordered operator products but is less
convenient for averaging the usual normally ord-
ered operator products arising in quantum optics.

An alternative representation which is always
positive is the Q representation or diagonal ma-
trix elements of the density operator in terms
of the coherent states

(3.6)

(3.5)

Though this representation is positive it has the
disadvantage that not every positive Q function
corresponds to a positive-semidefinite Hermitian
density operator. The eonsequenees of this are
discussed in Sec. V. In addition, evaluating mo-
ments is only simple in the Q representation for
antinormally ordered operator products.

Qlauber generalized the diagonal P representa-
tion to an off-diagonal projection on the coherent
states defined by'

This representation provides an easy recipe for
calculating the average of the normally ordered
operator products

(3.3)

Despite the formal similarity to averaging with
a classical probability distribution, P(c() is not
a true probability distribution but belongs to a
class of quasiprobability distributions. While
P(ct) exists for thermal light fields (a Gaussian
distribution) and coherent laser fields (a 6-func-
tion distribution) for fields with nonclassical pho-
ton statistics, P(~) does not exist as a well-be-

While the representation is analytic in o,*, p (and
therefore nonsingular), it is also, by definition,
nonpositive and has a normalization that includes
a Gaussian weight factor. For this reason, it
cannot have a Fokker-Planck equation or any di-
rect interpretation as a quasiprobability. Never-
theless, the existence of this representation does
demonstrate that a calculation of normally ordered
observables for any p is possible with a nonsingu-
lar representation. In order to treat problems
in nonlinear quantum optics where nonclassical
photon statistics arise, a class of generalized P
representations were introduced by Drummond
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and Qardiner ' by expanding in nondiagonal co-
herent-state projection operators. The represen-
tation is defined as follows:

p= A Q, Q I Or. , Qf dp, Q, Q (3.'I}

where

In)&(n')*I,
&( ')*I )

'

and dp, (n, at) is the integration measure which

may be chosen to define different classes of pos-
sible representations, and X) is the domain of

integration. The projection operator A(a, a ) is
analytic in (a, at).

Useful choices of the integration measure are
(1) Glauber-Sudarshan P representation

d p(n, at) = {}'(a*-at)d'n d'at. (3.8)

This measure corresponds to the diagonal
Glauber-Sudarshan P representation defined in

Eq. (3.2).
(2) Complex P representation

d p (n, nt }= dn dnt . (3.9)

dp, (a, at) =d'ad'n~. (3.10)

This representation allows (a, nt) to vary inde-
pendently over the whole complex phase. It has
been proved by Drummond agd Qardiner~' that

P(a, a ) always exists for a physical density oper-

Here (n, n ) are treated as complex variables
which are to be integrated on individual contours

The existence of this representation under

certain circumstances has been proved by Drum-
mond and Qardiner. ~' In particular, this repre-
sentation exists for an operator expanded in a
finite basis of number states. This is a charac-
teristic situation where nonclassical photon statis-
tics (photon antibunching) may arise, and where
the diagonal Glauber-Sudarshan P representation
would be singular. This representation'has been
called the complex P representation since com-
plex values of P(n, nt} may occur. The repre-
sentation gives rise to a P(a, at) which can be
shown to satisfy a Fokker-Planck equation ob-
tained by replacing (n, a*) with (a, at) in the usual
Qlauber-Sudarshan type of Fokker-Planck equa-
tion.

Under certain circumstances, exact solutions
to Fokker-Planck equations occur which cannot

be normalized as Qlauber-Sudarshan diagonal P
functions. These can be handled with the present
representation by choosing C, C' (paths of inte-
gration) in the complex phase space of (n, at).

(3) Positive P representation

aA(n) =nA(a),

atA(a) = (s +a')A(a),

A(a)a = (a +s„&)A(a),

A(a)at=ntA(n }.

(3.11)

The implementation of these rules to obtain Fok-
ker-Planck equations from the operator master
equations introduced in Sec. III are described in
the following section. Explicit examples are given
in Sec. V.

8. Quasiprobability methods in chemical physics

Similar quasiprobability techniques have been
recently developed for application to the stochastic
models of chemical reactions as described in Sec.
IIB. The technique (developed in fact before that

of generalized P representations) consists simply
of expanding the probability distribution over the
number of molecules in Poisson distributions, thus

)(x)=f dg(a)f(tM) „,
™ (3.12)

Here p(a) is a measure, which we shall shortly
specify in a manner similar to that for the genera-
lized P representation.

