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The consequences of the assumption that, under prescribed experimental conditions, the ions emerge randomly

excited from the foil are examined using the maximum entropy principle. For that purpose constraints are identified

by examining the time-resolved intensity of the electromagnetic radiation emitted by the ions after the foil. This

leads to the most likely level or multiplet population density matrix compatible with the experimental information.

The main consequences of the foil excitation mechanisms are accounted for by incorporating the framework of

atomic structure into our information-theoretical approach. In the case of transitions in individual Rydberg series it

is shown that for large n and a given l the level population functions decrease as n* ' and depend universally on the

kinetic energy of the incoming beam. It is also shown that the identification of the radiation from the emerging ions

in terms of one-electron states leads, according to the maximum entropy principle, to a unique factorized

representation of the probability that an ion has a given configuration immediately after the foil. This representation

is used for a derivation of the charge distribution which for heavy ions is shown to be approximately Gaussian or

chi-squared in accordance with experiments. The passage of He+ ions through the foil is treated as an example of a

consistency test based on the information-theoretical derivation of the charge distribution. Following Levine and co-

workers a surprisal analysis of level population functions is suggested as a well-established alternative to detailed

models of foil excitation which usually invoke perturbation theory and consequently often have an ill-defined range

of validity.

I. INTRODUCTION

In beam-foil spectroscopy relatively little is
known about the excitation mechanisms in the

foil. ' This question is, however, relevant both for
atomic lifetime experiments and for radiation

physics in general, dealing particularly with the

penetration of ions in condensed media. " In or-
der to learn about the excitation mechanism one

may study not only the characteristic radiation

and electron emission pattern from the ions after
the foil but also from the inside of the foil. 4 This

paper deals solely with the analysis of post-foil
measurements of the electromagnetic radiation

and of the charge of the ions.
The foil acts as an abrupt excitation agent for

the incoming ions and many processes like elec-
tron capture contribute to the final outcome. As a
consequence of the low density of the beam (typi-

cally 10' ions/cm') the procedure of excitation

which determines the level population of the ions

immediately after the foil can be looked upon as
an experiment of repeatedly exciting an ion into

various states of variable charge ranging in prin-

ciple from -1 to +Z. With this in mind we shall

address ourselves to the general question of the

possible information content in post-foil meas-
urements regarding the excitation process. Our

analysis is based on information theory' and on

the application of the maximum entropy principle
to the derivation of the level populations and the

charge distribution. This implies the assumption

that the foil excites the ions completely at random

to the available states which are subject to var-
ious constraints imposed by the experimental ar-
rangement and by the atomic structure. As a re-
sult general predictions about the level populations

and charge distribution are obtained. On the de-

tailed level all experimental facts may not nec-
essarily fit the information-theoretical distribu-

tion thus revealing dominant nonrandom features
in the excitation process.

In Sec. IIA we shall introduce the level-popula-

tion density matrix p which is a function of the

kinetic energy and charge of the incoming beam

and which describes the distribution of the excited

states in the ions immediately after the foil. The

relationship' '" between p and the time-resolved
intensity is examined in the case of cylindrical
symmetry including the beat phenomenon. This
leads to the identification of the constraints for
the information-theoretical analysis of the level

populations in Sec. IIB. Our analysis shows ex-

plicitly how symmetry should be included in the

constraints, a topic which has apparently not been

discussed in the information-theoretical literature.

In Sec. III A we apply our results to the character-
ization of the global behavior of level population

functions of high Rydberg levels. A statistical
derivation of the asymptotic level population is
also given as an alternative to the usual arguments

invoking perturbation theory. "" In Sec. IIIB 1

we introduce a factorized representation for the

classification of level populations. The probabil-
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ity that an ion emerges from the foil with a given
configuration is shown to be a product of one-elec-
tron probabilities if and only if the maximum en-
tropy principle is fulfilled. The factorized level
population is used in Sec. IIIB2 for a derivation
of the initial charge distribution which is shown
to be related in heavy ions to Gaussian or chi-
squared distributions. It is also indicated how
our results may be used to link experimental
level populations to measured charge distribution
in order to test the validity of the random-excita-
tion hypothesis within the factorized-population
framework. The passage of He' ions through the
foil" "is treated as an example by including the
autoionization rate explicitly.

We shall conclude our paper with a brief dis-
cussion on the uniqueness of the maximum entropy
principle with respect to predictions about the
random-excitation hypothesis. On the practical
level a surprisal analysis"" of post-foil data is
suggested. The population of Rydberg levels is
treated as an example.

where F is the matrix of the detector operator F
(Ref. 16) which is specified by the experimental
arrangement.

