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Time delay in atomic collisions
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The time delay, as defined via phase shifts, does not apply to atom-atom collisions because of the semiclassical
nature of the system. In this limit the contribution of one partial wave to the cross section is negligible. Therefore,
we analyze time delay for the scattering amplitude and show that some new phenomena may occur, which cannot be
eXplained by the time delay for a single phase shift. The time delay, which is averaged over all scattering angles,
shows structure corresponding to several delay mechanisms. %e also show that the lifetime of a resonance state,
formed in a collision, may be considerably shorter than expected from the theory of resonance scattering.

I. INTRODUCTION

The concept of time delay in collisions has been
known for some time. " It mas first defined in
terms of phase shifts, primarly because'in many
applications of nuclear physics only a fern partial
waves are required to obtain the scattering am-
plitude. If the phase shift for the lth partial wave
is knomn, it was shown that the time delay is

Such a concept is also very convenient for defining
the lifetime of a resonance, since it can be shown
that one is just half of the other, ' i.e. , the lifetime
is half of the time delay, for a resonance in a
given partial wave.

Although time delay is a well-defined quantity,
it has never actually been measured in a real ex-
periment since such measurements are very dif-
ficult to perform. An exception occurs in high-
energy physics mhere the delay time ean be asso-
ciated with the length of the trace that elementary
particles (resonances} leave before disintegrating.
Homever, for a very short-lived resonance such
a trace is not visible and the lifetime is estimated
from the half-width of the cross section. ' This is
again based on the assumption that scattering is
dominated by only a fem partial waves.

Rigorously speaking, the time delay (1.1) does
not reflect reality. It would be more appropriate
to ask what is the time delay for real experimen-
tal conditions'P Under such circumstances, the
resonance contributes only partially to the cross
section, hence the real time delay measured at a
certain angle 8 will be different than that given by
(1.1). In atomic collisions this is just the case:
Many partial maves are required for an accurate
description of the differential cross section and if
there is a resonance, its contribution is mixed
with other effects which are more dominant. "
Therefore, a more accurate definition of time de-

lay ~ould be obtained via the scattering amplitude.
It can be shown that in such a case, '

(1.2)

where f(0) is the scattering amplitude. Such a
delay is angle dependent, and describes the real
situation. Again, if only a few partial waves are
enough to determine f(6) it ean easily be shown
that (1.2) reduces to (1.1). For such a definition
of time delay the results obtained from (1.1) no
longer apply. For example, in atom-atom coll.i-
sions we find that the solutions of (1.1) and (1.2)
are identical only for extremely narrow reso-
nance and large-angle scattering. However, as
soon as the resonance becomes wider or if we
calculate Tz in the forward direction, where dif-
fraction is dominant, we mould find deviations
from the results obtained by using (1.1). ln See.
II we discuss the time delay r& for 6 = 180'. This
is an example where, at lorn energy, the resonance
cross section is dominant (backward glory) whiie
at high energy it disappears and only the direct
reflection cross section is present. At low energy
and exactly at the resonance energy me find the
time delay is similar to that obtained from (1.1),
however, with some additional terms which ean be
neglected to a certain extent. As the energy is
increased the resonances contribute less to the
cross section and so the deviation from (1.1) be-
comes more apparent. Homever, as will be
shown, entirely nem phenomen may occur. The
time delay may become so negative, as in our ex-
ample, that the low bound for (1.1), as discussed
by %'igner, ' cannot hold any longer. Such a phe-
nomenon is accompanied by a small cross section,
which is due, to interference between the resonance
amplitude and the direct reflection amplitude.
Even allowing for some averaging of the time de-
lay over energy spread, we still obtain a large
negative delay.
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The description of (1.2) is given in the Regge
representation of the scattering amplitude, appro-
priately modified to take into account the hard
core in the atom-atom potentials. Such a repre-
sentation allows a simple yet accurate separation
of resonance contributions and that of direct re-
flection. The difficulty with the definition (1.2) of
the time delay is twofold: (a) It is angle depen-
dent, hence it is not a quantity characteristic of
collisions, and (b) it is very difficult to measure.
Therefore, it is more natural to define an aver-
aged time delay which can be more easily related
to the measurements. We define 7 by

