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We present a theoretical model for the interaction of a beam of two-level atoms with a resonant laser beam. It is
shown that the radiation force, while averaging to zero at resonance, produces a transverse spread of the atomic
velocities. If radiative damping is ignored, this spread increases linearly with time and finally saturates towards a
steady value. Although the spread has a quantum-mechanical origin, we show that it is possible, in the limit Sc~,
to describe the phenomenon in terms of differential equations of motion for the atomic translational variables, as in
the classical case. In this model it is also possible to describe the effects of radiative damping, as well as other
additional effects, which may occur in a real experiment. Finally a comparison of our results with experimental data,
recently obtained on an Na atomic beam, has been made. Although an order-of-magnitude fit of the experimental
data could be obtained, the weights of the different causes, reducing the spread, were found to be ambiguous and
have been left partly open.

I. INTRODUCTION

The subject of the atomic motion in a resonant
or nearly resonant electromagnetic field has
recently attracted much attention because of its
important applications, such as, for instance,
the selection of atomic species in an atomic
beam' (isotope separation) and cooling and trap-
ping of atoms. ' The trajectory of an atom can
be affected by its interaction with an electro-
magnetic field through several processes: a
lenslike effect caused by an inhomogeneity of a
standing-wave field, fluctuations in spontaneous
or stimulated emission of radiation after an ex-
citation by a resonant field, and recoil effects in
spontaneous emission processes. The spread of
an atomic beam in the presence of an inhomo-
geneous radiofrequency field was observed for
potassium atoms by Bloom et al. ,' and for CsF
molecules by Hill et gl.4 Deflection of Na atoms
by an intensity gradient of an optical laser beam
was observed by Bjorkholm et al. ,' while the
modification of a laser beam propagation because
of the gradient forces was detected by Tam and
Happer. e The force exerted on the atoms in these
conditions is usually referred to as the gradient
force. Deflection of atoms caused by momentum
transfer through the excitation by a traveling
optical wave was detected in an early experiment
with conventional sources' and later with laser
sources by several investigators. ' Also, the
velocity dependent force exerted by a traveling
wave on resonant ions has been used to cool and

retain ions in a trap. ' In these cases, the force
is referred toas a radiation pressure force. If
the atoms interact with a standing-wave field,
made up of two oppositely traveling waves, the
radiation pressure force at resonance is zero,
since an atom can as well interact with the one
or the other traveling wave, and therefore the
average momentum transferred in these pro-
cesses is zero. In this case, however, quantum
fluctuations of the induced processes occur and
cause a spread of the atomic trajectories. This
process can be related to the scattering process
of electrons in a standing-wave pattern (the so-
called Kapitza-Dirac effect'0), although in the
latter effect the scattered particles have no in-
ternal degrees of freedom. The spread of an
atomic beam interacting with a standing-wave
laser field has been investigated by Arimondo
et gl." Letokhov and co-workers' have proposed
the trapping of atoms in the antinodes of a near-
resonant standing-wave laser field. Different
theoretical models based on semiclassical or
quantum-mechanical treatments of the transla-
tional degrees of freedom of the atoms have been
developed in recent years. " Among the cases
treated, we mention the quantum-mechanical
spread of an atomic beam interacting with a
traveling wave field' or with a standing-wave
field"; or the classical force exerted on the
atoms interacting with a plane traveling wave
or a plane standing wave. ' In a recent series
of papers, Cooks has treated several aspects"
of the problem, with the ultimate goal of unifying
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the various treatments existing in the litera-
ture. '8 A very recent paper has treated the atomic
motion by quantum noise theory. '9

Although in the discussion above we have dis-
tinguished the two cases of atomic motion in an
inhomogeneous resonant field and in a plane,
standing-wave field, both these cases are mani-
festations of the same effect, namely the quan-
tum-mechanical splitting of atomic trajectories
in a classical, nonuniform fieM. In the first case,
nonuniformity comes from variations of the elec-
tromagnetic field amplitude across a Gaussian-
shaped laser beam, while in the second case non-
uniformity is provided by the standing-wave pat-
tern of the field. The effect of splitting of the
trajectories in a nonuniform field is referred to
as an optical Stern-Gerlach effect" (OSGE}. It is
the aim of this paper to show how it is possible
to calculate the atomic-beam tra'jectories in the
case in which the momentum transferred from the
field to the atoms is much smaller than a typical
atomic momentum (the quasiclassical limit);
this case turns out to be of practical interest,
since in most experimental situations the condi-
tions for the applicability of the quasiclassical
limit are well satisfied. %'e want also to showhow
it is possible to introduce in our model several
additional features which are present in actual
experiments, such as, for-instance, the modifica-
tions introduced by the random interruptions of
the phase coherence caused by spontaneous emis-
sion processes or the effects of a standing-wave
Gaussian-shaped laser beam. %'e corn~re also
the experimental data on the spread of an atomic
beam in the presence of a standing-wave pattern,
obtained by Arimondo et a/. "with the OSGE cal-
culations. %e show that their results cannot be
interpreted as a pure OSGE, since other effects
interfere and affect considerably the experiment.
In Sec. II we present, for the sake of complete-
ness, the quantum-mechanical equations of mo-
tion for the OSGE. The density-matrix equations
and their quasiclassical limit are discussed in
Sec. III. In the same section we also show the
quasiclassical calculation contrasted with the
quantum-mechanical ones, and we see that sig-
nificant deviations of the former case from the
latter do not occur under practical laboratory
conditions. In Sec. IV we present the quasi-
classical ca1culations for the experiment of
Arimondo et al. ; the evaluated curve for a pure
OSGE does not fit the experimenta1. data, since
the actual spread of the atomic beam is con-
siderably smaller than in the idealised situation.
Some additional features are then added to the
pure OSGE to make the theory fit the experi-
mental points. This is done in Sec. V, in which

we show how these effects affect the spread of
the atomic beam. Finally, in Sec. VI, we draw
some conclusions and discuss the case treated
in this article.