For electric dipole transitions and an ideal po-
larization sensitive detector F is given by

F=(c r'}P&(r', r)((.* r), (3)
where 7 is a (complex) polarization vector and
P&(r, r) the projection operator pertaining to all
the unobservable final states. ~ Since the measure-
ments do not resolve the magnetic substates, Pf
includes summations over complete sets of mag-
netic quantum numbers and, as a consequence, it
is a scalar operator. This property allows f(t) to
be expressed, after a recoupling procedure, as
the weighted sum

x Tr fp(t)Ro(»)(r', P&r)]

of the polarization factors"

II. INFORMATION- THEORETICAL POST-FOIL
ANALYSIS (4)

A. %he relationship between level population
and observed intensity

We assume that the foil is perpendicular to a
uniform ion beam and that there are no external
fields. After suffering various inelastic collisions
in the foil and its vicinity the ions usually emerge
somewhat deflected and with less kinetic energy
into the region of observation. They may have
lost or gained electrons and emit electromagnetic
radiation which is observed in a given direction
and with a given polarization analyzer arrange-
ment. By varying the distance from the foil a
time-resolved intensity distribution is obtained.

It is in principle impossible to separate the de-
cay from the foil interaction. Nevertheless the
high velocity of the ions makes it meaningful to
define a level population density matrix p~(T, Q)
which refers exclusively to the excitation by the
foil. The matrix p~ depends on the kinetic energy
T and charge Q of the incoming ion beam and de-
termines at t =0 the initial condition for the den-
sity matrix p(t) which describes the subsequent
photon emission and autoionization including cas-
cade effects. Consequently the matrix p(t) satis-
fies a Liouville equation in which the Hamilton
operator refers solely to the free ions, the radia-
tion field and their interaction. If p~ is known,
then p(t} completely determines the time-resolved
intensity distribution

I(t) = Trp(t)E,

The matrix elements, D(o»! }(e), of finite rotations
transform the dynamical tensor components A'o». '
from the collision frame with the z axis parallel
to the beam axis into the detector frame with the
z axis parallel to the direction of observation.
The weight factors Tr[p(t)R(o», '(r', Ptr)] can be fur-
ther simplified by explicitly restricting the trace
to the initial states I involved in the observed
transition and by taking the eventual symmetry of
p(t) with respect to the collision frame into ac-
count.

In the following we shall consider two limiting
cases of Eq. (3), namely a transition y', J,—yt, J&
between two levels and a multiplet y,'S,L] y, SfLf.
Here y, refers to the configuration of an ion with
charge q and to any quantum numbers which may
be needed to describe a level or multiplet in addi-
tion to the angular momentum quantum numbers.
We shall neglect for the present purposes the
hyperfine interaction so that p(t) is given either
with respect to a (~ y,JM})or (~ y, SLM+M~}}trep
resentation in the collision frame.

It is usually assumed that in the perpendicular
situation the ion beam is cylindrically symmetric
after the foil. This assumption which is by no
means self-evident simplifies Eq. (3} consider-
ably ~0

Cylindrical symmetry requires that p„, ~.~, „»(t)
is diagonal in M which implies that Q'=0 in Eq.
(3). Furthermore it includes reflection symmetry
which requires that the matrix elements of p de-
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pend only on lM l, restricting K to even values.
It is then a matter of angular momentum algebra
to transform Eq. (3) into a convenient form"
which for the y'J,. —y~ J& transition is given by

I=~ „l(jtlllrll lj;&I'».«&[ +t «e c»]

.where Tr„refers to a summation over M,. and
where

(5)-(7) are valid for the multiplet intensity pro-
vided the replacements L, —J, and L& -J& are
made everywhere.

Instead of the tensors (8) we may also form by
an alternative coupling scheme the statistical ten-
sors p(o '(jj', t) = p(o«&((SL)J, (SL)J', t) with respect
to the uncoupled representation (l y PLMsM~ &).
The corresponding recoupling transformation is
given by

f(8, (t}, p) =~ sin'8 cos2$cos2p —P,(cosg} . (6) P 'c '(LL; t) = Q C«(J'J; SL)p ' «'( Jj' t) (10a)
Here g is the angle between the direction of obser-
vation and the beam axis. As described in detail
in Refs. 9 and 19 the angles g and P account for
the polarization selected by the detector. By using
the Wigner-Eckart theorem the anisotropy factor
4 can be expressed as

J$ J$
( 1)J(- Jt

1 1 J~ Tr~ t 3J', —J'
( }&{J,

. J,
2l

Try(&}
$ $

1 1

(7)

n'P(&& &&
= Z I ~ ~'*...;,*;-;«&)

"~"i E gz

&(-1)' "~&LM~L —MslKQ&

(8)

which displays the identical transformation prop-
erties of Ao"' and the angular momentum operator
3J —Jg

Equation (5) implies that p„(~. „(~ (t) stays.
cylindrically symmetric as the time evol, ves. This
is even true if cascade effects are involved in the
population of the level y', J, ' Hence, for t s0 we
may put' p(t) = p~exp(-I', t), where I', is a diagonal
matrix. This establishes the connection between

ps and a measurement of the intensity (5} at short
distances from the foil.

