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Hartree-Fock IHF) theory is generalized so as to apply to nondeterminantal densities, while retaining the

fundamental HF restriction to one-body dynamics. Time development in conventional time-dependent Hartree-

Fock and its extension are identical to classical Hamiltonian dynamics.

I. INTRODUCTION

Hartree-Fock (HF) theory is fundamental among
many-body theories for many reasons but perhaps
the most significant is the fact that it is a dy-
namical theory for the one-body density. Since
most physical observables, apart from the poten-
tial energy, correspond to one-body operators,
they are 1inear functions of the density. Conse-
quently one believes that their time evolutions
are xeasonably well described in the HF approxi-
mation. Unfortunately HF theory restricts the
densities to those satisfying the constraints

The former, being an expression of particle
number conservation, is acceptable. But the lat-
ter, which xestricts the &-fermion wave functions
to Slater determinants, is an undesirable con-
straint. Our objective is to relax this constraint
but to retain the essential simplicity of the HF
approximatloni

Recently we investigated the underlying geome-
try of the Slater determinants. It was shown that
the Slater determinants form a symplectic mani-
fold (phase space) and that the associated Poisson
bracket naturally defines a classical Hamiltonian
dynamics equivalent to time-dependent Hartree
Fock (TDHF). To adopt this geometrical view-
point, consider the Slater determinants as form-
ing a surface in the many-fermion state space
(see Fig. 1). The exact Hamiltonian H may be re-
garded as a vector field on this surface which is
directed in general off the surface, The HF
Hamiltonian HH~ is the projection of this vector
field onto the surface relative to the nondegeaerate
symplectic form. The TDHF solutions are the in-
tegral curves of the HF vector field.

In the preceeding paper„ it was shown how to
generalize HF concepts to arbitrary symplectic
submanifolds of the many-fexmion state space.
Unfortunately the generalizations usually prove to
be too complicated in practical applications. Fur-

thermore, the submanifolds of interest normally
prove to be nonsymplectic, so that our generalized
dynamics is not well defined. One of the reasons
for the excessive complexity is that the many-par-
ticle wave function contains much more informa-
tion than is embodied in its one-body density. We
therefore gain much in simplicity by considering
only the associated dynamics induced on the one-
body densities. What is more, we shall show that
the density surfaces are symplectic in all cases,
and dynamics is always well defined on them.

In addition to this geometry, thexe is also an
important group structure. The group &(n) of
unitary transformations on the n-dimensional
single-particle space (For simplicity, the single-
particle space is assumed to be finite dimen-
sional. ) acts transitively on the Slater determin-
ants, i.e., if 4 is some fixed determinant, then
every other determinant is of the form g4 for
some g e U(n). Moreover, as will be shown, this
group structure is interrelated with the symplec-
tic geometry since U(n) acts as a group of canon-
ical transformations.

The existence of these interrelated geometric

FIG. 1. A TDHF solution drawn as a dotted curve in
the surface of determinants. The tangent to this path is
the HF Hamiltonian lying in the tangent space. The ex-
act Hamiltonian H and the residual interaction V~ are
directed off the tangent plane.
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and group structures implies an alternative
framework for Hartree-Fock theory which en-
ables us to create new generalizations. By the
Kostant-Souriau classification theorem for symp-
lectic manifolds with a transitive canonical Lie
group action, the Slater determinants must be in
one-to-one correspondence with some coadjoint
orbit of U(n) (Refs. 2-5). 'IMs equivalent state-
ment of Hartree-Fock theory in terms of U(n)
coadjoint orbits is nothing other than the familiar
density-matrix formulation. '

For a fixed, but arbitrary, determinantal den-
sity p, the coadjoint orbit containing p is given
by

6, =(gag ig c U(n)j ~ (2)

Every density in this orbit is determinantal and,
conversely, every density associated with a 8la-
ter determinant is in the orbit 6,. Indeed, the
coadjoint action p-gag ' refers to the transforma-
tion in the density induced by a change in single-
particle basis associated with gc U(n). But,
every determinant may be obtained from a fixed
determinant by a unitary basis transformation.

It is also fruitful to adopt a geometrical view-
point with the density matrices. Thus, we rein-
terpret Fig. 1 by considering 6„ the orbit of de-
terminantal densities, as the surface contained
within the space of all possible density matrices,
the Hermitian n &n matrices with trace equal to

A TDHP solution is a curve constrained to the
orbit surface and tangent everywhere to the HF
Hamiltonian.