— 1
o(8)redQ 2 (1.3)

where o is the total cross section. In fact, it is
this quantity which is measured in high-energy
physics in the case of short-lived resonances. In
atomic collisions T is important for studies of the
recombination process, observation of resonances
in plasma and in general for cases when a know-
ledge of the duration of collision is necessary for
understanding or predicting collision-induced
events.

As the first result of salving (1.3) we notice
that, at least for atomic collisions, the relation-
ship between the width of a resonance and its
lifetime is no longer valid. The time delay is
much shorter than that given by (1.1). Since the
diffraction mode of scattering is dominant we will
also rarely observe a large negative delay, which
was found in Te. As we have said, such a delay
is associated with the fact that &(8) can be very
small and this seldom occurs for o.

In Sec. III we discuss 7 for which a complex
angular momentum analysis is developed, similar
to that for the scattering amplitude. ' The example
of Sec. II is also discussed with respect to T. We
find a general agreement with the theory based- on
{1.1), but the delay times are much shorter. We
also find a negative delay, but this is mainly due
to interference effects between the phase of resi-
dues and the poles of the S matrix. In fact, this
negative delay is relatively large if we consider
that the positive delay of narrow resonances is
small.

II. TIME DELAY IN DIFFERENTIAL CROSS
SECTIONS

As we have discussed in the Introduction, an
experimental study of time delay in differential
cross sections is difficult, but can reveal some
interesting features about the mechanism of scat-
tering. To study these effects we will use the
well-known formula for time delay in a specified
direction 8:

dffl2™~* (2.1)

(2.3)

where &0 is the equilibrium position of the poten-
tial and v is the velocity of free particle.

The relationship (2.3) tells us how many times,
during the time Te, a free particle can travel the
distance pp Although such a quantity is arbi-
trary, it will give us some information about the
time delay (2.1). To study the time delay in atom-
ic collisions we use a suitable representation of
the scattering amplitude' which enables us to ob-
serve the effects of resonances, direct reflection,
etc. In such a representation, the scattering am-
plitude f(8) is

f(8)=- f dssd(s)s '" P, , (1- cc)ss
0

p
+x 2/2{-cos8)

(2 4)
cos(vA„)

where g and P„are the Regge poles and appro-
priate residues of the S matrix S(A), respectively.
The most pronounced effect of resonances on the
differential cross section is backward glory, '
therefore we will study the time delay for 0=@.
We could have taken any other angle but that would
not contribute more to our understanding of r(d)
For simplicity we will restrict our discussion
only to the contribution of one pole to the scatter-
ing amplitude. We justify such an approximation
by noting that the contribution of each pole
to the scattering amplitude is proportional. to'
exp[ rim(A„)]-for 8= v. Therefore, at high ener-
gy, when all the poles have large imaginary parts,
we obtain an accurate description of the scattering
amplitude by only retaining the pole with the
smallest imaginary part. At low energy several
poles may equally contribute to f (8 =ff), hence,
we expect deviation from one pole approximation.

The integral in (2.4) can be evaluated analy-
tically, ' hence f(m) is

or if one uses the usual units whereby E is re-
placed by k' = (2)),jk') E, and k is in the units of
A ', we have for Te.

