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We present a study of electron-molecular-ion collisions. The scattering equations are solved using an iterative
approach to the Schwinger variational principle. These equations are formulated using the Coulomb Green's
function to properly treat the long-range Coulomb tail of the molecular-ion potential. We apply this approach to
electron-hydrogen-molecular-ion collisions in the static-exchange approximation. We obtain elastic differential
cross sections, and also use the continuum states from these calculations to compute the photoionization cross
section of the hydrogen molecule. The iterative method used here converged rapidly in all calculations performed.

I. INTRODUCTION

Considerable effort has been devoted to the
devel. opment of efficient and accurate methods for
solving the el.ectron-molecule-collision problem. '
The main difficulties encountered in solving this
problem are the nonspherical nature of the poten-
tial and the accurate treatment of the nonlocal ex-
change potential. Our approach to the solution of
the electron-molecule-collision problem is to use
the Schwinger variational principle. The first
application of the Schwinger variational principle
to this problem was an approximate discrete basis
function approach. ' We then implemented the
Schwinger variational principle exactly using nu-
merical techniques. " This method has been suc-
cessfully applied to the scattering of low-energy
electrons by He, He', H» H, ', N, ', and LiH. ' '
In the present paper we give results for the e -H, '
system' using a recently developed iterative tech-
nique based upon the Schwinger variational prin-
ciple. '

In this study of the e -H, ' scattering system we
make several standard simplifying assumptions.
First we work within the fixed-nuclei approxima-
tion. We also assume that the interaction between
the continuum electron and the molecular ion is
described by the static-exchange potential, and
hence we neglect electron correlation.

The iterative method used here' for solving the
resulting scattering equations begins by exactly
solving the equations for a separable approxima-
tion to the static-exchange potential. The separa-
ble approximation used in this study is constructed
from a set of Cartesian-Gaussian functions. The
iterative method then proceeds by using the exact
solutions to the approximate separable potential
in a distorted-wave Schwinger variational calcu-
lation on the difference potential (i.e. , the differ-
ence between the exact static-exchange potential
and the approximate separable potential). Further

II. THEORY

The Schrodinger equation for electron-molecu-
lar-ion scattering in the static-exchange approxi-
mation is (in atomic units)

where Z is the net charge on the isolated ion and
V(r) is the residual short-range potential. This
Schrodinger equation is equivalent to the Lipp-
mann-Schwinger equation

y(+) ~(+)+ Gc(+) Uy(+)

where

U(r) = 2 V(r)

and the Coulomb Green's function is defined by

(2)

(3)

iterations proceed to give higher-order correc-
tions.

We present converged results for both elastic
e -H, ' scattering and photoionization cross sec-
tions of H, . We found that our iterative method
converged rapidly in all. calculations presented
here. We have studied e-H, ' scattering as the
first test case for applying the iterative Schwinger
method to electron-molecular-ion scattering. We
have chosen this system since standard single-
center expansion methods should work well and
thus provide us with accurate results to compare
with. We have compared our results with the
accurate static-exchange results of Collins and
Robb, ' which were obtained using such a single-
center expansion method. There have been other
studies of e -H, ' system, " ~ but the study of
Collins and Robb" is the most accurate to date.
For all channels and energies considered here,
the results of the iterative Schwinger variational
method are in good agreement with those of
Collins and Robb. '
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The function 4'& ' is the pure Coulomb scattering
function and is given in terms of its partial-wave
expansion as

where

D(;) =&a, l
U-UG )Uln, & (14}

(5)

where Q,', ' is the partial-wave Coulomb function
defined by
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Instead of solving for the scattering solutions
directly, one can equivalently solve for the 7' ma-
trix due to only the short-range component of the
potential which satisfies the Lippmann-Schwinger
equation

T = U+ UG'~'~T .
Then using the identity

(

(9)

(10}

and Eq. (8), the partial-wave solutions are ob-
tained from

i)i
(+) (P) &
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We solve the Lippmann-Schwinger equation, Eq.
(8), with an iterative procedure based upon the
Schwinger variational principle. ' The iterative
method begins by approximating the short-range
potential by a separable poteritial of the form

&rl U"I r'&= Z &&I Ul (z;&[U '](i&(z)IUlr'&
a;, a~ gR

(12)

The function F, (y; Izr) is the regular Coulomb func-
tion with y = —Z/1) and (z, is the Coulomb phase
shift defined as (z, = arg[I'(l+1+fy)].