The equations of the OSGE quantum-mechanical
and semiclassical descriptions are very similar
to those obtained in the nonrelativistic theory of
the free-electron laser. " Thus few arguments,
not relevant to the atomic-beam experiment and
discussed in that context, will not be repeated
here.

II. DERIVATION OF THE OSGE EQUATIONS

Let us idealize the experimental situation as
shown in Fig. 1. The atomic beam is perfectly
collimated and the atomic momentu~ has only a
longitudinal component, P„before entering the
interaction region. The laser field is made up
of two oppositely running plane waves,
—,'Eacos(&uf —kx) and ,'E, co—s(rof+kx), linearly
polarized along the y direction and traveling in
the x direction. They form, therefore, a stand-
ing-wave pattern, which is the cause of the
Stern-Gerlach-type spread of the atomic beam.
The electric field amplitude is assumed to be
constant within a slab of thickness d in the g
direction and zero elsewhere. The field frequency
co is tuned to the atomic transition frequency
a&, =(E,—E,}/5 between the ground level & and
the, excited level a.

From a classical point of view, the atoms do
not experience any force in the radiation field;
at resonance the field induces a dipole moment
in the atom which oscillates 90' out-of-phase
with respect to the inducing field. Under ordinary
experimental conditions, the optical periodic 7.'

is very short compared with the time characteris-
tic of the rate of change of momentum. There-
fore the atom has a constant momentum during
an optical period and, averaging over 7, we ob-
tain that the mean potential energy of the atom is
zero, independently of the position of the atom in
the standing-wave pattern. The same result is
obtained if we quantize the internal degrees of
freedom of the atom, but leave the center-of-

0tector

)b)

L88 f
FIG. 1. Frame of reference and setup of a typical ex-

periment vrith the atomic beam, the laser standing wave,
and the detection apparatus.
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H= Pm+&I(uoo'~ —itQ(o++g )cos&utcoskx,
2m

where P is the atomic momentum along the x
direction,

(2)

is the Rabi flipping frequency, o„o'„and o',
are the Pauli operators associated with the two-
level system, and

To eliminate the rapid oscillations at the optical
frequency in the equations of motion, we trans-
form to the interaction picture

I 0 (t)& = ft(t) I 0 s(t)&,

where

U(t) = exp(t eo, t/2) .
Then the Schrodinger equation can be written

d 1 2ih —
I q &

= p'+ —((u —&o)odt ' 2m 2

(4)

In (a'+a ) coskx iI g, (t)&,j
where the rapidly oscillating terms at twice the
optical frequency have been omitted (the ro-
tating-wave approximation). In the p representa-
tion the wave function can be written as

I g, (p, t)& =a(p, t)la& +b(p, t)lb&.

Then the operator p' acts on a(p, t) and b(p, t) as
a multiplier, while the operator cosh@ acts as a
translator

mass velocity as a classical variable. This has
been shown recently by Cook. '~ To account for
the spread of the atomic beam in the resonant
standing-wave optical field, we therefore need to
quantize both the internal degrees of freedom
and the center-of-mass motion of the atom.

For the one-dimensional problem, the Hamil-
tonian of a two-level atom in a standing-wave
electromagnetic field is given by

Bb P2 h SQih —= b ——(&o —(u)b — [a(p +5k t)Bt 2m 2 4
+a(P —hk, t)].

At resonance, co = w, , these equations can be de-
coupled by means of the replacement of a, b with

e, P defined as

n = (a+b),
2

P= (a- b).1
2

Then the equations for e, P read

(10)

i@ = n — [n(p +8k, t) + n(p —hk, t)],
Be P2 AQ

(11}

ih = P+ [P(P+hk, t)+P(P —hk, t}].BP P AQ

These equations show that the wave function of
the atoms splits into two mutually independent
components which evolve in time under the action
of the potential energies -&@0coskx and
+-,' SQ coskx, respectively. The wave function of
an atom, originally in its ground state, has equal
components e and P. Therefore the single-atom
components are split under the action of the
electromagnetic field inhomogeneity"; hence the
name optical Stern-Gerlach effect. We will see
in the next section how to pass from the quantum
problem to an appearently classical one, in the
limit kk-0. Now we want to show under what
conditions Eqs. (9) can be solved in terms of
known functions, and to obtain a method for the
evaluation of the solution in the general case.