Next we consider" the modification of Eq. (5}
for a multiplet transition y,'S,.L,.- yf S&L& with
eventually an unresolved fine structure. The ma-
trix p(t) is now given in a {ly, SLMsM~&) represen-
tation. Since R(~' does not depend on the spin we

may use the statistical tensors

where
J' J

C«(J'J;SL)=(-1) ' ' «[(2J'+1)(2J+1)]'"
L S

(10b)
As shown below these equations can be used for
an approximate description of the modulation (the
so-called beat phenomenons'o} of the time-resolv-
ed intensity of a multiplet which has an unresolved
fine structure due to the spin-orbit interaction.

The beat phenomenon is illustrated by the fact
that

i
p(o«&(jj', t) =p'o«'(JJ', 0) exp (E~ —E—~, ) tl, (11&

with respect to a representation which diagonal-
izes the Hamiltonian matrix which includes the
spin-orbit interaction. If this interaction is
small, then the substitution of Eq. (11) into Eq.
(10a) shows approximately how the JxJ' compo-
nents of p(o«&(jj', t) induces in the case of K&0
slow modulating oscillations of p(c«&(LL; t) and as
a consequence of Eq. (9) also of the time-resolved
multiplet intensity. Note that this requires that
there is alignment, i.e. , p(t) has diagonal ele-
ments which depend on the magnetic quantum num-
ber.

Usually it is assumed that at t =0 the level pop-
ulation is independent of spin. Using the inverse
of the transformation (10a} it can be shown that,
as a consequence,

p'(«'( jj'; 0) =(2S+1) 'C«(JJ', SL)p'o«'(LL; 0),

to factorize the weight factors into

( )II ~.'L; II& '."
ll ~!L,& ...«Lr[p t o ]= (2K+1)~is p-o ( v

(9)
P o (LL t) p c (LL&0)Dgt)

where the depolarization factor2' is given by

(12}

where C«is given by Eq. (10b). According to Eqs.
(10a) and (11) this leads to a factorization of the
statistical tensors (8) into

Hence according to Eqs. (3) and (9} the statistical
tensors (8) completely determine the time-resolv-
ed intensity of a multiplet. It also follows that in

the absence of the spin-orbit interaction Eqs.
p (2J+1)(2J'+1)

(2S+ 1) c r. s
(13)
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In this case the multiplet intensity corresponding
to Eg. (5) takes the form

This is achieved by a maximization of the infor-
mation-theoretical entropy

S& = —Tr(p lnp) (15)

xTrrp~e ""[&+AD,(t)f(8, g, P) j, (14)

subject to constraints which are specified by the
mean values

where k is given by Eg. (7) with Z, -I.„Z&-I.&,
and p(t) —p~.

Although the results (5) and (14) are rather
well known in one form or another they have been
re-examined for the purpose of the information-
theoretical analysis of the level-population den-
sity matrix p~(T, Q). The important result is that
in the cylindrically symmetric situation measure-
ments of the time-resolved intensity f(t) identifies
at most two expectation values with respect to
p~, namely, Trrp~ and Tr„p~(3J', —J'} for each
line observed. With regard to a test of cylindri-
cal symmetry, note that the radiation may exhibit
linear but not circular polarization. '0 The obser-
vation of multiplet transitions contains in general
the same information but only with respect to 1.
although the beat phenomenon may provide some
insight in the possible spin dependence of p~.
However, as Eqs. (13) and (14) indicate the main
effect can be attributed to the unresolved fine
structure of the free ions after the foil.

B. Information-theoretical analysis
of level populations

The excitation processes in the beam-foil inter-
action are poorly understood. In fact, even the
theory of electron capture and loss in heavy ion-
atom collisions is far from complete for single-
collision conditions. Physical models of the pre-
sumable dominating beam-foil interaction mech-
anisms have been constructed for limited pur-
poses like for the explanation of the initial level
population of Rydberg series. ' Detailed mech-
anisms have sometimes been combined with sta-
tistical arguments in order to parametrize initial-
level populations and final charge distribution. ""
In the following we shall adopt an entirely different
approach which is based on the maximum entropy
principle in information theory' 8 and consequently
ignoring any details concerning the excitation
mechanisms.

