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Kinetic equation for a weakly coupled test particle. II.Approach to equilibrium
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We study the Fokker-Planck equation for the distribution in velocity of a test particle uniformly distributed
through a weakly coupled classical fluid. The diffusion tensor, described first by Landau and by Chandrasekhar, is a
complicated function of velocity. We discuss the manner in which the distribution function approaches, in time, its
final Maxwellian form. The angle-averaged (I = 0) and the (I = 1) components are particularly interesting, the latter
governing the autocorrelation function for velocity. Both relax as t'exp( —t'). Our analysis is based upon R. E.
Langer's method of comparison equations. The two-dimensional case is remarkably like the three-dimensional.

I. INTRODUCTION

Although the Markovian kinetic equation for
the diffusion of a weakly coupled test particle
(the Fokker-Planck equation) has been in the lit-
erature for some time,"little is known about its
solutions. In this paper we discuss the approach
to equilibrium of distributions f(r, u, t) that are
uniformly distributed in space. We are particu-
larly interested in the isotropic component (I =0)
and the (l = 1) component of the velocity distribu-
tion. The latter is related to the autocorrelation
function for the velocity of the test particle. Fin-
ally, we shall comment about the relation between
bvo- and three-dimensional velocity spaces.

The kinetic equation is, in dimensionless vari-
ables,

8 8 ~ 8—f(u, t) = e= D(u) ~+ 2u f(u, t),
8g ' 8u 8u

with f(u, t=O) given. The distribution function is
subject to

This condition will supply a boundary condition for
the behavior of the isotropic component of f(u, f)
at gg = 0 when we make a spherical-harmonics de-
composition. Other angular modes will enter when
we study the relaxation of certain correlation
functions. Then, additional conditions like

D,(u) + ,D„(u) = ,-trD, ~= -—,

8 8 18~ 5(u) = II(u, t) —V(u)p= —tI(u, t),-8u 8u '
g 8t

with

f(u, f) = e " 'tIt'(u, t),

(3)

Here, x=u/8, 8'=m, /m„where m, is the mass
of the test particle and m2 is that of the host par-
ticle. The dimensionless velocity u is given by
v = v~u, &m, v~ = k~T. The weak-coupling param-
eter z is compounded of the usual quantities: the
host density n„ the range of force a, the strength
of force X, to which we have added 8', the mass
ratio, and p„a shape factor, to get e =

n, a'(A/ke T)2$,(8'/16). The dimensionless time t is
given by v, t = at, where t is the physical time. Our
earlier paper' contains much information about D 8,
the kinetic equation, and their non-Markovian
cousins. We have reprinted the graphs of D„and
D„(8=1)as Fig. 1, for convenience. Our pres-
ent definition of D z differs from the earlier by the
factor 4/38'.

Equation (1) has the form of a Fokker-Planck
equation with velocity-dependent diffusion tensor.
Another interesting form, suggested by Kuscer
and Illner, ' is the self-adjoint

will guarantee the existence of the correlation
function and provide a boundary condition.

The diffusion tensor is

with

V(u)=u D u-trD-u ~ D

d=uD ———uD.II 2 d II (4)

Equation (3) reminds one of a Schrodinger equation
with a variable mass. Kuscer and Illner' point out
that a crucial condition for the spectrum of eigen-
values is that V(u)-~ as I-~. This is not so in
weak-coupling kinetic theory, where D„-u ' and
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with f(u„ t) being the average of f(u, t) over the
sphere, the isotropic component.

The change of variable

h(u, t) =v'g(u)e" f(u, t) =))'d,(u)g(u, t),
and the introduction of the Laplace-transformed
distribution function

f(«, «)= f d(e "'f(, ()
0

brings the kinetic equation to the convenient forms
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1—,—u'D„(u) —+2ui f(u, s) —sf(u, s) = ——f(u, t=0),

FIG & D)l Dj the components of the Markovian ten-
sor. u'

n(u) —g (u, s) —su'g (u, s) = ——f(u, t = 0),

(6a)

D, -u '. The vanishing of the tensor components
as u- ~ complicates the structure of the solution,
as we shall see. It is already known (Ref. 2 and
references therein} that the spectrum of eigenval-
ues is continuous, extending from zero to -~, and
includes a point, at zero, corresponding to the
stable Maxwellian distribution. Thus, the ques-
tion of how the equilibrium is approached, as t-, is particularly interesting.

II. CALCULATION

A. The equation, I=0

We begin with distributions that are isotropic
in velocity (l =0). Then only D„(u) enters the kin-
etic equation, and

e g e e
f(«, t)= ——«'))(«) —+2 )f—t,«)to-(& )

et ' u' e " e

d2
2 h(u& s) —[A(u) + sB(u)]h(u& s) = -Ho(u), (6b)

with

I2

IQ—

concerns us. Its solutions are controlled by D„,
which (along with D,) is positive and decreasing on
0 &u&~. The integrability condition on f(u, t) pro-
duces a boundary condition at u= 0 through the fol-
lowing argument: Integrate E(l. (1}through a re-
gion in u space that is a large sphere surrounding
u=0, from which a small concentric sphere of
radius u, has been removed. The integral, which
becomes an integral over the two spherical sur-
faces, must vanish as one goes to the obvious
limits. The outer integral vanishes when we
choose initial distributions localized in velocity
space, and the inner integral leads to the condition

I
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Z = s'e " D„(s) .