Let us consider the case in which the atomic
sample has been prepared in a well collimated
monochromatic beam, propagating along the z
axis. Then the initial state for the incoming
atoms is a plane wave, with perfectly defined
momentum and total undetermination of the posi-
tion of the atoms. The initial momentum along
the x direction is zero. Momentum transfer
from the field to atoms occurs in integral multi-
ples of Kk. Therefore a(p, t) and b(p, t } in (9}
can be expressed as the discrete series

(cosh@)n(p, t) -=—,' (ei™+e"*)n(p, t)

=-,' [n(p +hk, t) + n(p —Kk, t)]

n =a, b. (8)

a(p, t) =5k g a„(t)5(p —nhk},

b(p, t) =Kkg b„(t)6(p —nhk),

(12a)

(12b)

Projecting Eq. (6) onto Ia&, Ib&, we have

ih = a +—((u, —&u)a — [b(p +ilk, t)
Ba P2 5 kG

+ b(p —hk, t)], (9}

with the initial conditions, at time t =0 when the
atoms enter the interaction region

a„(0)=0,

b„(0)=1,
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I!a„(t), for n odd

x„(t)=i
!Ik„(t), for n even

we obtain from (9) an infinite set of differential-
difference equations

dx n2k 2k 2 SA
ik " = x,(t) — [x„„(t)+x„,(t)),

with

x„(0)=5, „.

(14)

(15)

Equations (14) can be solved in terms of known

analytical functions if the interaction time is so
short that only a few translational states are
reached (starting from the state n =0) by the

atoms, and for those states the kinetic energy
n'K'k'/2m is negligible compared with the inter-
action energy tIA/4. Then one can see that the
solution to (14), (15), when the kinetic energy
terms are ignored, is given by22

x„(t)=i "Z„( At 2/), (16)

where J„ is the Bessel function of integer order.
Therefore, after an interaction time r, 2n

translational states are occupied, with

n.,„-A7/2,

since the atoms are initially in their ground state.
One can also easily see that the sum in (12a)
ranges over odd values of n, while (12b) ranges
over even values of n. Therefore, setting

energy is comparable with the interaction energy.
Therefore, whenP'/2m-RA/4=ebs/4, the
probability amplitudes x„are no longer expressed
by Eqs. (16}. To our knowledge no analytical
solution of Eqs. (14) exists and a numerical inte-
gration must be carried out in order to obtain the
actual probability distribution of translational
states. "

So far we have described the quantum-mechani-
cal treatment of the OSGE; under the action of a
nonuniform electromagnetic field the wave func-
tion of each single atom of the beam is split
symmetrically; the average transverse momen-
tum of the atoms is still zero, but e and P de-
scribe two trajectories symmetrically spread
around the unperturbed path. The whole process
is a coherent one; no phase-interruption mecha-
nism, such as spontaneous decay processes or
phase fluctuations in the laser beam have been
introduced. The full quantum process, therefore,
would require keeping all terms in Eqs. (16). We

will show, in the next section, how we can avoid
such a time consuming calculation, just retaining
the characteristic features of the OSGE, and dis-
carding all quantum effects which would be dif-
ficult —if not impossible —to detect.

III. DENSITY MATRIX EQUATIONS AND THE
QUASICLASSICAL LIMIT

A. Theory

The density-matrix description is carried out
in the representation (10). Indeed, the states
I a&, I P&, defined as

and the probability distribution I x„l' has its
maximum value just around n . Using Eqs.
(16), the spread of transverse momentum (p'&

can be easily evaluated giving

le.&=
~2 (la&+lk&),

IP& =
~2

{la&-lb&),

(19)

(20}

(18)

Then we see that the atomic spread in the trans-
verse direction increases linearly with the inter-
action time, and, also, depends linearly on 0,
i.e., on the electric field amplitude of the laser
beam. Increasing the interaction time w, a
situation is reached in which translational states
of the atoms are occupiedfor which the kinetic

I

o, l o& =I o),

o, IP& =- IP&.

(21)

In this representation, the equation of motion
for the density matrix p{x„x„t) describing both
the internal and the translational degrees of
freedom is given by

are eigenstates of the operator 0, =0'+o which

appears in (6),

ig —p(x„x„t)=-,—,p(x„x„t) +
2

coskx, lp(g, x„ t) —coskx, p(x„x„t) (22)2 ly 2~ p

where
(p~~(xg, xs, t) pas(xi~ "s~ )'i

I,ps (xx. xs. t) pss(xi, xs t) ~
'

(23}

In a normal Stern-Gerlach experiment, the off-
diagonal elements of the density matrix are zero
before the interaction with the magnetic field,
because the atoms have equal probability to be
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spin up or spin down, independently of the direc-
tion of the axis of quantization. In our actual
problem, however, this is not the case. Since at
f =0 the atoms are in their ground state, ) f)&, the

two states I o(& and IP& have, at f =0, the same
population —,

' (as in a normal Stern-Gerlach experi-
ment), but there is complete coherence between

them. %'e shaQ see, however, that coherence ef-
fects are negligible in the quasiclassical limit.