In the case of systems like the present one the
information-theoretical strategy consists of a
determination of the most likely or probable
density matrix p for any selected excitations or
fragments that are produced by the interaction.
Such a matrix should not only be consistent with
rgndom excitation but also with the available in-
formation concerning the influence of the inter-
action on the residual system under observation.

(r„)=Tr(pT„), p=1, 2, . . . , M (16)

of a set of operators T„. The choice of the opera-
tors T„ is usually dictated by more or less impli-
cit dependence of the measured quantities on the
expectation values (16). In fact, the link between
the measurements and the constraints (16) may
also depend on various assumptions regarding
the nature of the interaction, e.g. , the separation
of decay from excitation.

As it has been shown by haynes' and others, the
operator

p = exp — ~~T@ (17)

Trrp(0) = TrppPr = (P)r,

Trp,(3J', J')Pr = (3Z', -'J'—}r,

(18a)

makes the entropy (15) maximum under the con-
straints (16). In Eg. (17) the Lagrange parameter
Ao which corresponds to the identity operation
accounts for the normalization Trp= l.

For the purpose of illustration of the maximum
entropy principle consider its application to the
blackbody problem. We make use of the fact that
the distribution P(v} for v =0, 1, 2. . . , which max-
imizes S,. =-Q„OP(v)lnP(v) subject to the con-
straints g =(~„,vP(v) and Q„,P(v) =1 is given by
P(v) =e ""/a, -where X is the Lagrangian para-
meter and a the "partition function" ~P„.ae ""."
Since P(v) is known, the mean value e can be re-
lated to X, leading to c =(e'- 1) ' which deter-
mines ~. The blackbody radiation law follows now
from the identification of v with n5~ and from the
definition of the temperature T '= sS/se' an-d of the
entropy by dS= kdS, .' Then-X=h~/kT and e' =egret
=Re/(e" ~'r —1), which after the multiplication
with the number of modes per unit volume gives
Planck's radiation law. This result can be inter-
preted as a manifestation of the random character
of the interaction between the radiation field and
the wall. The onl. y observable is the megn energy
g =&(&u, T), related to the intensity distribution of
the radiation from a small hole in any of the walls.

Returning to the determination of the J.evel-pop-
ulation density matrix p from beam-foil experi-
ments we note that the experimental arrangement
corresponding to Eqs. (5), (7), and (14) yields
information about
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in the collision frame. In Eqs. (18) the projection
operator

P„= g P„= g ~~&«~ (18)

corresponds to a summation over the states

y, JM) of an energy level or over the states

y, SLM~M ) of a multiplet in which case J= L in

Eqs. (18). In addition, the observation of lines or
multiplets is supposed to identify the energy of

the initial and final states and the number of elec-
trons in the ions which emerge from the foil.
This introduces the constraints

(20a)

(20b}

However, since E„ is an eigenvalue of the Hamil-

ton operator H of the free ion the constraint (20a)
reduces to Er(P}r and hence adds nothing new to

the constraints (18}. The constraint (20b} in which

N corresponds to the number operator N repre-
sents the available information about the t =0
charge distribution. Note that the constraints (18)
and (20) contain information about individual sta-
tionary states under symmetry restrictions and

should hence be contrasted with the blackbody

case, where a rvean energy is observed without

an axis of preference.
From Eq. (17} it follows that

(
p =exp~ xt Ix p -—,F-x'„„(3J„',—J )p„—~j

r r
(21)

maximizes the entropy (15) subject to the con-

straints (18) and (20} given for each I' observed.
In Eq. (21) I is the identity operator. Since the

operators appearing in the exponent of the opera-
tor (21) commute there exists a basis in which

p is diagonal. This basis is given by (~r, JM)),
respectively, (~ y, SLM~M~)), leading then to

p„„=G„„exp(-X,—Xr —A.r[3M' —J(J+1)]—pN,).
(22a)

or

p„„=5„,„exp[-Ao —Xr —Xr [3M' —L(L + 1}]—p N, ),
(22b)

where the Lagrangian parameters ~r, ~r', and p,

are functions of the kinetic energy T and charge

Q of the incoming beam. Our derivation of the

matrices (22) shows explicitly the consequence of

symmetry constraints.
Lower symmetry implies an increase of the

number of statistical tensors which in principle

can be evaluated from the experiments. For in-

stance, if reflection symmetry is not assumed

in the perpendicular beam-foil case, then the in-

tensity expression accounts for a net orientation

along the beam axis which is described by R,"'
in Eq. (3). From an information-theoretical point

of view this gives rise to a new constraint which

makes the exponent in Eqs. (22) also dependent

on the sign of M. Hence one may argue that the

most general post-foil experiment yields informa-

tion which is consistent with a maximum-entropy

distribution of the form

p~„=exp(-X„,„-~ ), (23)