Comparing with the & representations, we can
see that this expansion is analogous to the P rep-
resentation of the density matrix p which is diago-
nal in a number state basis. For, in this case,

e~cK aat)))
( b)l*) f&~( '8'=(, '), (&.)&)

'~

and one can see immediately from Eq. (3.13),
setting p(x) =&~lplx), that if

&u(())f(p) f&w(u')5„(aa' ())=I'(an'), -,
(3.14)

ator, and can always be chosen positive, in which

case we call it the positive P representation.
This means that P(a, at) has all the properties
of a genuine probability. It was also shown4' that
provided any Fokker-Planck equation exists for
time development in the Glauber-Sudarshan rep-
resentation, a corresponding Fokker-Planck equa-
tion exists with a positive-semidefinite diffusion
coefficient for the positive Q representation. This
enables stochastic differential equations to be
derived.

The above representations may be used to ob-
tain time-development equations in a e-number
representation from the quantum-operator equa-
tions in Sec. II. This may be achieved using simple
operator correspondence rules. These are as
follows":
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the Poisson representation arises as a special
case of the P representation. Here 5&(a —p) is
the Dirac 5 function defined with respect to the
measure g(a), i.e., it satisfies

trix by

(3.18)

(3.15)

N=c a. (3.1'1}

Of course, historically, this is not how the
Poisson representation was viewed, and the rela-
tionship between the two representations turns
out to be useful only because the existence theor-
ems for the generalized p representations can
be used to establish analogous existence theorems
for the Poisson representation. There is a pro-
found physical difference between the coherent
states (a) of the radiation field and the chemical
Poissonian states. The quantum coherent states
which arise as the quantum definition of a com-
pletely coherent field (e.g. , a laser, or a radio
field), are used to describe a situation which is
far from thermodynamic equilibrium. The ther-
modynamic equilibrium situation is the blackbody
radiator, which is completely differently de-
scribed. The chemical Poissonian states are,
in contrast, the states which naturally arise in
chemically reacting dilute systems in thermody-
namic equilibrium, and the occurrence of such a
distribution has an origin which is completely
different from that of the coherent states. The
connection between the P representations and the
Poisson representations is thus mathematical
rather than physical.

1. Choice of Ineasures

The most useful measures g(P) are completely
analogous to those used for the P representations,
namely,

(a) Real Poisson Representation:
dp(a) =da(a on the real line).
(b) Complex Poisson Representation:
dp(a) =da (a a complex number, which ranges

over a contour in the complex plane).
(c) Positive Poisson RePresentations:
dp(a) =d'a (a moves over the whole complex

plane).
Since any probability distribution p(x) can be

used to construct a diagonal quantum-density ma-

One sees that the correspondence between the
Poisson variable a and the P-representation vari-
ables (a, at) is the slightly deceptive replacement

a (Poisson) ata (P representation), (3.16)

which reflects the fact that the number operator
in a quantum system is given by

where ~x} are number states, it is easy to adapt
the existence theorems on the P representations
to give corresponding theorems for the various
Poisson representations. In particular, one can
see immediately that, using the relation given
in E(l. (3.15), there always exists a positive Pois-
son representation with a non-negative f(a)

2. Fokker-Planck equations

Fokker-Planck equations can easily be derived
for the Poisson representation quasiprobability
f(a) by integrating by parts after substituting in
the chemical master equation. The results are
equivalent to the following rules. For an z-com-
ponent reacting system involving 5 different re-
actions,

PN&X&~ M&X&, p= &, 2, . . .s,

we define a multivariate quasiprobability
f(a„a„.. . , t) in which a,. corresponds to x,

Define the currents

(3.19}

J (u)= )) k Q. "i — [k a+i (3.20)

and the quantities

gP MP NP (3.21)

N) &2,
1

M$ c' 2.
= j.