2 =, 1 (f', )3 149819 "(ssc), (2 2)

where p is the reduced mass in atomic mass
units. The number that we obtain for Te does not
give a lot of information if it is not compared
with another quantity, such as the distance that a
particle travels during the time delay re before
it escapes the interaction region. Therefore, we
define a dimensionl. ess quantity d defined by
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e2 i 7)0 g Pf( )=)' +.)' =2 2
"

)~l )) (2.5}
~04p (2.14)

e2$ qa

fs(n) =I 2 e
0

(2.6)

while for low energy, when Im(X, ) 0, the domi-
nant term in (2.5) is

where q, is the phase shift and q, =d'q, /dX', both

evaluated for A. =O. For high energy, the imag-

inary part of A, , is l.arge, in which case the direct
reflection term is dominant

From the WKB approximation for Im(A. ,) (Ref. 8)
we can calculate n and obtain the zero delay for

This corresponds to the fact that the particle
does not penetrate the centrifugal barrier formed

by V+10/R', but is flying without being deflected

(in this derivation we have assumed that V can be
neglected at the outermost turning point}. On the

other hand, when Re(h. )) is a half-integer, we

have

ia A.,P,
k cos(nA. ,)

' (2.7) tan(nX, )— (2.15)

Thus the time delay will behave differently in

these two limiting cases. Let us first see what

will be the time delay with only direct reflection
waves. By taking a derivative of (2.6) with re-
spect to energy and then. calculating (2.1}we find

in which case

2g 2 1 Re(A. ,) p, Re()).,)
2 Im(y, ) g Im().,)

' (2.16)

4p. dg,T-Tx
h dk2

(2.8)

A., Re()P}, tan(nA, } 0, .

therefore

(2.10)

The phase shift g, can be calculated from the WEB

approximation, in which case we obtain from (2.8)

the classical time delay for a particle colliding
"head on" with the target. We would obtain a

negative delay since the particle "saves" twice the

distance between the hard core and the center of

the target. In addition the particle travels faster
than the free particle due to the attractive action

of the potential. . Therefore, d is negative and of

the order of d —2.
At low energy the Hegge term is dominant. We

find

T =—Im) —+1m~ —'
~

+n 1m[a,'tg(nZ, )], (2.9)2p, t A.y (P~ 1

(P~ j

where the circle indicates a derivative with re-
spect to k'.

When Im(&, ) is small and Re()).,) an integer, we

have an estimate,

which is large and positive since Im(A. ,) is small.
This is the well-known result if n' can be ne-

glected. ' Incidentally, this large value for time

delay corresponds to a large total cross section.
For high energy, when Im(A. ,) is large, we can

replace tan(nX)) by i and find for (2.9):

2p z', P'
Im —'+~ +n Re(A. ', )

——n Re()P) . (2.17)
P,

Hence, the time delay is positive since the poles
move towards larger values of Re(X,) for in-

creasing energy. However, in contrast to the

low-energy case, the time delay is now smooth.
This can be understood in terms of clockwise and

anticlockwise waves which were discussed in the

context of the differential cross section. ' If both

waves live long enough to travel around the target
several times, as is the case at low energy, their
superposition can form a standing wave, thus en-

hancing their lifetime. Otherwise they are just
traveling decaying waves with a positive lifetime
given by (2.17).

It is interesting to calculate the lifetime of the

resonance waves at high energy and at an arbi-
trary angle 8. By using the approximation of f&
for large Im(A. ,), we find

—Im—

From the unitarity of the S matrix

(2.11)
r8 —8 Re()P,),2jl (2.18}

(2.12)

P, 2ie2™im(x, }

which gives for T

(2.13)

where a is the background phase, we find approx-
imate P,:

then (2.17) is a special case of (2.18) for 8 = n.

Therefore we can define the angular velocity of

the traveling waves by

8 1

2p Re(XD)
(2.19)

from which we get the corresponding angular mo-

mentum
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KRe{a,) = I &u„=
2

(2.20)

where I is the momentum of inertia of the particle
and r is some mean radius. y is almost constant
over a large variation in energy, hence