Introducing the center of mass X and relative
eoordiIlate xq

where we have introduced the differential' op-
erator

(29)

%'e are now in a position to take the quasiclassieal
limit in Eqs. (28). Expanding the right-hand sides
(rhs) of Eqs. (28) in powers of 5k, and keeping

only the terms linear in Sk, we obtain for the

diagonal elements p, pe&

X =-,'(x, +x,), (24) p „(X,P, t) =- sinkX —p„„(X,P, f),

~Q

we find the equations for p(X, x, f) ~t p()8(X, P, &} = sinkX p(s(X, P, f).
(30)

8 @ 8 8 kx
l —p8t " m 8x 8X 2p —& sin —sinks

8 5 8 8 kx
N —p8t " m8x 8X ~ 2p +csin —sinaXpss

(28)

8 I 8 8 A'x
g@ —p~s = ——— p~s +0 eos coskXp~e, ~

In so doing, we consider the kick received by the

atom in each elementary process as an in-
finitesimal. modification of the atomic momentum,
thus regarding the atomic momentum as a con-
tinuous variable, instead of a discrete one like in

Eqs. (28).
Equations (30) allow a remarkable interpreta-

tion of the process; indeed, since

8 5 8 8 kx
ik —pe8t ~ m 8x 8X p~ —~ cos cos copse2

8N'
—IfkQ sinkX = -/xk80 sinkX =— (31)

which satisfies the set of (uncoupled} differential
equations

p (X,P, t)= ——sinkX p«X, P+, f)

-p X,I' ——,t
pss(X, P, t)= —stsPX pss X,P+ —,t)

—pss X,I —,t

—P „(X,P, t)= ——oosSX P„s X,P+, t)
Ak

(28)

Qt 2Ps (X,p, t)=
S

oosSX:Ps„X,P+ —,t)
+ps„X,P ——,t8cf t 2 0 ) 2

To perform the passage. to the quasiclassical limit

in the translational degrees of freedom of the

atoms, it is convenient to introduce the %igner
representation of the density matrix

p(X, P, t) ~ f s ' tp(xst)Ps-*(PS), , ,

where g'(X) is the classical potential energy of
the atom in the electromagnetic fieM, Eqs. {30}
describe the particle s trajectories in a Stern-
Gerlaeh-type experiment under the influence of

a gradient field; the trajectories of particles in

the e and in the P states split.
In our process, however, the gradient field is

periodic in space; therefore a space translation
of one-half wavelength would change trajectories
of e states into trajectories of p states, and vice
versa. Furthermore, the particles have been
assumed to enter the interaction region with a
sharp distribution in transverse momentum; i.e. ,
they have a wide {much larger than 2v/k) dis-
tribution in X. Therefore, when replacing the

diagonal density matrix elements with a statis-
tical ensemble of classical particles, we have to
introduce a broad distribution in the transverse
coordinate X. This means that the characteris-
tics of Eqs. (30) which describe the classical
trajectories have their initial points distributed
over a region much larger than 2v/k. With these
initial conditions, the O.-state and P-state tra-
jectories will differ only by an unessential shift
in their starting point. This difference will of
course disappear in the averaging over the sta-
tistical ensemble.

The characteristics of Eqs. (30) are given by
the set of diffex ential equations
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dX
m =P,

(32)

beam (see Appendix A). Other effects will be
discussed as well in the next sections.

B. Numerical calculations

dP kkQ
mkX,

where the + signs in front of —,'@kAsinkX has been
dropped in view of the above discussion. Equa-
tions (32) describe the motion of a particle in a
periodic potential; they are pendulum equations.
Integration of Eqs. (32) is much simpler than the
method based on Eqs. (14}of Sec. II, and the re-
sults are very close; as will be shown in the next
section, the only difference is a ripple in the
probability distribution which can hardly be de-
tected in experiments.

We consider now the quasiclassical limit of the
other equations, i.e., the equations for the off-
diagonal elements p 8 and p8 . Here the coef-
ficient of the linear term is zero. We are there-
fore left with

We have performed numerical calculations on
the fully quantum-mechanical equations [Eqs.
(14)], and on their corresponding quasiclassical
analog [Eqs. (32)]. Introducing the recoil kinetic
energy & in units of angular frequency,

e =1k'/2m (34)

d 0
Xn S Xn Xn+l T +X„ ~ T (36)

while Eqs. (32) become

and an interaction time in dimensionless units,

T =~t,

we find that both Eqs. (14) and (33) scale with the
same factor, 0/e, i.e., the ratio between the
interaction energy 0 and the recoil kinetic energy
e. Indeed, Eqs. (14) can be written as

—p ~=-iQcoskXp 8,
{33}

d$
dT (3'I)

pg~ =zQ coskXp 8
S

[note that g, being contained in 0, does not dis-
appear from (33}as it does in Eq. (30}because
of (31)].

The atomic momentum P enters Eqs, (33) as a
parameter because the operator a/sP does not
appear. The characteristics of Eqs. {33)are
therefore straight lines, starting at X =Xo (with

X, being within the range of the initial condi-
tions), and P =P(0) =0. We are led to the follow-
ing conclusion: In the quasiclassical limit the
"coherence" p 8, p8 between n states and P
states cannot be defined for particles which
undergo deflections by the gradient field. This
fact can be interpreted in simple terms: Strictly
speaking, the classical limit of the motion of the
atom can be carried out only if the dearoglie
wavelength of the atom is small compared with the
wavelength of the electromagnetic field, i.e.,
P»@k. In the limit Sk-0, however, this is true
for all particles, save for those which are not
deflected, i.e., for those particles which keep
their zero transverse momentum. Thus co-
herence, which is a quantum-mechanical feature,
survives for these particles only. This is the
classical reminiscence of the quantum-mechanical
forward diffraction cone in wgich the incoming
coherence survives.