(3.24}

It becomes evident on inspection that the diffusion
matrix B,~(J(a)) does not necessarily satisfy the
positivity requirement for a Fokker-Planck equa-
tion, namely that the diffusion matrix B,~(J (a })

B,~(J(a)) —QJj,(a)(MfMq N, NJ —5—)qAg )
P

(3.22)

Then we have shown" that f(a, t) obeys the
Fokker -Planck equation

(1 A, J (a)f(a; ())

82
+2 B]) Ja OT t2 „,a(y, en,

(3.23)

provided only that the reactions are no more than
bimolecular, which specifically means that
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is not positive semidefinite, even when g is real.
We shall indicate in the next section how to deal
with this problem by using the positive and com-
plex Poisson representation.

one normally finds, as an intermediate step in
the derivation, an equation for the time develop-
ment of the master equation of the form [where
(a, at) =a =-(a"',a"')]

IV. FOKKER-PLANCK EQUATION

Using the operator correspondences appropriate
to the diagonal (Glauber-Sudarshan) P representa-
tion, an extensive formalism has been developed
for converting quantum-mechanical master equa-
tions into Fokker-Planck equations for the corre-
sponding quasiprobability P(a, a }, and this may
be extended to give similar Fokker-Planck equa-
tions for generalized P representations by using
the operator correspondences listed in Eq. (3.11).
However, in exactly the same way as mentioned
at the end of the previous section, the Fokker-
Planck equations do not have positive-semidefinite
diffusion matrices and interpretation difficulties
arise. We wiD show how these difficulties may
be overcome. The explanation will be given for
the P representations, the adaptation to the Pois-
son representation being obvious.

A. Positive P representations

a,p= A N 8,P a d'ad'z~

PN. A R ~ +gD~ Q pep Ack deed%

Here, and in the following, repeated indices are
summed over. Before integrating by parts, we
carry out some transformations. Firstly, the
symmetric diffusion matrix D(a) can always be
factorized into the form

D(a) =B(a)B (a). (4.3)

We now separate into real and imaginary parts,

A(a) = A, (a) +iA„(a), (4.3)

B(a) = B„(a)+fB„(a), (4.4)

(4.8)

and use the analyticity of A(a) to write

In the situations where a quantum-mechanical
master equation yields a Fokker-Planck equation,

S„A(a}=8 „A(a}= -fe„"A(a).

We then find that from (4.1) we may write

(4.6)

We now integrate by parts, discarding surface terms, to derive the Fokker-Planck equation

S,P(a) = [-S „'A," (a }- S „"A„"(a)+-,' [S „"O'„Bp(a)B,"'(a) + S „' S"„Bp'(a)B"„'(a)+ 2Sp+g (a)B";(a)]]P(a).

(4.'1)

(4.8)

We find the drift vector is

(4.9)

8 (a}—= (A~'~(a} A&~~(a) A~'~(a) A& &(a)) (4 10)

and the diffusion matrix is

8 -8~
(a)-=(a)*(a),

8 ~ B~
(4.11)

The Fokker-Planck equation is not unique, since
the A(a) are not linearly independent —however,
the original master equation is a consequence of

it, and this is all that is physically required.
However, the Fokker-Planck equation (4.8) now

possesses a positive-semidefinite diffusion matrix
in a four-dimensional space whose vectors are

@(a)-=' (a)
5„0

(4.12}

(4.13)

or, recombining real and imaginary parts,

and the matrix is thus explicitly positive semi-
definite. We have thus obtained an explicitly
probabilistic Fokker-Planck equation for the
positive P(a, a~), so that in terms of this quasi-
probability, the quantum stochastic process
yields a classical stochastic process.

One may now use the well-known correspon-
dence between Fokker-Planck and stochastic
differential equations to write the following Ito
stochastic differential equation (for an exposition
of this relationship, see Refs. 44 and 45):

~ t'a.) A, (aA (B,(aa &(t)~
sfl

(A„(a)) ( B,(a).t(t) f
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dt
= QA J'«, (a)+ C{J(a)) ~ ((t),

where

C {&(o.))C '{~(a)) = 11{&((«.)) .

(4.15)

(4.16)

Vfe develop specific examples of these equations
in Sec. VI.