III. IMPLICATIONS AND APPLICATIONS

OF THE MAXIMUM ENTROPY PRINCIPLE

A. Level population function of Rydberg series

We shall begin with a derivation of the asymp-

totic level population function of Rydberg states
using statistical arguments based on a modifica-

tion of Feynman's" treatment of the Boltzmann

distribution. This result is found to be in accord-
ance with the maximum entropy principle provided

normalization is the only constraint. The modifi-

cation due to the constraints (18a) and (20b), nec-

essary for identification of a series and the num-

ber of electrons, is made.
Usually the kinetic energy, T, of the incoming

ions is much larger than any of the observed
electronic excitation energies in the foil. Hence

the total energy E,. of an outgoing ion can be any-

where within a given narrow energy interval

[E,E dE+] in which each state has an equal chance

to become populated if random excitation is as-
sumed. As a consequence the corresponding
probability must be inversely proportional to the

where also nondiagonal elements appear due to

foil tilting.
Equation (22b} applies to the beat phenomenon' ~"

since it predicts that the states
~ y, SLM~~ ) for a

given S and L may be aligned. Note that the ma-

trix elements (22b) are independent of M~ which

is also a consequence of Eq. (14).
If the distributions (22) and (23) do not provide

a basis for global predictions regarding the level

populations and the related charge distribution,
one has not achieved much more than a repara-
metrization of a limited set of experimental data.

In order to achieve such predictions it is neces-

sary to incorporate in the information-theoretical
analysis of p~ specific consequences of the atomic

structure. In the next section we shall make use

of two: the concept of configurations and the den-

sity of Rydberg states. The information-theoreti-
cal framework does not rule out other possibilities.
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number of states, g(E,)dE, in the interval (E, E
+dE). In the case of a continuous or quasicontin-
uous spectrum g(E) represents the density of
states. This circumstance can be used to evalu-
ate the probability P„, that a high Rydberg state
n, / 'L becomes populated relativeto another state,
corresponding to n, in the same series. It follows
that

P~g q(E,}dE g(T')g(EN, ()

P„,, q(E, )dE q.(T"}q(E,) ' (24)

dn* n~

dE
— Z-

n$

(25)

From Eqs. (24) and (25) it follows that for large
n the relative probability P„, should fulfill the re-
lationship

lnP„, = -3 inn*+ C, (26)

where C is a constant.
The result (26) is in accordance with the maxi-

mum entropy principle for continuous distribu-
tions. ' It is required that

S,= — P(E)ln dE
q(E)

(27)

is a maximum for a given energy interval L. In
Eq. (27) p(E) is the probability per unit energy
that an excitation occurs into the interval (E,E
+dE). With the normalization requirement as the
only constraint it can be shown that p(E) = q(E)
maximizes the entropy (27)." Hence the asymp-
totic behavior (26) of P„, reflects the random ex-
citation of Rydberg states also from the point of
view of information theory.

So far, the fact that the level population function
measurements identify specific Rydberg series in
given ions has not been considered. Usually
alignment is lost in these experiments which are
carried out with a polarization insensitive detec-
tor fixed at a given angle to the outgoing beam. 2

Hence we shall put A.„' = 0 in Eqs. (22) and modify
these distributions in accordance with Eq. (26).
The result can obviously be written as

p„„=5„„exp(-Xo-8inn* —A. , —pN), (28)

where we have neglected the spin-orbit interac-
tion so that a = (nbnlngz). The parameter A., in Eq.

where E, = T+E„,. In Eq. (24) g(T') =—q(T") is the
free-particle density of states associated with the
outgoing nucleus and g(E„,) the density of the states
in a given Rydberg series. Since E„,= 2Zn,* ' in
terms of the effective principal quantum number
n* = n,*, gE„,) is given by

(28) accounts for the identification of a given Ryd-
berg series.

Equation (28) implies in accordance with Eq.
(26) that

Pn s (n~ (29)

B. Relationship between level populations
and charge distribution

1. The factored representation

We would like to characterize the beam-foil
measurements in terms of one-electron states.
As a consequence, the level population function

p (T, Q) is described in terms of configurations

and that A, =A.,(T) is a function of T characterizing
the whole Rydberg series. Note that in Eq. (28)
p, depends for a given incoming ion on T only.

The asymptotic behavior (26) or (29) of the rel-
ative Rydberg state population P„, is observed
frequently" "' but not exclusively. Slight de-
viations" " ' from the n*' law at low n can be
attributed to the breakdown of the concept (25) of
density of states. Large deviations would indicate
that there is a single dominant process which
populates the Rydberg levels. Evidence of such a
process has recently been found by Andresen
et gl. '~ Their experiments indicate that in the
n =3 to 12 range n —7 and = 8 are predominantly
populated among the Rydberg states of Li-like0' and F' ions which have traversed carbon foils.
They attribute this effect to resonant electron cap-
ture from the valence band of carbon. Numerous
experiments"' ' also indicate that for several
Rydberg series in various ions the level population
function is independent of T over a wide range of
n in accordance with Eq. (28). As indicated above
this behavior is also predicted by the maximum
entropy principle and thus is in accordance with
the assumption of randomly excited Rydberg
states.