Physically, constraint to a U(n) orbit surface
means, by definition, restriction to one-body
dynamics. This is because the generators of the
unitary group are precisely the one-body opera-
tors. The crucial point is that this physical inter-
pretation applies not only to the orbit of deter-
minantal densities, but to every U(n) orbit sur-
face. Thus, we are led naturally to consider the
continuum of all possible orbits e„each of which
defines one-body constrained dynamics. Only one
of these surfaces, the orbit 6, with p =p, de-
mands that the densities correspond to 8later de-
terminants. The general orbits provide the frame-
work for the desired generalization of conventional
TDHF that is investigated in this paper.

The plan of the article is to define the phase-
space structure on the generalized orbits in the
next section. This symplectic geometry enables
us to, first, define classical Hamiltonian dynam-
ics on the orbits and, second, explicitly construct
the generalized Hartree-Pock Hamiltonian. In
Sec. IV, several ramifications of this. generaliza-
tion are discussed.

H. COADJOINT ORBITS

A density is fundamentally an element of the
dual of the Lie algebrau(n), i.e., a real-valued
linear function on the Hermitian one-body opera-
tors. Specifically, suppose p is the density ma-
trix corresponding to the many-particle state 4,

p.,=(4 )a,' .4). (&)

A Hermitian one-body operator X is defined by a
Hermitian matrix X via

X= Xag a g
t

a
(4)

X-gXg '-=Q ad, (X) Na'a~,
al

since

a'(g) =ga' g—'=pa', g ~,a'

a (g) ~ga g ' =Qg ' ~ „a'

and the adjoint action is defined by

ad, (X) =gXg ', (s)

for all Hermitian X and g c U(n). This in turn in-
duces the coadjoint action ad,* on the density ma-
trices

sd;(p) =ger '.
As anticipated in Eq. (2), the coadjoint action is
compatible with the action of U(n) on the many-
particle states,

ad~(p)(X) —= (gC ~XQC) = (C ~g 'XP@)

= tr(pg 'Xg) = tr(gag 'X) . (lO)

Note that in order to use conventional physics
terminology, p and X are Hermitian, whereas
in the mathematical literature the dual elements
p and Lie algebra elements X are taken to be
skew Hermitian. This discrepancy has no deep
significance.

The problem now is to characterize the coad-
joint orbits 6, in a manageable way. First note
that each orbit contains a diagonal density
p=diag(v„vm, . . . , v„), because any Hermitian
matrix can be diagonalized by a unitary transfor-
mation. Moreover, two distinct diagonal densi-

Then, p defines the linear real-valued function of
X given by

p(X) = (C iX4) =tr(pX).

The unitary group transformation of the many-
body states 4 -gC induces the so-called adjoint
action on the Lie algebra
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U(n)/H, —8„
gIJ, -gag '. (i2)

For the orbit of determinants, the isotropy sub-
group is given by the unitary transformations
which separately leave invariant the subspace of
occupied hole states and the subspace of particle
states. Thus, in this case, H, =U(A) XU(n-A).
For the generic orbits, the isotropy group ele-
ments are the pure phase transformations of the
single-particle basis H, = U(1) x U(1) && ~ ~ && U(1)
(n copies).

The dimension of the surface 8, =—U(n)/H, is
given by dimU(n) —dimH, =n2 —dimH, . Thus, for
the determinantal orbit dim8, =n' —[A'+ (n -A)2]
=2A(n -A), which is twice the number of particle-

ties cannot be in the same orbit. Hence, the or-
bits are enumerated by the set of all 6, as p
ranges over the diagonal matrices with constant
trace equal to A. The determinantal densities
form the orbit with p =diag(1, 1, . . . , 0, . .. , 0); the
generic orbits correspond to diagonal p with all
occupancies v, distinct and Zv, =&.

An orbit surface 6, is in one-to-one correspon-
dence with the coset space of U(n) modulo the
isotropy subgroup at p,

H, = (hc U(n)~hph '= p}.
To see this, observe that if two group elements
g„g, define the same point on the surface ep,
glpgl g2pg2 (g2 gl)P(g2 gl) P g2g
Hence, by definition, g, and g, are in the same
coset in U(n)/H„g, H, =g2H, . Thus, the identifi-
cation of the coset space with the orbit space is
given by

hole pairs. For the generic orbit, dim8, =n(n
—1). In every case, the orbit surface is even di-
me nsional.