C. Complex P representation

The procedure here is very similar to that used
above: the master equation is reduced to the
form

Sg p = It A(lx }Sg P(u)) dc((fo(
e "c'

I A + A p+2D Cl ~p~„A A d&i(f&

(4.17)
where now (c(, o, ~) = ((«!'«, u '«) are independent
complex variables integrated over contours C, C'
in their respective complex planes. %'e now inte-
grate by parts in the complex plane, and obtain
an aealyfie Fokker-Planck equation

8, p(a) = [-s„A"(a)+-,' s„s„D""(a)]p(a) (4.18).
That is, since this equation possesses coefficients,
which are in all practical cases analytic functions
of ((«. , u ), it possesses solutions which are also
analytic, provided the initial condition is analytic.

Bt
= A(~)+ 11(~) ~ &(f). (4.14)

Apart from the substitution («*- ut, Eq. (4.14)
is just the stochastic differential equation which
would be obtained by using the Glauber-Sudarshan
representation, and naively converting the Fokker-
Planck equation with a non-positive-definite dif-
fusion matrix into an Ito stochastic differential
equation.

In our derivation, the two formal variables
((«. , u*) have been replaced by variables in the
complex plane ((«, o t) that are allowed to fluctuate
independently. The positive P representation as
defined here thus appears as a mathematical
justification of this procedure.

B. Positive-Poisson representation

A similar technique can be used to develop posi-
tive Fokker-Planck equations from the positive
Poisson representation, using equations of the
form (3.23). The validity of the result depends on
the analyticity of the Poisson function e "(«, */z!
in the same way as the previous result depended
on the analyticity of A(o ). We find that u in this
case become complex fluctuating variables, and
the resulting stochastic differential equation for
this complex ~ is

where

u,(a) =[D(Z)]«,„'[2A„(a)—s, D„,(a)]. (4.20)

When these potential conditions are valid, , the
stationary solution P(a) can be written as

P( )=exp( —J da,'v„(n'))

= exp[- e(n)], (4.21)

where 4(a) is referred to as the potential func-
tion. The complex I' representation is not inter-
pretable as a probability but, nevertheless, the
existence of some exact solutions, where the
corresponding positive I' representation does
not possess such solutions, can be of great prac-
tical utility.

D. Complex Poisson representation

We can similarly interpret the Fokker-Planck
equation for chemical reactions (3.23) as analytic
Fokker-Planck equations in the complex variables
n, and again, in certain situations, potential solu-
tions are possible. This is demonstrated in ex-
amples in Sec. VI.

V. EXAMPLES IN QUANTUM OPTICS

A. Two-photon absorption and dispersive optical
bistability

We consider a coherently driven interfero-
meter filled with an intracavity nonlinear medium.
We shall treat cases in which

(a) the medium is a two-photon absorber,
(b) the medium has a nonlinear polarizability.

A Hamiltonian which describes both situations, by
an appropriate choice of, parameter values, is

H~= 840 a a

a, =(')ff(ee ' &'a~ e*e' ~'a-),
(5.1)

H, = al', +at I', ,
H4=SX a a

H = a I' + a2I'~ .5 2 2

For two-photon absorption, H, and H4 vanish,
while for dispersive optical bistability H, vanishes.
These two cases have been treated in Hefs. 35
and 38. Here H, describes the cavity mode a with
frequency cu, . H, describes the coupling with the
coherent driving field with amplitude ~ and fre-

This kind of equation is often useful in comparing
stationary properties, since we often find that the
coefficients satisfy potential conditions"'"

(4.19)
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quency (d&. H, describes the coupling to the
cavity reservoirs F„l,. H, describes a nonlinear
dispersive medium with nonlinear susceptability

H, describes an intracavity two-photon ab-
sorber with reservoir operators I'„I',.

In a reference system rotating at a, frequency
~&, the master equation for the density operator
of the cavity field mode is obtained using standard
techniques" ":

= Q &~(p),
f= 1

C,(p) = i n—&@[a a, p],
S,(p)= [ea —a+a, p], (5.2)

Z,(p)=x'(2apa —pa a —a ap)+2n, „([a,p]a ),

&4(p) = - i X"[a 'a', pl,
g (p) ii/(2a2pa't2 pat 2a2 ai 2a2p)

where &~=(dL, - v. „K' is the cavity relaxation, and
X' is the two-photon absorption rate, n,h is the
thermal occupation number due to Gaussian
fluctuations in the thermal reservoir for the cavity
modes. This master equation may be transformed
to the following Fokker-Planck equation via the
generalized P representation"
8