Within this simple quasiclassical model it is
possible to discuss all the effects of spontaneous
emission processes on the spread of the atomic

dQ 0
di 26

= —sing, (38)

with

q =Plef,
$= kX.

(39)

Figure 2 shows the probability distribution Ix„l,
as a function of n, obtained from a numerical
integration of (36}, and the probability distribu-
tion f{Q) obtained from the quasiclassical Eqs.
(3'I) and (38). The latter one has been evaluated

2
f x„

0.05--

. i il. . ,[t.i. i
'

I mi. i. . l, li i.

-50 -10 10 50 P/4 k

FIG. 2. The momentum distribution of the OSGE. The
continuous curve is obtained from a quasiclassical cal-
culation, while the discrete spectrum is obtained from
the fully quantum-mechanical calculation. The two spec-
tra are obtained with Ot /2 =50 and QA = 2 x 104. With
these values the spread is in the linear regime of Eq.
Q6).
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FIG. 4. Experimental data for the spread of the Na
beam measured in Ref. 11; the dashed line passing
through the experimental points has been reported in
that reference. The continuous line is the theoretical
curve of the OSGE. The scale on the abscissa axis is
proportional to the square root of the applied laser pow-
er, i.e., the electric field amplitude.

Ref. 11. We see that the experimental values are
less by a factor of -4 than the theoretical ones,
thus proving that the experiment cannot be in-
terpreted as a pure OSGE.

On the other hand, in the experiment the co-
herence decay rate was smaller than the stimu-
lated transition rates, which rules out the ran-
dom walk model (see Appendix B) as a possible
interpretation of the measured spread. Further-
more, the random walk model gives, as shown
in Appendix B, a linear dependence of the spread
on the electric field amplitude

(4O)

which does not display the bend appearing in the

experimental curve.
As we shall see in the next section, however,

several additional effects, such as spontaneous
emission processes or the Gaussian profile of
the laser beam, combine to suppress the effective
spread obtainable in actual experiments.

normal incidence to the laser beam. These ef-
fects affect the spread of the atomic beam, and
can reduce it by a factor of up to one order of
magnitude.

A. Spontaneous emission processes

We show in Appendix A that spontaneous emis-
sion processes can be included in our model cal-
culations. Theireffect is to reduce the spread
of the atomic beam, since they interrupt the
coherence between translational and internal
degrees of freedom, thus preventing the quanta
of atomic momentum picked up from the field to
add up coherently. We have numerically analyzed
the simple case of the transit time comparable
or shorter than the spontaneous lifetime 1/y, so
that the stochastic function lt(t) can be replaced
by its correlation function, as discussed in Ap-
pendix A. We report in Fig. 3, curves (c), (d),
and (e), the spread obtained as a function of
r =et for several values of y/4e. The oscillations
of the spread before reaching its saturated value
are damped and, also, the final value is reduced
considerably.

On Fig. 5 we report the saturated valued of the
spread as a function of the electric field ampli-
tude for,several values of y/4e, for the typical
conditions of the experiment on the Na beam of
Ref. 11. The shape of the curves change when y
is increased until a situation is reached in which
the spread'becomes linear in the electric field
amplitude [curve (d)j over the whole range of

3
E
E

~ (mW)

V. OTHER EFFECTS WHICH AFFECT THE SPREAD
OF THE ATOMIC BEAM

I I I

5 10 20
I I I I

40 60 80 100

We have also computed the quasiclassical
OSGE with the inclusion of several other effects,
namely: (i) spontaneous emission processes;
(ii) a Gaussian profile of the laser beam; and

(iii) misalignment of the atomic beam from the

FIG. 5. Theoretical curves for the OSGE in the pre-
sence of a damping mechanism versus the laser power
P in the typical conditions of the Na beam experiment.
The curves (a), (b), {c), and (d) were obtained for y/4e
=0, 49, 200, and 500, respectively. The scale on the
abscissa axis is the same as in Fig."4.
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values of go reported. Thus, for large values of

y, we get the same linear dependence on $0 which
we have obtained with the random walk model.
However, even for those values of y, if the elec-
tric field amplitude is increased (beyond the val-
ues reported in Fig. 5) the spread saturates
again and approaches the value obtained in the
absence of damping. Therefore, for large values
of $0 all the curves in Fig. 5 would merge into
the same curve.

B. Gaussian proNe of the laser beam

Up to now, the electric field amplitude has been
assumed constant in the interaction region, and
zero elsewhere. However, under experimental
conditions, the electric field amplitude varies
smoothly across the laser beam, and an ad-
ditional effect on deflection occurs. This effect
can, in principle, either increase or decrease
the spread of the atomic beam, depending on the
experimental conditions. We have evaluated this
additional effect just accounting for an electric
field amplitude (or Rabi frequency 0) which varies
according to a Gaussian law across the beam, or,
since the atoms traverse the light field with their
longitudinal velocity which remains unaffected
by the interaction with light, we have introduced
a time-varying Rabi frequency 0 in Eqs. (33).
The Gaussian beam waist and the peak amplitude
of the field were chosen in such a way that the

energy carried by both running waves was un-

changed, and the time width of 0 was chosen to
be equal to the interaction time of the square
pulse shape used earlier. We have found that the
spread of the atomic beam is significantly re-
duced when the square profile is replaced by a
Gaussian shape. The reduction varies from 10%
when 0/e -10' to 40% when 0/e-2X10'. These
results have been obtained in the absence of re-
laxation. The saturated value of the spread vs
the electric field amplitude maintains, after re-
duction, the same shape as in the case of square
pulse prof iles.