The wave function 4' ', which has incoming
waves with momentum k, can be expanded in the
partial-wave series

1/2
4~" (r) = —

I p f iy,(;„)(r}y,*.(~i .~) Al ng

Computing the wave function in the partial-wave
form allows the dependence of the scattering solu-
tion on the target orientation to be treated analy-
tically. The Lippmann-Schwinger equation for the
partial-wave states is then

As has been pointed out by several authors, ""
this form of the T matrix is equivalent to that
obtained from finding stationary values of the
Schwinger variational expression

&/aim) Ulki i'm&&((' fins IUI (t)i i'sg&
&~(-)il U UG"' UI 4'(+)t

by varying the partial-wave trial functions which
are linear combinations of the expansion functions

g(„'„"(r)= g C,",). ,(z, (F).
+g 6R

The scattering solutions g~(;i'0 corresponding to
the approximate separable potential U'o, are ob-
tained using Eq. (11},giving

(16)

i(')+(r) = y"'(r)+(r
I

G"'T 'I P"'&

The iterative procedure is continued by augmenting
the expansion set R of Eq. (12) by the set of func-
tions

~0 Sp
30 =8ai,.&ai,. (('ai,.]

which are the scattering solutions given by-Eq.
(17). Using this augmented set of functions, the
first iteration is completed by calculating a new
T matrix given by

(18)

&rl T" lr') =
X~, X~ER U SO

&r IUl x,&[(D") '];;

x&„,

Note that the variational basis set BU S, used in
Eq. {19)contains both the initial expansion set
R =((z,) and the continuum solutions given by Eq.
(1 l). Thus, for example, the D,'; 'matrix w. ill con-
tain matrix elements of the form &(Cii+ I U
—UG"'Ul(z, .& and &Q~io IU- UG")U lf~og as well
as the type given in Eq. (14).

A second iteration is begun by constructing the
set of solutions Si ={/„', , . . . , g„' j which is as-
sociated with the matrix T~' given by Eq. (19). The
set S„combined with the initial trial function
set R, yields a new T matrix T 2. In general. , T &

and the set of functions S„are given by

where p is some initial set of expansion functions.
For this approximate separable potential, the
solution of the Lippmann-Schwinger equation for
the T matrix [Eq. (9)] is given by

Xg, XgGR U Sf

x & x,. I
U I r ) (20)
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orientation is given by"

+ +~+~ cos8do

4yk 4
I
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g" k(r) = p"' (r)+(r IG' 'T~
I

p"' ) (22)

This iterative procedure is continued until the
wave functions converge. When the wave functions
do converge, it can be shown that they are solu-
tions of the Lippmann-Schwinger equation for the
exact potential U.'

In the fixed-nuclei approximation, the differen-
tial cross section (DCS} averaged over molecular

exchange approximation. The static-exchange po-
tential due to a one-electron target is of the form'

U(r) =2[N"(r)+J +(K +Q" )+(ko+ kk )P" ], (28)

where u'(r) is the orbital of the bound electron,
and where the upper (lower) sign is for singlet
(triplet} scattering. In Eq. (28}, N" is the nuclear
attraction term minus the long-range -Z/r term
in Eq. (1). The operators J"' and K" are the
standard Coulomb and exchange operators of the
orbital u . The Q" and P" operators are included
to allow for possible nonorthogonality between the
bound orbital. and the continuum orbital. These
operators are defined by

&rlQ"'I x& =&rl"&&u'I)
I
x)+&rl)

I
"&&u'I x& (»)

and

where

+
& &
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and
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(25)

and where (j,jkm, m, Ijm) is a Clebsch-Gordan co-
efficient. The fixed-nuclei dynamical coefficients
a», are defined by"

773/2
(26)

In the present study, the partial-wave T-matrix
elements are approximated at the nth iteration by
Ttt", which is given by

Xt, Xg&RUS~ y

(@k,
' 'I Ul x;&[(D") '];,&x, IUI 4;,"&.

(27)

From Eq. (23) it is clearly seen that the D(:S is
the sum of the pure Coulomb scattering DCS plus
the DCS due to the short-range potential plus an
interference term.

We have only considered the interaction between
the scattered electron and the target in the static-

The one electron energy Ep of the orbital u' is thus
given by

(32)

III. RESULTS FOR e -Hz+ SCATTERING

In the present study of e -H, ' elastic scattering,
we used a target molecular-orbital constructed
from the 8s4z Cartesian-Gaussian basis set which
is given in Table I. This basis set is the 6s Gaus-
sian fit to the hydrogen 1s function given by
Huzinaga, "augmented by four z functions and two
diffuse s functions. The internuclear separation
for H,

' was R =2.0 a.u. The target energy in this
basis was E = -1.102 292 a.u. and the quadrupole
moment was -1.533 a.u.