The validity of Eq. (26} is often taken as a ver-
ification of electron capture from the back of the
foil into a high Rydberg state of the emerging
ion."' " The reason for this is that for high n
and asymptotically in T the ratio of the Born
cross sections is also determined by Eq. (29)
through the amplitude q(E„,) '" of the Rydberg-
state wave function. However, as shown above the
same conclusion follows from more general argu-
ments of statistical nature which are also accor-
dance with the maximum-entropy principle. In
addition, information theory predicts a universal
behavior of the level populations as a function of
T in the domain, where Eq. (28) is valid.
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rather than energy levels of multiplets. The spec-
tral data and the independently obtained charge
distribution provide limited information from
which we may extract the probabil. ities Q„ that a
one-electron state v is occupied in an ion after
the foil. The mean number of electrons (N, ) may
also be obtained from the final charge distribution
if the autoionization rates are known. Within the
framework of information theory one can derive
the most likely probability distribution (p„) of the
configurations and consequently also of the charge
distribution immediately after the foil.

The probabilities (p„] may be obtained from the
maximum-entropy principle by the introduction of
the constraints

where n„= a„'g„ is the occupation number operator
of state v and where

=e "V &
V (34)

If the configurations g would include all possible
combinations (n» n„.. . , n„, . . .] with occupation
numbers n„zero or one, without any limitations
on maximum N„, the each p„ is given by

(35)

according to Eqs. (32} and (33}. According to Eq.
(34) the average occupation number (n„) of state
v may also be written as

P„=1, (30a} (n„) = [1+exp(X„+p,)] ', (36)

Q P» N„=(NO) .

(30b)

(30c)

which wouM reduce to the Fermi distribution law
if a "temperature" parameter 8 could be defined
such that A.„=e„/e for each v. This is not in gen-
eral the case for foil excitation.

2. Charge distribution

In the sum (30b} only those configurations x with
N„electrons are included that have an occupied
one-electron state v. Note that the configurations
g should run over all possible excitations and
charges. Following Bard" it can be shown that
the maximum of the entropy (15) subject to the
constraints (30) is uniquely given by the distribu-
tion

exp(-Q „~„X„—gN„)
I++„«exp(-Q„„X„—pN„) ' (31)

(xfpfg)

where the denominator can be identified as the
partition function b . Note that the bare-ion prob-
ability po is normalized to 3 . From Eq. (31} it
follows that p„ is proportional to a product of
probabilities exp[-A, —p,] establishing the occu-
pancy of a one-electron state. Note that in this
factorized representation there is no specification
of the one-electron model used in the construction
of the configurations. In analogy with a work of
Abdulnur ef af "the result (.31) can be expressed
in the concise form

We shall now use Eq. (31) to establish the con-
nection between level populations and the initial
charge distribution defined by

P = gp„, q= —1 0, . . . , +Z
&E.0

(37)

P, = &' x„,
V

P~= p
-1 X X

Vy Vg
V~ V2

where q indicates that all configurations corres-
ponding to a definite number, N„of electrons
should be incl. uded in the sum. The upper limit
of q may not always refer to the bare nucleus in
the following. Information about the post foil oc-
cupancy of inner-shell states usually requires
x-ray measurements. Hence 2 should be under-
stood to be the nuclear charge eventually screened
by a given inner-shell core.

With the notation «„=exp(-X„—y} we obtain

by using the density operator

ft=e p I x„„—gI A)
V V

Pa= &
'

XV XV XV j1 2
V] )V ~ ~ ~ )V

(33) P
~ ~ ~Vy)Vg) ~ ~ ~ )V

+v +u1 g N.
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(39)

with p =z/(1+z}. If ¹inEqs. (38) is large in addi-
tion to M, then the distribution (39) can be shown
to be very close to the Gaussian

1 k —(jv)& 2

~2 P 2 /I j (40)

where o= VzM /(1+z) and (N) is the mean number
of electrons after the foil. The proof is based on
the known relationship'4 of the Gaussian and the
binomial distribution at large M and on the fact
that since exp(- p, ) must be small s =—(1+z)" and

(N) = —(d lna/dp, ) —= Mz/(1+z). The limiting form
(40} is what one expects on general grounds since
it can also be shown" that if a stochastic variable
X can be reduced (i.e. , the mean and variance are
imown}, then the Gaussian exp(--,'X') maximizes
the information-theoretical entropy.