Re(h. ,)
-kr, (2.21)

which indicates that Re(A. ,) is a linear trajectory,
a fact confirmed in many calculations. The re-
sults of (2.19)-(2.21) are outside our main inter-
est, but are given to illustrate the physical mean-

ing of the Regge poles.
The relationship (2.17) gives the time when we

observe the fs waves if it is not decaying. How-

ever, the f„wave decays and the rate of its decay
is determined by the value of Im(p|). For large Im(X, )

the amplitude of f„is small. Since for 8=v the scat-
tering amplitude is given as the sum (2.5) for large
Im(A, ) the fs a.mplitude is dominant. Therefore, the

real time delay is no longer given by {2.17) but by

(2.8), i.e. , it is negative. For low energy, when

f„ is dominant, the time delay is given by (2.16).
Owing to interference between fs and fs at low

energy, the time delay is not zero for Re(A.,)
= integer, but negative and approximately as given

by (2.8).
The time delay at 8 = n was calculated, in one

pole approximation for a model system with the
potential

effective radius r in (2.21) was also calculated
and it varies from ~ = 1.98 —1.86 A, i.e. , it is al-
most constant.

In Fig. 1 we show the results of calculation for
d (solid line). In addition we show d& and ds. As

expected d~ is almost constant and if divided by

2, we find the approximate point of the closest
approach of two atoms (this point is in fact larger
than the real one because the atoms travel faster
in the attractive part of the potential). The line
for d& is also constant for high energy but almost
coincides with the real d for low energy. How-

ever, the real d shows interesting behavior. For
low energy it foQows a line which is expected
from the theory of resonances. The peaks in d
coincide with the rise of the cross section. How-

ever, in the case of intermediate energy it does
not follow either the line d& or d~. This oscilla-

d

0

(2.22)

where the parameters are V0=0.458 eV and &0
= 1.74 A (the parameters for the H-Hg system).
The range of energy is E=0.17 —0.87 eV, which

bridges two extreme cases; when backward glory
is dominant and when fs is dominant. The Regge
poles were calculated numerically. " The imagi-

- nary part of X, varies from Im(X, ) =0.005 at low

energy to Im(A. ,) = 3.25 at high energy. Table I is
of the Regge poles and corresponding residues
and shows some of their calculated values. The

10"

64 ~

2' «i

0.3 O.C

0.5

0.5

0.6

06I

0.7 0.8 EteV)

eV)

E (eV)

0.18
0.19
0.20
0.25
0.33
0.41
0.62
0.87

29.720+ i 0.005
30.051+ i 0.01
30.383+ i 0.017
32.026+ i 0.112
34.495+ i 0.436
36.73 +i 0.856
41-542+ i 1.977
46.358+ i 3.247

0-002+ i 0-017
-0.003+ i 0.022
-0.013+i 0.033
-0.251+ i 0.064
-1.338 —i 0.629
-3.299- i 2.661

-13.793 —i 12.539
-37.476 —i 25.841

TABLE I. The values of the Regge pole Ai and the
corresponding residue for different energies which were
used in the calculation of time delay. FIG. 1. Time delay 7 ~ (solid line) calculated in the

energy range from the dominant resonance to the dom-
inant direct reflection scattering in the differential cross
section. The resonance structure is described by a
single Regge pole from Table I. Differential cross sec-
tion for 8 = 7f is also inserted for correlation with peaks
in time delay. At lower energy the peaks in time delay
correspond to the peaks in differential cross section.
The time delay for the direct reflection (——--) and

resonance (-~ —~- ~ -) waves is also given. The unit d on
the abcissa is explained in the text. The circles indicate
positions of Re@,) = half-integer.
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tory behavior is entirely due to the interference
between fs and fs. There is also a dramatic re-
versal of behavior of peaks. The large values of
4 correspond to the minima of the total cross
section, as shown in Fig. 1.

There is an unusual phenomena in d. For a
certain energy, the time delay is considerably
negative, as the atoms are reflected from each
other before they even make contact. In Fig. 1
this happens at E 0.62 eV. However, the large
negative delay is accompanied by a small, almost
zero, cross section. Hence, the "nonphysical"
behavior is balanced out by the fact that there are
no observable particles with such behavior. How-
ever, when the cross section is averaged over a
smail interval of energy, in the neighborhood of
the one for which o 0 we get a small flux of
particles with a large negative delay, larger than
the mean radius of the potential. The behavior
of d for high energy is as predicted; it goes over
to d~.