This behavior is interpreted observing that the
much deflected particles have undergone a multi-
photon process of very high order. The process
depends on a very high power of the field dis-
tribution and hence the main contribution comes
from the center of the laser Gaussian beam. For
these particles the effective interaction time is
greatly reduced and the spread of the atomic
beam decreases.

C Misalignment of the laser beam

If the angle between the longitudinal axis of the
atomic beam and the direction of propagation of
the laser beam is different from 90' by a small

amount, n say, then misalignment effects arise.
Also this case can easily be treated in our model,
since it is just necessary to integrate Eqs. (32)
starting from an initial velocity different from
zero and equal to the component of the undeflected
atomic-beam velocity along the laser beam axis.
We have evaluated this effect also with the in-
clusion of a damping rate y in the same limits
of validity discussed above in Sec. VA. The re-
sults are reported in Fig. 6. In the absence of
relaxation (y =0) we have found that the atomic
spread increases at small values of the mis-
alignment angle e, because the initial atomic
momentum in the x direction modifies the phase
relation between the atomic wave function and the
driving electric field. At large misalignment
angles a, however, the spread is significantly
reduced. Therefore, the maximum value of the
spread is obtained for a value of o. different from
zero. When the relaxation mechanism is intro-
duced, we see that it acts by reducing the spread
for all values of a. Also, the enhancement of-
the spread at small values of a (40) tends to
decrease, and eventually it disappears for in-
creasing values of the damping constant y.

VI. CONCLUSIONS AND DISCUSSION

We have shown that the quasiclassical limit of
the OSGE contains its most important features
and gives essentially the same results as the
fully quantum- mechanical desc ription. Those

hk
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FIG. 6. Plot of the atomic momentum spread, in hk
units and measured in the saturation regime, versus the
misalignment parameter of the direction of the Na beam.
In the lower abscissa axis the misalignment angle n is
reported; in the upper abscissa axis the initial atomic
momentum along the propagation direction of the laser
beam is reported. Curve (a) is obtained in the absence
of damping mechanism an'd curve (b) is obtained with
y/4e =98. The Rabi flipping frequency is such that Q/e
=4x104.
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features which are lost in the passage to the
quasiclassical limit are either not important or
totally undetectable. Furthermore, the quasi-
classical model can be worked out in a much
simpler way than the quantum-mechanical model,
and several additional effects which cannot be
avoided under actual experimental conditions can
be included in the model in a natural way.

Within our quasiclassieal model me have also
compared the behavior of the spread of the atomic
momentum as a function of the electric field
amplitude with the experimental data obtained
recently by Arimondo et c/."for the spread of
an atomic Na beam. We have found that the ex-
perimental results cannot be interpreted as a
pure OSGE, since the observed spread is less by
a factor of -4 than the spread calculated with the
quasich. ssieal model under the same conditions.
On the other hand, the actual experimental con-
ditions would force us to draw the same conclus-
ion, since the complicating effects discussed in
Sec. V could not be avoided and certainly had af-
fected the observed spread. In particular, the
interaction time of that experiment was long
enough that phase-interrupting spontaneous emis-
sion processes were not negligible. Since the
radiative damping occurs at a rate of y„/4, where
y„' is the upper level radiation lifetime, an
average number of 10 spontaneous emission pro-
cesses occur during an interaction time. We have
seen that these processes cause a net decrease
of the spread, and this could bring the theoretical
curve and the experimental results into better
agreement. But this effect is by no means the
only additional effect to the OSGE. Indeed, with a
properly chosen value of p, including other damp-
ing mechanisms, such as, for instance, laser
fluctuation effects, an agreement with the experi-
mental data couM be obtained as an order-of-
magnitude fit, but the theoretical curve w'ould be
a straight line [as a function of 88; see Fig. 5,
curve (d), while the experimental points display
a clear saturation behavior (see Fig. 4)j. There-
fore, the other two effects mentioned in See. V
must be affecting the observed spread. Un-

fortunately, the angle of misalignment of the
geometrical configuration and the parameters of
the Gaussian beam waist were not recorded with

a sufficient degree of accuracy to justify a de-
tailed fit to the experimentally observed spread.
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APPENDIX A: INCLUSION OF SPONTANEOUS
EMISSION PROCESSES IN THE QUASICLASSICAL

MODEL OF OSGE

Pna = 8 (Pss+Pya) =- 4 &(Pay+Pea) y

Pss =- 8(Pea+Pna) =+~ ~(Pss+Pno) ~

or, in terms of p~~ and p88

Paa =-~&(Paa —Pss}~

Pss + y (PBB Pna) ~

(AS)

(AS)

The inclusion of atomic recoil in the spontaneous
emission process would modify Eqs. (AS}."
However, me do not consider the change in the
atomic momentum due to the spontaneous emis-
sion processes because we consider only the case
mhere a few spontaneous processes occur, while
the atoms undergo many induced ones. Further-
more, the momentum transferred to the atom
in a spontaneous emission process has no privi-
leged direction, so that its component along the x
axis is negligible. Here the spontaneous emis-
sion processes are considered only in so far as
they interrupt the phase of the coherent walkoff
of the atom.