The initial scattering basis set, set R, is given
in Table II. For the present study, R consisted
of a set of nuclear and bond mid-point-centered
Cartesian-Gaussian functions. For all symmetries
considered, the scattering basis set consisted of
only five functions. We found that inclusion of
bond mid-point-centered functions in the initial
scattering set yielded more rapidly converging
wave functions than those obtained starting from
basis sets not containing such functions. We be-
lieve that this is due to the way the short-range
potential U as given in Eq. (28) is constructed.
The short-range potential U is obtained from the
full static-exchange potential by the addition of
the term Z//x. This just cancels the long-range
tail of the full potential, but this method thus
makes U strongly repulsive near the origin. It
seems that in order to describe the scattering due
to this repulsive potential it is important to have
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TABLE I. Target wave function for H2'. ' TABLE III. Converged eigenphase sums for Z symme-
tries in e -H2' scattering.

Type of functionb Exponent

68.160 0
10.246 5
2.346 48
0.673 320
0.224 660
0.082 217
0.04
0.02
1.35
0.45
0.15
0.05

Coefficient

0.002 05
0.01596
0.071 50
0.25547
0.270 03
0.009 53
0,009 88

-0.003 42
-0.01710
-0.043 20
-0.01389
-0.000 95

3z

IM~
CRb

LM
CR

LM
CR

LM
CR

k=0.2

-0.366
-0.363

0335
0+30

0.349
0.359

1.408
1.400

Momentum
k=0.5

-0.377
-0.384

0935
0.233

0.401
0.412

1.296
1.287

k=1.0

-0.352
-0.350

0443

0.519

1.074

~The Grst six s-type functions are from Ref. 17.
'Ihe basis functions are symmetry adapted functions

constructed from Cartesian-Gaussian functions of the
given type.

functions centered at the origin.
In Tabl. es III and IV we present our converged

results for Z and II symmetries and compare them
with those of Collins and Robb. ' Qur results gen-
erally agree very well with those of Collins and
Robb. Any discrepancies are probably due to the
different target orbitals used. Collins and Robb
use a target orbital constructed from Slater-type
functions which probably gives a more accurate
orbital than that constructed from our Cartesian-
Gaussian functions. It is interesting to note that
in an earlier study, ' we used a target constructed
from a smaller 5s2z Cartesian-Qaussian basis
set. Using the iterative Schwinger method with
this target, we found that in the 'g„channel there
were discrepancies of -0.05 rad in the converged
eigenphase sums compared with the results of
Collins aud Robb. This large difference had not
been evident in any of the other channels con-
sidered. We then performed a scattering calcula-
tion in which no exchange interaction was consi-
dered. This cal.cul.ation with the direct potential.
only yielded excellent agreement with the equiva-

'Results of the present study.
b Results from Ref. 10.

lent calculation performed by Collins and Robb.
This somewhat anomalous behavior in the 'g„chan-
nel. prompted us to try the more accurate 8s4z
target which then gave very good agreement in
this channel. It is believed that this strong de-
pendence on the target orbital is indicative of
resonant-like scattering in the 'g „channel.

The iterative procedure used in the present
study was found to converge very rapidly. In Table
V we present a representative calculation showing
how the eigenphases converged. The higher par-
tial-wave eigenphases were not accurately ob-
tained using only the discrete basis set in the
zeroth iteration result. However, these eigen-
phases are quickly corrected in the first iteration
since they are Born dominated.

All integrals were computed using numerical
quadrature as is described elsewhere. '" The
integrals were evaluated on a grid of 780 points
extending out to 66.2 a.u. All basis functions and
the target orbital were expanded up to l =13. The
exchange and direct integrals were then computed

TABLE IV. Converged e|genphase sums for II sym-
metries in e=H2' scattering.

TABLE II. Scattering basis set. ' Symmetry k= 0.2
Momentum

k= 0.5 k= 1.0
Type of function for

the scattering
symmetry b

Z, Z„ II, II„ Function center Exponent

LM~
CRb

LM
CR

0.042
0.045

0.094
0.097

0.042
0.045

0.122
0.128

0.049
0.054

0.183
0.194

x x
x x
'xz xz
xg xz
xz x

Nuclei
Nuclei
Nuclei
Nuclei
Bond midpoint

1.0
0.3
1.0
0.3
1.0

LM
CR

LM
CR

-0.344
-0.347

0.141
0.154

-0.330
-0.331

0.137
0.150

-0.281
-0,273

0.107
0.119

These basis sets correspond to the set R of Eq. (12).
b See footnote (b) of Table I.

Results of the present study.
"Results from Ref. 10.
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(04 TABLE V. Convergence of eigenphases using the iter-
ative Schwinger variational method. '
Iteration
vmmber

Eigenphaseb
2 4

lo'- 0
1
2

CRc

-0.497
-0.488
-0.487
-0.497

0.055
0.083
0.084
0.088

-0.000
0.019
0.019
0.019

0.000
0.006
0.006
0.006

0 443
-0.379
-0.377
-0,384

C lo~

b

C0
CP
07

Cf)

8
)0 I

O

4)
Ol

a
ioo

io-'
30 60 90 I20

Scattering Angle 8 (degrees)
150

FIG. 1. Spin-averaged elastic DCS for e -H&' collis-
ions.

ieo

'Ihe results given are for &~ scattering in e -H2' at
k= 0.5 a.u.