— 1
7' = &(8)v-'8dQ, (3.1)

where o' is the total cross section. By replacing
r8 with (2.1) and using a partial-wave expansion

III. AVERAGE TIME DELAY

The quantity which i.s treated here is the aver-
age time delay. The question arises: If two
particles eol.lide, what would be the most probable
time delay for scattering? As we saw in the pre-
vious section, sometimes a large time delay may
correspond to a small cross section, therefore
some averaging is necessary since it is obvious
that such a state is not very probable.

%'e define the average time delay by

Im (3.5)

Formally, (3.5) is similar to the scattering am-
plitude in the forward direction except for 6~0,

which is given by

(3.7)

p„

then we easily find that

(3.9)

1SP (3.10)

(3.11)

By revi. ewing these properties of ~0» we can pro
ceed to evaluate F. %e can use the Poisson sum-
mation formula" to transform I into

) =) Z (-) j a~~5;(s, -))e*'-'. ().)2)
ift= - o 0

The derivative of the phase shift has some use-
ful properties. It is a symmetrical function with
respect to l- —E. Furthermore, it has first-order
poles in the first quadrant and it also has poles in
the fourth quadrant of the complex / plane. This
can be easily shown from the unitarity property
of the S matrix

(3.8)

and if Sz has a pole A.„ in the first quadrant, then
S~ has a zero in the fourth, given by A„*. Hence
Sz' has poles at A. *„. If we parametrize Sz near
the pol. e by

of the scattering amplitude, we obtain

, )m g {2)~ ))8, (S, —))j,ou' (3.2)

The sum can be split into three parts: One for
negative, one for positive, and one with m =0. We
can also sum over all the indices in the first two
parts and obtain

4mBr=, (2E+ 1)50 sin'5, , (3.3)

where the circle designates. a derivative with re-
spect to E. It can be easily shown that

c)o OQ 2kmh

d~ ~5i(S~ —1) —2 « ~5i(S~ —1) 2~~~
0 0 1++

which ean be identified as
OO ~-2ir X

2 dzz5g(Sg —1)
0 1++ (3.13)

~ Im —. 2E+1 5)~S)-1)

Therefore, we can define an amplitude I' by

E= Q (2l+1)50(S, —1),

whence the average time delay is

(3.4)

(3.5)

The first integral will be evaluated later, but now
we turn our attention to the last two. In the second
integral we can distort the integration path, which
is slightly above the positive real axis, to the
imaginary axi.s. In that ease, we get a contribu-
tion from the poles of 50& and S),. %'e find for this
integral
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~o -21fh
dX X 5( z (S( g —1)0 e

0 0
-2 I'

waves. Before discussing them further, let us
look at the second integral in (3.18). We find

p„x'„ e -2 is'Xn
++

1 2jgg 1 + 2g7TA n 2j+y1+e 1+e
~0 e gp

0
(3.21)

A. „A.p

-2

irwin

(3.14)

where we have used (3.10} and

X„P„
(x- ~„}' {3.15)

In the third integral of (3.13) the line of integra-
tion can be shifted to the negative imaginary axis,
in which case we must use (3.11). We find

where g= 5 —((A.. In the derivation of (3.21) we
have used the approximation 6i q i~~+2g„where
qo = g (A. =0). This term, if it is compared with
(2.8), can be associated with the averaged time
delay arising from direct reflection. The remain-
ing terms in (3.18) are due to resonances and will
be discussed in the following section. Having F,
we can now calculate r. However, for this we
need &, which is given by'

oo ~0

d~ ~5() (S(~e —1} or),
P . 2rX 1

n n
2j1fX$ y (3.16)

where we have used the symmetry property for

g i/2
sin(25& +-,'(()