In the quasiclassical limit the momentum trans-
ferred in a spontaneous emission process is
a fortiori negligible. Indeed, it is easy to see
that when Ik-0, the damping is still described
by the rhs of Eqs. (AS), with the density matrix
elements evaluated at X,I'." The effect of spon-
taneous emission can therefore be described as a
relaxation process in which e states turn into P
states and P states into o. states. Owing to this
fact, each elementary spontaneous emission pro-
cess inverts the sign of the force acting on the
classical particle. If many elementary processes
occur before the atom is appreciably displayed
from its position X(t), the force acting on it will
average to zero; thus we recover the well-known
result that the average force exerted by a clas-
sical standing-wave field tuned to resonance with
the atomic transition is zero. ~~

Fluctuations of the force around its average

If me ignore the atomic motion and the inter-
action of translational degrees of freedom with

the internal degrees of freedom, we ean easily
derive the rate of change of p ~ and p88 caused
by radiative damping of the upper level; me have

1 1
Paa =2+8(Pa~+PBa) ~

(Al}
1 1I

Pss = 2 2u'uo+Paa) ~

Denoting the rate of radiative damping of the

upper level by y, me therefore have



908 E. ARIMONDO, A. BAMBINI, AND S. STENHOLM

value will cause the atoms to spread around the
unperturbed trajectory P =const, in such a way
as to leave unchanged the average transverse
momentum. To describe this Brownian-type
motion, we can write the stochastic equation of
motion derived from (32):

y(t) sinkX,
dP SOQ

(A4)

where y(t) is a stochastic function of t, which can
assume only the values +1 and -1. This function
averages to zero

&x(f)& =0

and is taken to have the correlation function

(y(t)y(f+7)) =exp(- y7/4).

(A5)

(A6)

This simple model is valid only if Z is smaller
than the rate at which stimulated emission-
absorption processes occur.

To obtain an estimate of the influence of the
damping on the spread of atomic momentum in the
case in which the laser beam is confined to a
slab of finite thickness as discussed in Sec. Q
and the interaction time is comparable to or
shorter than the spontaneous emission lifetime,
we can replace the stochastic function y(t) in

(A4) with its correlation function (A6). The re
suits of such a calculation are described in Sec.
VA.

APPENDIX B: THE RANDOM WALK MODEL

We want to show here a method for evaluating
the atomic momentum spread, under the assump-
tion that the coherences of the internal states
e, P and the translational ones have short life-
times, compared with the average time interval
between successive emission and absorption pro-
cesses. In this case, the process is fully ran-
dom —in contrast with the complete coherence of
the process described in Sec. II—and we obtain
a Markov random walk model. In this model it
is not necessary that the photon momentum @A

be small compared with the atomic momentum,
as in the quasiclassical limit. It only requires
a fast relaxation mechanism which destroys the
coherences of the interaction process.

The random walk model can be evaluated as
follows. Starting from P =0 in the lower level,
the atom acquires a momentum P =hk or P =- Ik
from the field, depending on which running wave
has excited the atom to the upper level. Then a
stimulated emission occurs, and the atom reaches

the momentum P =25k or P =0 and P =0 or
P =- 2kb depending on the momentum acquired
in the absorption process. The atom is now again
in the lower state, and the process goes on step
by step (see Fig. 7).

The probability of reaching a certain momentum
nkvd after m steps, C„, is proportional to the
number of ways we can end up at this point,
P„. This probability distribution is easily seen
to be given by the Pascal- Tartaglia triangle,
i.e., P„"=(P~). The probabilities C„", therefore,
can be obtained from P„after a proper normaliza-
tion, and satisfies recurrence relations

C„""= ~(C„„+C„,), (B1)

sC(m, n) 1 8'C(m, n)
Qm 2 Qg2 (B3)

where m now corresponds to the time t and n
corresponds to the atomic momentum P. This
shows the relationship with the Brownian mo-
tion. The diffusion equation (B3) can be solved
easily, and gives for C(m, n) a Gaussian dis-
tribution. Then the quasiclassical limit, in this
case, is equivalent with the central limit theorem,
according to which a binomial distribution tends
towards a Gaussian distribution. The mean-

I
I

«4
I
I

«2
I l
I

2

FIG. 7. Pascal- Tartaglia triangle representing sche-
matically the time evolution of the atomic momentum in
the random walk model.

which is the mathematical formulation of the
tree diagram of Fig. 7. Thus we have obtained
the distribution of transverse momentum without
the assumption that the photon momentum kk
is small compared with P.

However, in the quasiclassical limit hk-0,
the relations (Bl) assume a particularly ap-
pealing form. Writing (Bl) using a second-order
dif ference

C„"—C„=—,
' [(C„„-C„)—(C„—C„,)j (82)

and taking the continuous limit, we find the dif-
fusion equation
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square deviation of the Gaussian distribution is
given by

implies

(Pa} =CZa7, (Bs)
n2 =2Dm =m. (a4}

Under the assumption specified above that the

transition rate is taken to be proportional to E20

and the interaction time is denoted by 7, (a4)

where C is a constant. The present diffusion
approximation is equivalent with a simplified
version of the Fokker-Planck approach of the last
reference in Ref. 16.