Be
—P(a) = [(x+in—~)&+2«2n &]

+ [(K —'En(d)Q + 2)( CR Q —e+]
Bef

Be ' Be Be~

(5.3)

where X= X'+iX", and I', = 2a'n, &. This equation
satisfies the potential conditions"'" and has the
following steady-state solution:

1 1
P(a a')=a' "a"' "exp ——+ —+2ao.',a e~

1a

(5.5)

the expectation value of an arbitrary normal
ordered moment of the field operator is given by

(5.4)

where c= (x+iA&o)/y and we have chosen the phase
of the driving field so that e/y is reaL The steady-
state solution obtained above [Eq. (5.4)] witti the
generalized P representation has a completely
different character from the Landau-Ginsberg
type of distribution associated with thermal fluctu-
ations. It can be seen immediately that the use
of the Glauber-Sudarshan integration domain with
a = a* is not possible, since the distribution
P(a, a*) would diverge for

~
a ~'- ~. Thus no

steady-state Glauber-Sudarshan P function exists
(except as a highly singular distribution). How-

ever, it is possible to evaluate steady-state mo-
ments usings the complex P representation, where
the domain is chosen to have independent contours
on the a and e planes. If the variables are
changed to

((a ) a")~ a i" 'la ~ " '~exp +-
& ~

dado.
e(a+ at) 2

C @a~&

—a " 'a ' 'exp — a+a~ dada~
C )=0 ~- ]'f

X
(5.6)

These integrals correspond to the definition of
the gamma function. Hence it is appropriate to de-
fine each path of integration to be a Hankel path
from - on the real axis around the origin in an
anticlockwise direction and back to —~. The in-
finite series is the defining series for the gen-
eralized Gauss hypergeometric function g,. In-
cluding the normalizing factor, the final result
is

e '" I'(c)I'(c*), P( m+c~, n +c, i2e/Xl)
I'(m+ c~)I'(n+ c},&,(c~, c i 2e/X i )

(5.V}

I

are shown for dispersive bistability and two-
photon absorption in Figs. 1 and 2, respectively.
The semiclassical result for the photon number
is shown for comparison on the same graphs. In
both systems a gi'~(0)& I characteristic of photon
antibunching, a nonclassical feature of the electro-
magnetic field is displayed. These results re-
quire the use of the generalized P representation
and cannot be obtained using the Glauber-Sudar-
shan P representation.

B. Comment on the use of the Q representation

The mean photon number (ata) and the second-
order correlation functiong l(0) = (a a aa)/(a a)

By comparison, the use of the other representa-
tions (corresponding to different operator order-
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FIG. 3. Dispersive bistability spectrum, upper-branch
region (arbitrary units). {a) Zero temperature and (b)
finite temperature.

Condition I requires e3/z3 &I/V for its validity.
We shall assume this in what follows. We now
distinguish three situations depending on the value
of 6= a, /v, - ~3/s3. The quantity 6 gives a measure
of the direction in which the reaction system (6.l)
is proceeding when a steady state exists. If 5& 0,
we find that, when X has its steady-state value,
reaction (a) is producing X, while reaction (b)
consumes X. When 6 = 0, both reactions balance
separately —thus we have chemical equilibrium.
When 6& 0, reaction (a) consumes X, while re-
action (b) produces X.

(I) 5 &0. According to Eq. (6.5), this is the condi-
tion for f(a}to be valid quasiprobability on the real
interval [0, s3V/)1,]. In this range, the diffusion
coefficient D(a) = 2(e3 —)):,c)3/V) - 0. The determin-
istic mean of &, given by

trum results when thermal fluctuations are also
present.

{(K3 K1)+ [(K3 K)) + 4IC3Kg]
4

(6.6)

VI. EXAMPLES IN CHEMICAL SYSTEMS

A. Schlogl's second-order phase transition model

Suppose we consider the rather mell-studied
second-order phase transition remodel & ' ' orig-
inated by Schl5gl, '

k2 4~
(a) A+X= 2X, (b) B+X=&,

A4 ks
(6.l)

for which it is easy to show ' that the Fokker-
Planck equation for the quasiprobability is

sf(o, t) e
[x3V+ (K3 K,)o) --K,V '&']f(&& t)

+— [2$3c) —x4V '&3)f(n& t)]
8

(6.2)

where

~s~= ksC, tc2 = k2Ay z = k j B, K4V (6.2)

I f, (0) =. 0,
II (v c) —g V c) )f, (/3)=0 when K &=K V,

III The range of &x is [0, K3V/K~].