0

—m Im ~„P„ (3.22)

$ e-2ivx$

Finally, we have for F
(3.17) where

r (s/2 —1/2) ~, ,
4 r(s/2) (3.23)

oo OQ

2F=2 dXA5og(sq —1)+2 dA. X5o(g S(g— 2 1I' IV. DISCUSSION

A. A, „+4m'Re
11+8

PA. „' 2inx„
-2jmhn +

1 + e2js'Xn
n

(3.18}

Let us now look at the properties of the averaged
time delay. First, we will look at the contribution
of separate (or partial) time delays, obtained in
the previous section. As shown, F is given as a
sum

The first integral in (3.18) i.s similar to the one
obtained in the evaluation of the total cross sec-
tion, except for 6z. However, it can be evaluated
under the same assumptions, i.e. , the integral
gets most contributions from A, »1 and from the
stationary point of arg(s&). In the first case, if
we assume a potential with the tail V ar, then
6„-uA,', hence

F=F~+F, +Fd, +F„, {4.1)

where the indices stand for diffraction, forward
glory, direct reflection, and resonances, respec-
tively. Since the total cross section z is also pa-
rametrized in such a way, it is reasonable to ask
what is the property of the partial time delay, de-
fined by

l 2i 0 4 —2$
dhA5g(sg —1) = oor

0

4n'k 1
Tp= ~2 Im —.Fp

&~k i (4.2)

X~-(3 S)/(1 $) i'(2 S)/(1 S)e

(3.19)

Similarly we obtain for the stationary point of
»g(s„)

oo g X/2
dA. A.5'(S —1) =O' Z o e" ~o " '.

ko o

(3.20)

The integral (3.19) can be associated with the
time delay for diffraction waves while (3.20) can
be associated with the del. ay for the forward glory

where the index P stands for either of the indices
in (4.1). Let us first look at diffraction. We can
easily find that

2P (S —2) (S —3) 2go, )g(o,) (( 3 —S 1
g (S —1)' 2 1 —S I('

(4.3)

The interesting feature of T~ is that it is inde-
pendent of the detailed form of potential but only
depends on the power with which the potential goes
to zero for a large &. We also notice that T~ is
positive. In the model case of Sec. II we find that
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if, defined by (2.3), ranges from d=0. 136 to
d =0.06 in an energy interval E=0.17 —0.87 eV.
Therefore the contribution of diffraction to the
overall time delay is positive and smooth, but
negligible.

The next contribution is r+. We find

(4.4)

From the WEB approximation we can prove that

Tf is negative and of the order of the time delay
for the direct reflection (2.8), and hence it is
substantial. To illustrate this on the previous
example, we find that d ranges from d = —2.1 to
-1.32.

The averaged direct reflection time delay can
also be calculated, however, in the definition of
&, given by (3.22), the appropriate term is not

given. In the original derivation it was neglected. '
If it is taken properly into account, we find

2p, d(2q, )
dk' (4.5)

which is exactly the del. ay for the backward scat-
tering (2.8}. The remaining term is the contribu-
tion of resonances. Here we develop an exercise
to show the features of time delay produced by a
single resonance; therefore we will restrict our
discussion to one pole and look at two limiting
cases: The low-energy [i.e. , Im(A, ,) 0] and the
high-energy case [i.e. , Im(A. ,)» 1]. As was al-
ready discussed, at the low energy such an ap-
proximation for the real time delay is poor,
which is not the case at high energy. In the first
case we can specify Re(&,) to be either an integer
or a half-integer. Therefore we have the foll.ow-

ing three cases.

i. Im(x&) -0: Re(A.&) =integer.