These values of l correspond to the principal compo-
nent of the given eigenphase.

'Results from Ref. 10.

exactly with no further truncations in I,. We have
computed partial-wave solutions up to l&= V. This
truncation of the sum in l~ in general gives eigen-
phase sums converged to better than 1/0. Cutting
off the l~ sum does represent an approximation to
the total wave function +„-, however, each indi-
vidual partial-wave function g~, which is included
in the calculation will still be obtained exactly
within the static-exchange approximation if the
iterative solution converges. In Fig. 1 we present
the spin-averaged DCS obtained at the three ener-
gies considered here. These curves clearly show
the dominance of Coulomb scattering at low angle
and the effects of scattering due to the short-range
potential at large angles.

IV. RESULTS FOR PHOTOIONIZATION OF Hg

We use the electron-molecular-ion scattering wave functions obtained here to study the photoionization
of H2 in its ground state. .We have used the method outlined in our earlier paper to obtain the photoioniza-
tion cross section. The fixed-nuclei photoionization cross section is obtained in both the dipole-length and
dipole- velocity approximations.

The initial-state wave function 4,(r„r,) used in these calculations is a Hartree-Fock wave function. The
initial state is thus of the form

) (» )( (l)p(2) p(l)&r(2)

The one-electron orbital &&&&„was constructed from a 5s2z Cartesian-Gaussian basis given by Watson et
al. The Hartree-Fock energy for H, in this basis set is -1.1330 a.u. The final-state wave function is
taken to be the electron-ion scattering wave function where the target orbital is fixed as the f„orbital of
H, . Thus the final states are of the form

1/2
(34)

The differential dipole oscillator strengths are then
computed in either the length or velocity form
using

or

(36)

(35) where the photon energy is E= &k'+I.P. The photo-
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ionization cross section is then given by I8.0

(37)

The initial scattering basis set in these calcula-
tions was the same basis set we used for e -H, '
scattering and is given in Table II. The rate of
convergence in these photoionization calculations
was similar to that obtained in e -H, scattering.
In Table VI we give an example which shows the
rate of convergence for a selected energy in the
'Z„symmetry. Both the eigenphase sums and the
cross sections were converged to three decimal
places by the second iteration for all energies con-
sidered in this study. In Fig. 2 we present the
converged photoionization cross sections for H, in
both the length and velocity forms. We also com-
pare the present calculated cross section with
some experimental results. "' Since we have not
treated the vibrational motion in the H, -H, ' sys-
tem, we have only compared our calculated re-
sults with experimental results which correspond
to photon energies for which the sum of all Franck-
Condon factors for the open vibrational channels
of H,' is close to unity. For the H, -H, ' system
this corresponds to photon energies greater than
-18 eV."" The equivalence of the dipole-length
and -velocity forms of the photoionization cross
section is a necessary but not a sufficient condi-
tion for the exact solution. " Thus, we may use
this difference to estimate the minimum possible
error in the calculation. For the photonionization
of H„as shown in Fig. 2, the length and velocity
forms bracket the experimental results except at
the lowest energy. Thus in this case the differ-
ence between the length and velocity forms gives
a good estimate to the true error in the calcula-
tion.

V. CONCLUSION

In this study we have extended the iterative
Schwinger variational method to include electron-
mol. ecular-ion collisions. For the e -H,' system

l6.0—

I4.0-

12.0—

& IO.O-
C:
O

O
CP

8.0—

6.0-

40—

2.0—

0 I

15
I I

25 30 35 40

Photon Energy E (eV)

FIG. 2. Total photoionization cross section of H& in
megabarns: static-exchange dipole length; ——
static-exchange dipole velocity; O experimental points
from Cook et al. (Ref. 19); & experimental points from
Samson and Carina (Ref. 20). The ionization potential
for H2 was taken to be 16.4 eV.

we found rapid convergence of the iterative scheme
The resulting eigenphases are in close agreement
with the accurate static-exchange results of Col-
lins and Robb. ' We have also shown that the
photoionization cross sections obtained using the
method presented here agree well with the ob-
served cross sections. The application of the
iterative Schwinger method to the photoionization
of N, and CO, is in progress.

Iteration
xxumber

Eigexxphase
slxxn

o (Mb) b

Length Velocity

0.181
0&13
0.213

4.59
4.62
4.62

2.62
2.64
2.64

~%he results given are for ~ Z„scattering at k= 0.4287
or E=18.9 eV.

bIn xnegabarns ~10 is cm~).

TABLZ VI. Convergence of eigenphase sums and cross
sections using the iterative Schwinger variationa1 xneth-
od to compute photoionization cross sections of Q. '
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