Geometry on each orbit is determined by the Lie
algebra u (n) of the unitary group, the skew-Herm-
itian n xn matrices. A basis for this n dimen-
sional real Lie algebra is given by the matrices

iQ, ~= i2 't—'(E ~+Es, ), & -P
iP q= 2~t—2(E~q —Et,~), o'. & p

where E z denotes the n xn matrix whose sole
nonzero entry is one at the intersection of row &

with column P. An arbitrary element X of u(n)
is a linear combination of iQ z and iI'

z with real
coefficients. Each such element Xcu(n) defines
an element of the group U(n) by exponentiation
expXc U(n). Often it is convenient to work with
the complexification of u(n) which is spanned by
the E I3, but one must be careful since the connec-
tion with the group is lost, exp(E Jg U(n). Fix
a diagonal density p. Each element Xcu(n) de-
fines a curve y, (t) through the point p and lying
completely on the surface 8„y,(t) = exp(tX)—p exp
(-tX). The tangent vector to the curve y, at p
may be identified with X itself.

Notice, however, that the elements of the iso-
tropy subalgebra h, define zero tangent vectors,
since if X is in h„ then exp(tX) is in the isotropy
subgroup H, and, hence, y, (t) =exp(tX)pexp(-tX)
= p, a fixed point. Thus, the nonzero tangent vec-
tors must correspond to a subspace of u(n) which
is complementary to h, . There is no unique choice
for this complementary subspace, but a conven-
ient selection is given by the subspace h', ortho-
gonal to h, relative to the Killing form ~,

tan space at p =h', —=(Ycu(n) ~z(X, Y)—= tr(XY) =0 for all Xch }. (14)

For example, in the case of the orbit of deter-
minantal densities, the isotropy subalgebra h, is
given by h, =u(A) Su(n -A) = span(iQ», ,iP»},
%span(i@~. , iP~.}, where h, h' runs over the hole
states, the first& vectors, and P,p' runs over
the particle states, the last n~ vectors. The
orthogonal complement h', is spanned by the parti-
cle-hole matrices h~ = span(i@&, iP+. Thus the
dimension of the tangent space is the same as the
dimension of the orbit surface 6, itself, viz. ,
2A(n -A). For the generic orbits, the diagonal
matrices in u(n) form the isotropy subalgebra,
and the tangent space h, is the skew-Hermitian
matrices with every diagonal entry zero.

Consider next the description of the tangent
space at an arbitrary point gpg ' e 6,. As before,
every Xcu(n) defines a curve through that point,

viz. , exp(tX)gpg 'exp(-tX). However, the zero
tangent vectors are defined now by X Eghpg ',
i.e., X=gYg ', Ych, . The tangent space atgpg '
is identified with the orthogonal complement
(gh, g ')'=gh', g '. Hence, if we set

E t,(g)= ad, S.g)= g„~g-jP„„,
V

then the tangent space atgpg ' is spanned by

'e.,(g) -=2-"'[E..(g)+E,.(g)], ~=tt

iP.,(g) -=2 "'[E,(g) -E& (g)], &&P.

Thus, a basis for the tangent space at gpg ' is,
for the determinantal densities (iQ,~(g), iP,~(g)},
and for the generic orbits (tQ, ~(g), iP z(g), & &tt}

In order to complete the geometrical picture, it
only remains to define the symplectic structure,
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in terms of which the Hamiltonian dynamics is de-
fined in the next section. The symplectic form &
at the yoint gpg in the orbit 6, is an antisym-
metric form defined on pairs of tangent vectors at

(o„,-g (X, Y) =- -~ tr (gpg '[X, Y]),
where X, Yeu(n) are regarded as tangent vectors
atgpg . Observe that this definition is consis-
tent with that given in Ref. 1, i.e., if p is the den-
sity corresponding to the state C, then

&u„, ,(X, Y)=-i(g4~[X, Y]g4). (18)

The unitary group action is a canonical trans-
formation on the surface 6, because it leaves in-
variant the symplectic structure

~, (X, Y) = ~„,(ad, (X), ad, (Y)),

where X, Y au(n) are tangent vectors at p.
At diagonal p, the form assumes a simple ma-

trix representation in our basis,

~,(fq.„fq., ) = ~, (V'.„a'.,, ) =0,
(20)

-I 0

where 0 and I denote the null and identity matrices
in A(n -A) dimensions. For the generic orbit in
the ordered basis