OmgX- Sx
F (4.10}

where I=Re(X, —d). If we now assume that the
potential for a large & is of the form
V- —2Vdrdr ', we get for the ratio &,/&d;ff '.

l
diff 3(V rdPd)2/5 ~ (4.11)

which is always small. Similarly we obtain for
the potentials V--2V,d'or

'
l

~r/ diff 5 ( Vr4Pd)2 f3 (4.12)

From such estimates, we can now calculate T;,
defined by

tain a finite time delay.
In the discussion of these three cases, as well as
discussing T+ and Td, we have assumed that these
effects are the most dominant in o. Since this is
not the case, we get results which are not physi-
cal, such as the large time delay in i and a non-

zero delay in iii. Purely from physical intuition

we cannot expect this to happen. For example,
in case i the cross section &, is negligible to other
contributions in 0', hence we cannot divide F„by

This is also the case with the other contribu-
tions to 0; It would be more appropriate to divide
each F~ by &d;ff since this is dominant term in the
total cross section. In order to see the value of
such an approximation, we can compare &d~ with

the other contributions to the cross section. In

particular we can compare odN with the resonance
cross section, since the resonance have a most
interesting time delay behavior.

From (3.22) and assuming a very narrow reso-
nance [i.e. , Im(A, ) -0], the maximum of o', is
given by

E 2e Re(X,) R-e(A. ',)

from where we obtain

(4.6} 4ff)I Im(1/i F„)
Tf

+diff
(4.13)

Re();)
Im (P,)

which is large since P, Im(A. ,) .
ii. Im(X,)-0: Re(X&)=half integer. -

(4.7}
In such a case the averaged resonance time delay
is zero in cases i and iii. However, in case ii
we obtain

4rh' 1 2 Re(A.,) Re(A. ', )

E — Re(X,-) Re(A. ',)(I+e" ),2
Im A.,

hence T„ is

(4.8)

Re(A. ', ) 1+cos2a7„S
Im(A. ,) cos2n

(4.9)

which is similar to the previous case.
iii. Im(X&)»l. In such a case F is approxi-

mately zero, however, by dividing by o we ob-

0 max

T~ 4 icos cx,
&diff

(4.15)

which shows that the averaged resonance delay
is essentially determined by the ratio of the total

(4.14)

where we have used the estimate (2.13). If we
use (4.10) and (2.16), the time delay (4.14) sim-
plifies further to
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resonance and diffraction cross sections. From
(4.11) and (4.12) we conclude that 7„ is much
smaller than the true resonance lifetime. The
time delay can even be zero if the background
phase u of the residue is w/2, which is an inter-
esting phenomena not present if one only consi-
ders the time delay for one partial wave.

FIG. 2. The averaged time delay r is shown in the
same energy range as in Fig. 1. The peaks correspond
to the resonances, while the negative time delay at low
energy is an interference effect and is positioned slightly
above the positive resonance time delay. The unit d is
explained in the text.

The true time delay 7. is, as we have already
mentioned, greatly reduced in a collision due to
the fact that most of the scattering comes from
the tail of the potential, i.e., diffraction scattering
is most probable. Therefore, in a real collision
such as an atom-atom collision, we cannot use the
classical theory of the lifetime of resonances,
especially for predicting the lifetime of states
formed in such a collision. At best we can say
that such long-lived states have l.ifetimes of the
order of one-half of that given by (4.15).

In Fig. 2 we show results of calculations for &

in the same system as discussed in Fig. 1. The
energy range is also the same. We find a good
correlation with the resonance cross section, i.e. ,
a long delay corresponds to a large cross section.
However, if we compare Fig. 2 with Fig. 1 we
notice that d is much smaller in Fig. 2. It is
almost one order of magnitude smaller. This is
entirely due to the fact that o~~ is in fact the
most dominant mode of scattering.

We also notice that at low energy we find nega-
tive delay. This delay is not present exactly on
the resonance but at a slightly higher energy.
This effect comes from the interference between
the pol. e ~, and the phase of the residue P,. As
expected, for high energy the time delay is that
of the diffraction waves and the forward glory,
therefore in general it is not behaving according
to (4.3). The time delay oscillates with energy
but it never acquires large values.
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