(6.5)

A, B,C are the numbers of molecules of the cor-
responding chemical species, and V is the system
volume The ste.ady-state solution to (6.2) is ob-
viously obtained from the potential solution, since
there is only one variable, and is
able, and is

f ()x} e&3(x V ~ )y) c )&pe/»3)/-1&&~3(K3 /&&3-1) (6 4)

E one uses the Poisson representation and derives
(6.2) directly (using integration by parts), it is not
difficult to show that Eq. (6.4) gives a steady-
state solution of (6.2) provided (6.4) satisfies

lies within the interval [0,&3V/e, ]. We are there
fore dealing with the case of a genuine Fokker-
Planck equa. tion and f,(&) is a function vanishing
at both ends of the interval, and peaked near the
deterministic steady state.

(II) 5 =0. Since both reactions now balance sepa-
rately, we expect a Poissonian steady state. We note
that f, (c/) inthis casehasa poleat z3V= z,a, andwe
choose the range of & to be a contour in the com-
plex plane enclosing this pole. Since this is a
closed contour, there are no boundary terms
arising from partial integration, and p,(x) given
by choosing this type of Poisson representation
clearly satisfies the steady-state master equation.
Using now the calculus of residues, we see that

eo+',
p, (x) = (6.7)

with ao= e3V/x, .
(III) 5&0. When 6&Owe meet some very interest-

ing features. The steady-stage solution Eq. (6.4) now
no longer satisfies the condition (6.5). However,
if the range of + is chosen to be a contour C in
the complex plane [Fig 4(a)], a.nd we employ the
comPlex Poisson representation, it is not difficult
to show that p, (x) constructed as

P.(~)= «f.(~)
c x (6.8)

is a solution of the master equation. The determinis-
tic steady state now occurs at a point on the real
axis to the right of the singularity at a = a3V/e„
and asymptotic evaluations of means, moments,
etc. may be obtained by choosing C to pass through
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the singularity at n = x,V/x, to -~ vanishes, and
C may be distorted to a sim.pie contour round
the pole, while if 6&0, the singularity at a = x,V/x~
is now integrable, so the contour may be collapsed
onto the cut, and the integral evaluated as a dis-
continuity integral over the range [0, x,V/K ].
(When 6 is a positive integer, this argument re-
quires modification. )

The use of the positive Poisson representation
applied to this system yields the (Ito) stochastic
differential equation

= KgV+ (K2 —Kg)& —KgVdt

+ [2(x,o. —x,o")]'~'$(t) . (6.11)

(c)

FIG. 4. (a) Curve t." in the complex plane used for de-
fining normalization and moments for the complex Pois-
son representation. (b) Reactions A+X 2X, B+X

Simulated path of a point which starts initially at
the left where the noise is real, and approaches a sta-
tionary point on the right, where it Quctuates with a
negative variance. (c) Reactions B X, 2X-A . Point
starts at top right, and eventually reaches equilibrium
at center, Quctuating with negative variance. B-X, 2X- A

for which the Fokker-Planck equation is

(6.12)

In the case 5&0, we note that the noise term vani-
shes at o! = 0, and (x = Vx, /v, is positive between
these points, and the drift term is such as to
turn n to the range [0,Vx, /x, ] whenever it approa-
ches the end points. Thus, for 6& 0, the Eq. (6.11)
represents a real stochastic differential equation
on the real interval [0,Vx, /x, ].

In the case 6& 0, the stationary points lies out-
side the interval [0, V&, /x, ], and a point initially
in this interval will move along this interval gov-
erned by Eq. (6.11) until it meets the right-hand
end, where the noise vanishes, and the drift con-
tinues to drive it towards the right. On leaving
the interval, the noise becomes imaginary, and
the point will follow a path like that shown in
Fig. 4(b) until eventually reaches the interval
[0,Vx, /x, ] again.