It has recently been found by Baudinet-Robinet
et ag."that experimental charge-state distribu-
tions follow the Gaussian law extremely well for
ions passing through carbon foils at energies
larger than approximately 2Q keV amu-'. For
energies less than 2Q keV amu ' and for gas tar-
gets a chi-squared distribution seems to account
better for an enhancement of highly charged ions.
From an information-theoretical point of view
these results indicate that for high energies the
ions are randomly excited to the extent that the
atomic structure, represented by the second con-
straint (30b), does not influence the final charge
distribution significantly. For lower energies and
gas targets the skewness of the distribution may

where M is the number of one-electron states in-
cluded in the analysis. Usually M can be taken to
be very l.arge due to the large energy of the in-
coming beam. Note that antisymmetry requires
that a given g„ean occur at the most once in a
product appearing in the symmetric sums (38).

The I agrangian parameters P„,pj are deter-
mined in principle by the constraints (30) if each
one-electron state is identified by spectroscopic
post-foil measurements. In practice this is hardly
the case, the spectroscopic measurements leading
only to the determination of the probabilities p~
in association with the identification of the con-
figux'ations g with the number of electrons, N„.
Consequently, as a first approximation, the
constraints (30a) and (30c) are needed. The cor-
responding probabilities p are obtained from Eq.
(31) by putting all X„=O. Hence z =x„=exp(-p} in
Eqs. (38) which results in the binomial distribu-
tion

indicate an enhancement of the relative abundance
of highly charged ions by autoionization. In addi-
tion, one expects a partitioning of the x„and con-
sequently a grouping of the probabilities (38} into
several Gaussians pertaining to the shell structure
of the ions. But this is nothing but a chi-squared
distx'ibution with respect to the total number of
electrons which is a sum of the number of elec-
trons in each shell. Hence from a information-
theoretical point'of view the chi-squared distribu-
tion reflects the information about the atomic
structure inherent in the constraint (30b) and in
the autoionization process.

It follows also from Eqs. (38) that the probabil-
ities P~ must fulfill some consistency rel.ations.
Using the notation

(41)

we may, for example, show by solving Eqs. (38)
successively from k =1 to 4 that

(

(z) =y, ,

(x') =y,'- 2y, ,

yi 3VDs+3ys

Vl VRyl V3yl V2 V4

(42)

where y, =P,/Po (k = 1, 2, 3, 4). Evidently it may be
checked under some circumstances whether the
experimental ratios y~ make the sums on the .

right-hand side of Eqs. (42) positive. A failure
indicates either inaccurate data (already corrected
for autoionization) or an inadequacy of the one-
el.ectron representation in connection with the con-
jecture of random excitation. The procedure (42)
can of course be continued to higher jg.

Explicit considerations of the influence of the
autoionization process on the final charge distri-
butions require usually a division of the one-elec-
tron states into various classes within a given
ion. Furthermore, one may introduce the central. -
field model, explicitly for the identification of the
one-electron states. We shall illustrate this
procedure by considering the passage of He' ions
through a foil. It is assumed that the alignment
is not observed.

For helium, the following six classes ean be
formed, numbered consecutively from one to six:
(1) He1s2, (2) He1snl, (3) Henln'I', (4) He'1s,
(5) He nl, and (6) He", where n(n') ~ 2. Out of
these six classes (3}may decay into (4) or (5)
by autoionization. Let us denote the total relative
autoionization rate by 5. Since the- Lagrangian
parameters ~„do not depend on m, we may also
introduce the relative occupation probability P„,
= exp(-X„, —p,). The charge distributions corres-
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ponding to Eqs. (38), modified by the autoioniza-

tion rate are then given by

P'=8
Q

Pl= a ' 2Pis+R+ R'- 2 g.Fnii

P2 = b Pi +2Pip+ R —Q g„(P„i
n&1, l

(43)

where g„,=2(2l+ I) is the degeneracy and where

n)l, l
gnlPnl '

The partition function p is given by

y = (P„+R+1}'—R

R+ g,P
n)1, l

(44}

Equations (43) provide the link between the level
populations and the final charge distribution in the

case of random excitation. If the sum over P'n,

can be neglected in Eqs. (43}, then P„and R are
uniquely determined by the charge distribution.
Otherwise Eqs. (43} can be used as a consistency
test of measured level populations and charge
distribution in helium and heliumlike ions for
which 5= 1. For that purpose the contribution
from the level populations of high Rydberg states
can be estimated using the n* ' law (26).