(0 D

0d, (iq „iP,, )= (vF v )(~,~FF.-~F .~~,.).
Therefore, in the ordered basis (fq&, iP,g for the
determinantal orbit,

0 I

Suppose C is a determinant and a', a are the
associated single-particle fermion operators so
that p=diag(l, 1, . . . , 1,0, . . . , 0), [cf. Eq. (3)].
At the point gC, the exact Hamiltonian is regarded
as a vector which is not tangent to the orbit sur-
face of Slater determinants, i.e., it defines a
curve yg(t) = exp(iHt)g4 of states through the point
gC which are not in general determinants. On the
other hand, the Hartree-Fock Hamiltonian PHF(g4)
is a vector atgC which is, by definition, tangent
to the surface and, hence, a one-body operator.
Equivalently, because of the one-to-one identifica-
tion between the orbit of Slater determinants and
the orbit of determinantal densities, the HF Ham-
iltonian is.a vector field HHF(gpg ') on the deter-
minantal densities.

The HF Hamiltonian is constructed from the ex-
act Hamiltonian by projection using the symplectic
form. Thus, the exact Hamiltonian is the sum of
a tangent vector and a residual interaction

H=HHF(gpg ')+ Y„,(gpg ) 0'
with

(23)

to each such curve at every point is an element
of the unitary Lie algebra; the totality of all such
tangent vectors is referred to henceforth as the
generalized (density-dependent) Hartree-Fock
(GHF) Hamiltonian. We would like to construct
the GHF Hamiltonian from the microscopic inter-
action, as is achieved in conventional Hartree-
Fock theory. Indeed, the derivation of the usual
HF Hamiltonian by use of the symplectic geome-
try in the special case of the Slater determinant
orbit clarifies the abstract situation considerably.

A. Orbit of determinants

(22) v, -x(HHF(gpg '), X)=-i(g4~ [H, X]g4) (24)

where 0 a,nd D denote the null and diagonal ma-
trices in ~(n —1) dimensions, with D F ~F
= vz- v . Since the group action is canonical, the
form takes the same matrix representation at
every point on the orbit 6, in our basis, Eq. (16).
An important property of u is that it is nondegen-
erate at every point, i.e., if tu, (X, 1') =0 for every
Y, then X= 0. This easily follows from the matrix
representation.

III. ONE-BODY DYNAMICS

and

(g4'~ [V„,(gpg '), X]gc') =0 (26)

HHF(gpg ) HHF(gpg ')»&»(g) + H c. , (26)

where

for every tangent vector X in u(n) atgpg '. Since
ru is nondegenerate, Eq. (24) has a unique solution
in the tangent space at gpg ' given by

Because of the symplectic geometry on the coad-
joint orbits of densities, we are able now to de-
fine one-body dynamics on these orbits. The
fundamental approximation is that the time evolu-
tion of an initial density p is a curve constrained
to the orbit surface 6,. Thus, the tangent vector

HHF(g pr'), .= -(g4
~

[H, a;(g) a, (g)]g4&

=-(4~[g 'Hg, a„'a,]4).

In order to evaluate HHF(gpg ')&, first write

(2V)
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H= ~Te&aea&+4 ~e&rdaea&aPr
ef3 e rd

eg
T gestae g gg

where

+-' V (g ).,„,a.'(g}a&(g)a, (g}a,(g), (26)
e rd

T(g),=Q g ', ,T ., g, ,
e tgt

-j. -1 rrV(g)..„,= gea AO "e S r d'gr'r gd d ~

et ere dl

(2s)

Then g ~jg' is given from Eq. (26) with the sub-
stitutions a' (g) -a and a~(g) —a~. After com-
puting the commutator in Eq. (27) and evaluating
its expectation value, we find

Her(gpg '),.=T(g),.+g V(g}. ,h. ,
h'

(so)

which is recognized as the usual Hartree-Fock
Hamiltonian derived by other less geometrical
methods. ' '

B. Generic orbits

We turn now to the generic orbits and attempt to
determine the generalized HF Hamiltonian

Ho„r(gag ') employing the same geometrical con-
struction that has proved successful for the Slater
determinant orbit. However, a significant modi-
fication to the construction is required due to the

fact that the map gc -gpg ' is a many-to-one
correspondence. Indeed every state of the form
ghc for h cH, is mapped onto the same density

gpg '. Thus the straightforward generalization
of Eq. (24) to the generic orbit is ambiguous. The

simplest way to resolve this ambiguity is to aver-
age over the states. Thus we generalize Eq. (24)

to define HG»(gpg ') by

4l -a{HG.ar(gpg ) X)