'The case of 5 = 0 is not very dissimilar, except
that once the point reaches the right-hand end
of the interval [0,Vx, /x, ] both drift and diffusion
vanish, so it remains there from then on.

B. Reaction with negative variance

Another interesting example is provided by the
following reaction mechanism"'":

var(n) = &(x') —&c()',

is negative, so that

(6.S)

the saddle point that occurs there. In doing so,
one finds that the variance of +, defined as ey(a, t) -a

(~,V -2~,V 'u'}f(u, f)

+ —,J(» (' '™'(f(,&(I), (6.13)

var(x)= (x'& —&x)'= &o"&- &a&'+ &o')& &a&.

(6.10)

This means that the steady state is narrower
than the Poissonian. Finally, it should be noted
that all three cases can be obtained from the
contour C. In the case that 5= 0, the cut from

where KgV kgB K,V '=k, . Note that the diffusion
coefficient in the above Fokker-Planck equation is
negative on all the real line.

The potential solution of (6.13) is

f(o. ) = o( 2 exp(2(x+ aV'/(x) (6.14)

with a = 2x, /x2 and the o. integration is to be perfor-
med along a closed contour encircling the origin.



Q UASIP ROBABI LITY. METHODS FOR NON LINEAR CHEMICAL. . . 925

Thus, by putting n=qV, we get

Vt'f d& &v (an +a/ni l ~
( )g gd~ev&m+&gn& -a ~ (6.15)

The function (2q+ a/q} does not have a maximum
at the deterministic steady state. In fact, it has
a minimum at the deterministic steady state
q=+ (a/2)'I'. However, in the complex g plane
this point is a saddle point and provides the domi-
nant contribution to the integral.

Thus, the negative diffusion coefficient in (6.13)
refelcts itself by giving rise to a saddle point
at the determinate steady state, which results
in the variance in X being less than (X).

From (6.15) all the steady-state moments can
be calculated exactly. 'The results are

ab't ~ 'I ~(2(2a)~1'V)
I (2(2g) V)

where I„(2(2a)'t'V) are the modified Bessel func-
tions. Using the large-argument expansion for
I„(2(2a)'~'V), we get

(X)= V(s/2)"'+-,'+ O(1/V),

(6.16)

(X ) —(X) =~V(a/2) I --+ O(1/V).

C. Stochastic differential equations

(6.1'1)

'The stochastic differential equation correspon-
ding to (6.13) is

d
= g, -2g, rtm+ i@(2~,)'t'q&(t},dg (6.18)

where + = gV and a = V ' '. The stochastic differ-
ential equation (6.18) can be computer simulated,
and a plot of motion in the complex g plane gen-
erated. Figure 4(c) illustrates the behavior. The
point is seen to remain in the vicinity of Re(o. )
= (a/2)'t', but to fluctuate mainly in the imaginary
direction on either side, thus giving rise to a nega-
tive variance in G.

VI. DISCUSSION

We have shown how quasiprobability methods
may be used to solve nonlinear problems in quan-
tum optics and chemical reaction theory. For
certain problems, e.g. , those giving rise to non-
classical photon statistics in quantum optics of
distributions narrower than the equilibrium dis-
tribution, the conventional methods fail complete-
ly. Here by introducing generalized representa-
tions which extend Fokker-Planck methods into
the complex plane we are able to obtain steady-
state quasiprobabilities from which expressions
for the moments may be calculated. 'This has
been demonstrated for the case of two-photon
absorption and dispersive bistability in quantum
optics and for models exhibiting a second-order
phase transition and a negative variance in chem-
ical reactions. Alternatively, a different inte-
gration measure may be chosen which ensures
a positive f(a) or P(a, tt) in the chemical or quan-
tum optical case. By means of these represen-
tations we may define Fokker-Planck equations
which have positive-semidefinite diffusion co-
efficients. This is particularly important for cer-
tain nonlinear processes where conventional rep-
resentations lead to Fokker-Planck equations
with non-positive-definite diffusion coefficients.
Since we now have Fokker-Planck equations with
positive-semidefinite diffusion, appropriate stoch-
astic differential equations may be developed.
These may be solved by asymptotic procedures
or numerical simulation.
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