IV. DiSCUSSION

It has been shown that the maximum entropy
principle predicts a level-population density ma-
trix which is in accordance with a number of gen-
eral features of the foil excitation including the
n* and T dependence of the excitation probabilities
for high Rydberg states. The Gaussian or chi-
squared character of the charge distribution also
follows as well as its relation to level populations.

The evidence presented above indicates that in

most cases studied the foil produces ions which

can be considered randomly excited after the
processes inside and at the back of the foil. This
evidence is mainly concentrated to outer-shell
excitations. However, the fact that the maximum-
entropy density matrix both reproduces and or-
ganizes the experimental data does not provide a
sufficient condition for random excitation. It just
suggests a plausible alternative to detailed models
of foil excitation with ill-defined range of validity.
In a narrow sense Eqs. (22) would only represent
a reparametrization of the observed intensities.
The strength in the information-theoretical pro-

cedure lies in the fact that from a limited set of
data it predicts a simple behavior of the Lagrang-
ian parameters ~ and p, which can be used to ex-
plain general features of the charge distribution
and eventually of the radiation pattern in the un-

observed or unresolved part of the ionic spectrum.
With respect to the method it is useful to consider
Planck's blackbody radiation law as an extreme
example. As elucidated in Sec. IIB the identifica-
tion of the Lagrangian parameter with tempera-
ture makes it meaningless to invoke a detailed
microscopic model of the interaction between the
atoms in the wall and the radiation field. Conse-
quently, inconsistencies and complexities in the
behavior of the Lagrangian parameters would be
an indication of rather distinct foil excitation
mechanisms. Relations (42) for the charge dis-
tribution and corresponding ones for the level
populations which follow from Eq. (31) are useful
in this connection.

We recall that according to the maximum en-
tropy principle a Rydberg series has, for large
n, a level-population function

P„,(T) = Tr„,p
= 2(2l+I)

x exp[-Xo —31nn* —p,(T) —N, p(T)] .

(45)
The notation is defined by Eq. (28). The general
behavior, common to all series, as a function of
T is determined by p(T) whereas p. ,(T) accounts
for differences between the various series. In-
dependently of n the parameter p,(T) also deter. -
mines how Pn, depends on E. Consequently, on a
log-plot Pnl should be a universal function of l.
The existing limited data ' "do not disagree with

this conclusion.
However, it should be noted that Eq. (45) does

not account for alignment. This property should
be examined according to Eq. (14), i.e. , any

measurement which is made with a detector at a
fixed angle 8 with respect to the beam direction
yields also information about

Tr„,(p[3m' —I(I+1)]].
Considerations like those presented above can be
made more systematic by using surprisal analy-
sis."" This may be of use when more. abundant
and accurate data on the beam-foil excitation be-
come available. The surprisal analysis is based
on the use of Eq. (17) for a set, ] T, ], of commut-
ing operators. If (i g}) is a common set of eigen-
states we may write

(46)
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where T„are the corresponding eigenvalues. Sup-
pose the Lagrangian parameters X„are indepen-
dent of g over a range l" of nr values of g. Then
it follows from Eq. (46) that one can introduce the
"surprisal"

-lnPI. =-ln Trrp
'r

(47)

where ~0 is redefined in accordance with the def-
inition of po, given by

(~'(p. (rr) =5„.„/(I n„) . (48)

P„,(T)
2(2l+ 1)n

(49)

where &0 =-ln[P, (7)/2(2fo+ 1)no* '] defines a ref-
erence level (nolo%. In their analysis of the Krmu
4s'S-4p'P decay curve and other measured de-
cay curves Younger and Wiese" determined the

Equation (47) has been extensively used by Levine
and his co-workers'"" for the representation of
experimental probabilities P„ in molecular col-
lisions and heavy-ion-induced nuclear reactions.
A remarkable fact is that often a single constraint
is sufficient to account for the data in which case
Eq. (47) is represented by a straight line in a plot
of experimental -ln(P„/P, „) versus the dominating

T~
A surprisal corresponding to Eq. (45) is given

for a fixed N, by

relative population from an equation which corres-
ponds to ll. ,(T) = i, (T) in Eq. (49). Hence one

0.
would interpret their choice as the one which the
maximum entropy principle would give when the
only constraint according to Eq. (27) is due to the
normalization of the probabilities. The function

p,(T) —p, (T) arises according to Eq. (29) from
the identification of the Rydberg series. It ac-
counts for the anomalous features"'" in the E de-
pendence. Under normal circumstances this is
expected to be a simple universal function of l,
for given T. As a contrast abrupt behavior of the
surprisal indicates a specific mechanism, possibly
a resonance. '9

In conclusion, we suggest that beam-foil data
should be analyzed using information theory along
the lines which have been outlined in this paper.
This may help to decide where the selective feat-
ures in the foil excitation mechanism reveal them-
selves.
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