=-i dp h gh4 H, X ghc 31
hCHp

for every tangent vector X cu (n) to the orbit
at gag '. The measure d p(h) on H, = U(1) && ' ' ' && U(1)
is the invariant measure,

and, by an argument similar to that used in Eqs.
(26) and (27)

Hoar(gX' ')me= (vo —vs) '

hc g 'Hg, a&a 54
H

(33)

where v is one of the distinct entries of the gen-
eric diagonal density p= diag(v, v„.. ., v„). For
the one-body part of H, the integrand is indepen-
dent of h e H, and averaging produces no effect.
This reflects the fact that there is no ambiguity in
transferring a one-body operator from the orbit
of states to the orbit of densities. On the other
hand, the two-body part requires averaging. In

fact, one encounters integrals of the form

(S4a}d p (h) (h4 ~a'a&a„a~ h4),
Hp

but, since h 'a'h = e' ea' and h 'a h = e 'ea, the
integral becomes
" d8, d8„

~ ~ ~ e +' I " ~'(C ~a~atta„a~4). (34b)

Notice that this integral vanishes unless the argu-
ment of the exponential is zero. Hence, the inte-
gral is evaluated to be

(& „&~6 —& s ~„)(@~a'aaa,aze). (34c)

After computing these two-body averages, the

generalized Hartree-Fock Hamiltonian is given

by

We have succeeded in constructing a theory of
nondeterminantal one-body dynamics. The con-
struction starts with an arbitrary many-body state
4 and chooses a single-particle basis so that the
corresponding density p is diagonal. From this,
the coefficients

HGHr(gpg ').~

= ~(g) y+ (v —vg) g V(g)y Og

&& (4
~

(a'a -a&a/a, 'a, c),
(36)

for 0.'&P. This is the desired result.

IV. DISCUSSION

d8 d8 d8„
2r 2' 2m

Since iHGHP(gpss ') is a tangent vector at gpg '
we can expand

Hoar(gpg ') =g HGar(gpg ')~&E~&(g)+ H. c.
e&P

(32)

(36)

(37}

(41 (a'a -a&a/a, 'a, c)
(C1 (a'a -a~a~}C)

are determined. Then the generalized Hartree-
Fock Hamiltonian, a vector field tangent to the
unitary orbit of densities 6„ is given by

H F(gGPHg- )~s- T(g)~p+P V(g)~~~&A~&, at t
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There are several remarks to be made. First,
note that the GHF Hamiltonian reduces to the usual
HF Hamiltonian if 4 is a Slater determinant,
since, in that case, a,'a, 4 = v, 4 and, hence,
a6

V6 ~

Clearly, stationary GHF states are points gpg '
on the orbit surface 6, for which

HsHr(gpg )(hi)= oh (38)

This may be solved for g by an iterative procedure
similar to the Hartree method, or better yet by
the Newton method.

Time-dependent GHF solutions are integral
curves lying in the orbit surface 6, which are
tangent to the GHF Hamiltonian. Therefore, the
density p(t) ~g(t)pg(t) satisfies the matrix equa-
tion

dt
=i[H „(p(t)),p(t)]

or, in terms of g(t),

= &Hssr(gpg )hh()h
(,dg j.

dt

(39)

(40)

dX(X) =—X(exp(tX)gpss ' exp(-tX)) ~,.0 (42)

for every tangent vector X eu(n). From dX and
the symplectic form &, &, the GHF Hamiltonian
is given from

&„;i(Hssr(gpg '),X)=dX(X) (43)

for every tangent vector Xcu(n) at gag '. Using
Eqs. (17) and (32) and letting X =i@ ()(g) and iP ()(g),
Eq. (43) may be solved and the GHF Hamiltonian
previously derived is recovered.

This alternate derivation is useful because it
applies to any energy function X. Thus, if a dif-
ferent choice for K is made, then Hamiltonian
dynamics is still well defined. For example,
another sensible choice for the energy is given by

Observe that this second equation really defines
a curve g(t)H, in U(n)/H, ~ 6,. Thus, multiplying
g(t) on the right by a diagonal unitary matrix
leaves Eq. (40) invariant.