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970); 25, 1321
(1970); A. F. Bernhardt, D. E. Duevre, J. R. Simpson,
and L. L. Wood, Appl. Phys. Lett. 25, 617 (1974);
A. F. Bernhardt, Appl. Phys. 34, 19 (1)76); G. A. De-
lone, V. A. Grinchuk, A. P. Kazantsev, and G. J. Sur-
dutovich, Opt. Commun. 25, 399 (1978).

2T. W. Hansch and A. L. Schalow, Opt. Commun. 13, 68
(1975); V. S. Letokhov, V. G. Minogin, and B.D. Pav-
lik, ibid. 19, 72 (1976); V. S. Letokhov, V. G. Minogin,
and B.D. Pavlik, Zh. Eksp. Teor. Fiz. 72, 1328 (1977)
[Sov. Phys. —JETP 45, 698 (1977)].

M. Bloom, E. Enga, and H. Lew, Can. J. Phys. 45,
1481 (1967).

R. M. Hill and T. F. Gallagher, Phys. Rev. A 12, 451
(1975).

5J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B.
Pearson, Phys. Rev. Lett. 41, 1361 (1978); Proceed-
ings of the Fourth International Conference on Laser
Spectroscopy, Rottach-Egern, 1979, edited by H. Wal-
ther and K. W. Rothe (Springer, Berlin, 1979).

8A. C. Tam and W. Happer, Phys. Rev. Lett. 38, 278
(1977); Proceedings of the Third International Confer-
ence on Laser Spectroscopy, Jackson Lake Lodge,
1977, edited by J. L. Hall and J. L. Carlsten (Springer,
Berlin, 1978).

~O. R. Frisch, Z. Phys. 86, 42 (1933).
R. Schreder, H. Walther, and L. Woste, Opt. Commun.
5, 337 (1972); J. L. Picque and J.L. Vialle, ibid. 5,
402 (1972); J.E. Bjorkholm, A. Ashkin, and D. B.
Pearson, Appl. Phys. Lett. 27, 534 (1975); N. D. Blas-
kar, B.Jaduszliwer, and B.Bederson, Phys. Rev.
Lett. 38, 14 (1977); see also A. F. Bernhardt et al. ,
Ref. 1.

D. J.Wineland, R. E. Drullinger, and F. L. Walls,
Phys. Rev. Lett. 40, 1639 (1978); W. Neuhauser,
M. Holenstatt, P. E. Toschek, and H. G. Dehmelt,
ibid. 41, 233 (1978); Proceedings of the Fourth Inter-
national Conference on Laser Spectroscopy Rottach-
Egern, 1979, edited by H. Walther and K. W. Rothe
(Springer, Berlin, 1979), p. 73; R. E. Drullinger

and D. J.Wineland, ibid. , p. 66.
For a recent review on the Kapitza-Dirac effect and
experiment, see Y. W. Chan and W. L. Tsui, Phys.
Rev. A 20, 294 (1979).

~~E. Arimondo, H. Lew, and T. Oka, Phys. Rev. Lett.
43, 753 (1979); Proceedings of the Fourth International
Conference on Laser Spectroscopy, Rottach-Egern,
1979, edited by H. Walther and R. W. Rothe (Springer,
Berlin, 1979), p. 56.
V. S. Lethokov and B. D. Pavlik, Appl. Phys. 9, 229
(1976); V. S. Lethokov and V. Minogin, Phys. Lett.
A 61, 370 (1977); Zh. Eksp. Teor. Fiz. 74, 1318 (1978)
[Sov. Phys. —JETP 47, 690 (1978)];Appl. Phys. 17, 99
(1978); J. Opt. Soc. Am. 69, 413 (1979); see also Ref.
2.
For a review see A. P. Kazantsev, Usp. Fiz. Nauk.
124, 113 (1978) 'Pov. Phys. Usp. 21, 58 (1978)].

~4J. L. Picque, Phys. Rev. A 19, 1622 (1979).
~5R. J. Cook and A. F. Bernhardt, Phys. Rev. A 18, 2533

(1978)~

~S. Stenholm, Appl. Phys. 15, 287 (1978); Phys. Rep.
C43, 151 (1978); S. Stenholm, V. G. Minogin, and
V. S. Letokhov, Opt. Commun. 25, 107 (1978); S. Sten-
holm and J.Javanainen, Appl. Phys. 16, 159 (1979).

~~R. J. Cook, Phys. Rev. Lett. 41, 1788 (1978); Phys.
Rev. A 20, 224 (1979); 21, 268 (1980); Phys. Rev.
Lett. 44, 976 (1980).
R. J. Cook, Phys. Rev. A 22, 1078 (1980).

~9J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606
(1980).

2~P. Knight, Nature 278, 14 (1979); see also Refs. 3, 4,
and the first paper by Cook in Ref. 17.

2~A. Bambini and S. Stenholm, Opt. Commun. 25, 244
(1978); 30, 391 (1979); A. Bambini, A. Renieri, and
S. Stenholm, Phys. Rev. A 19, 2013 (1979).

22A derivation of Eqs. (16) is given in Ref. 15.
See the first reference in 16 for a detailed treatment.

+See, for instance, the second paper by Cook in Ref.
17,