An alternate derivation of the GHF Hamiltonian
starts with the energy function on the orbit 6„

hh(hlh) ') = f d (h)( ghh (~ih h). h(41)
H

With the energy function defined, Hamiltonian
dynamics is immediately determined in a standard
fashion. ' The differential dX at gag ' is a real-
valued form on the tangent space at gag ',

X(gag ') =min(gh4~HghC). (44)

Whether this or our previous expression, Eq. (41),
is a better choice for the energy function depends
upon both the properties of the state 4 and the
two-body potential V. If C is a Slater determinant,
then the expectation of H is independent of h(= H„
and both expressions are identical. In the case
when the expectation of H is only mildly dependent
on h, then both energy functions are similar. Be-
cause it is easier to compute, the averaged en-
ergy is then recommended. On the other hand, if
the energy expectation is a strongly dependent
function of h cH, with a sharp deep minimum,
then Eq. (44) is clearly more suitable for zero-
temperature nuclei. However, at nonzero temp-
eratures, a third choice for X is presented by
weighting the integrand in Eq. (41) with the Boltz-
mann factor.

It is important to recognize that the exact zero-
temperature ground-state density lies on one of
the orbits 6,. Moreover, its energy is the abso-
lute minimum of Eq. (44) on that surface. There-
fore, the search for the ground-state density
naturally separates into two different problems:
(1) The determination of the surface 6, on which
the exact ground-state density lies and (2) the
discovery of the minimum minimorum of the
energy on that surface.

Finally, when would this generalization of HF
be physically appropriate? First, it is the natural
extension of the usual HF method for determining
the ground-state density. Suppose that a conven-
tional HF calculation has been performed, and it
has been discovered that the single-particle energy
gap between the two states just above and below
the Fermi surface is small. In this circumstance,
one does not believe that the HF Slater determinant
is a good approximation to the exact ground state.
It is then natural to consider, as the next best ap-
proximation, the orbit of states formed from the
sum of two determinants. The sum of determin-
ants C would then be used to construct Ro~& and
Hs„r,' the solution g to Eq. (38) defines the best
ground state that can be written as the sum of
two determinants in the orbit containing C. By
ranging over all possible sums of two determin-
ants, the best ground state of that form is identi-
fied. Of course, it must be a better ground state
than the original HF wave function.

A second practical application is to the TDHF
explanation of nuclear reactions. ""If the inci-
dent and target nuclei are both well described by
Slater determinants, then conventional TDHF is
perhaps satisfactory. However, if either nucleus
cannot be adequately approximated by a Slater
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determinant, then conventional TDHF is not physi-
cally a well-defined theory. Our new generaliza-
tion permits an arbitrary initial state 4 to be se-
lected, although the exit channels are then re-
stricted to be in the same U(n) orbit as the initial
state.

ACKNOWLEDGMENTS

The material of G.R. is based upon work sup-
ported by the National Science Foundation under
Grant No. PHY-7906534. The work of D.J.R. was
supported by The National Science and Engin-
eering Research Council of Canada.

~D. J. Rowe, A. Ryman, and G. Rosensteel, Phys. Rev.
A 22, 2362 (1980).

2J.-M. Souriau, Structure des Systemes Dyamiques
(Dunod, Paris, 1970).

D. J. Simms and N. M. J. Woodhouse, Lectures on

Geometric Quantization, Lecture Notes in Physics,
Vol. 53 (Springer, New York, 1976), Chap. 8.

B. Kostant, Quantization and Unitary Representations,
Lecture Notes in mathematics, Vol. 170 (Springer,
New York, 1970).

V. GuQlemin and S. Sternberg, Geometric Asymptotics,
Mathematical Surveys, No. 14 (American Mathemati-
cal Society, Providence, Rhode Island, 1977), Chap.
IV.

S. Belyaev, Nucl. Phys. 64, 17 (1.965).
~D. R. Hartree, Proc. Cambridge Philos. Soc. 24, 89

(1927).
V. Fock, Z. Phys. 61, 126 (1930).

~G. Fonte, R. Mignani, and G. Schiffrer, Commun.
Math. Phys. 33, 293 (1973).
R. Abraham, Foundations of Mechanics, Math. Physics
Monograph Series (Benjamin, New York, 1967), Sec.
16.

~|P. Bonche, S. Koonin, and J.W. Negele, Phys. Rev. C
13, 1226 (1976).

~J. J. Griffin, P. C. Lichtner, M. Dworzecka, and K. K.
Kan, Report (unpublished).