This function is proportional to the Green's
function for Eq. (6a}, a function which, for fixed u,
Qp w ill be analyt ic in the s plane cut by the nega-
tive real axis. %e can write it concisely as

The boundary condition at the origin is now h(0, s)
=0

Both A(u) and B(s) are monotone increasing func-
tions of u'. They are displayed in Fig. 2. B(s} is
positive; for large u, asymptotically,

( )
&0(u&, s)h,(s&, s)

W(0, 2)
(&a)

B{s)=s'+

where the ellipsis represent exponentially small
terms. A(u) rises from its initial value, A(0)
= —3[1+-,'(I/e')] to

2 3
A,(N) =u'+ +

4N'

where, again, the ellipsis represent exponentially
small terms when u» e. The fact that the impor-
tant coefficient in Eq. (6b) is proportionai to sgP
as u- ~ means that we face a singular perturba-
tion when we consider solutions at long time (small
~s ~). The approach to equilibrium is controlled

by particles of high energy, a fact that might have
been deduced from the dynamics of scattering in
the impulse, or linear trajectory approximation. '

Since large u is controlling, and since the func-
tions A(u} and B(s) are not simple, one might study
the long-time behavior of f(s, f) by replacing D„(s)
byitslarge-uform, 1/s'. Inmathematicalterms,
one neglects exponential terms-exp(-u'/g') relative
to algebraic terms; a corresponding physical mod-
el might be one in which the test particles were
relatively light (8- 0). In any case, the homogen-
eous equation becomes

h,(u, s) is the "falling" solution, and W(0, 2} is
the %'ronskian. In particular, h, may be seen to
behave as exp(-C, v sr'~') for ~args

~

& v.
The coefficient of h(g, s) in Eq. (6b) is analytic

in s for all fixed u, and C" in g for O~u&. Thus,
fundamental solutions like h,(s, s) and h, (N, s) [de-
fined through k,{0,s) = I, (d/du)Ig, (0, s) = 0], will be
analytic throughout the s plane. ' It is convenient,
then, to represent the falling solution as A, = h,
+m(s)h, . The Green's function becomes

g(, o, ) = — '
(") [&,( „)+ ( )&,( „)],

(8b)

and m{s), the only nonanalytic quantity in the ex-
pression, generates the-spectrum through its
zeros and its singularities. For example, m(s}
VRnishes Rt 8 = 0~ Rt that pont A2 ls simply pro-
portional to h„and Eq. (6b) has solutions

a",0 ) =as-~"Vb( )

, h(u, s) — ss +u +, h(u, s)=0,

or, after

s'= 2g, &r= W2s,
j.

(Ib)

8. Green's function (I=0}

We shall discuss the solution to Eq. (6b) f»
B (gg) = 6(gg —gg ) g(0, s) = 0 and k(s

Both equations show the singular perturbation
quite clearly. The second was discussed eax lier
by Mazo and Hesibois. ' The true approach is even
more complicated than Ref. 5 would suggest.
While its essence is described by Eqs. (Va) and
(Vb}, the analysis of the full equation (6) can be
carried out without undue additional affort.

—g"'~' 45(g),

where we use the convenient notation ply)
u's "=D~,(s) =u'e "' D„(0) (6 s). We are describing

the Maxwellian equilibrium solution and the point
(s=0) in the spectrum that corresponds to it. In
this self-Rdjoint and "physical" problem, the
spectrum wiB lie only on the negative real axis.
Thus, m(s) is analytic in the cut plane. '

C. Inversion of the Green's function

The Laplace inversion of g(s, u„s) is carried
out along the conventional contour of Fig. 3. We-
shaQ discuss the behavior of g on the three sec-
tions of the contour; I, (s

~

large; II, (s~ small;
III, s real and negative. The integration over I
can be neglected because the exponential in the in-
version integral easily dominates the large- ~s

~

behavior of h, and h, . The integration for ~s
~
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as expected.
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are now solutions to

d~
, h(u, -x)) - [A(u) xi'-(u)]h(u, -x} = 0
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e " ds h ue~x piu~ s)ho(up~ s}
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„( )
" ds 1

4vD„(0) x 2«m(s)
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h,(u, s) =h',"(u}+ sh'"(u)+ ~ ~ ~
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been noted earlier. The first-order so
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Since
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0
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must vanish, we expect that the integral of the os-
cillating function h,(u, -q), appropriately weighted,
will vanish, too. This follows at once from the di-
rect integration of the homogeneous version of Eq.
(6a) or (6b), taking into account the behavior at
zero and infinity.

D. Solution via "comparison equation"

Equation (11), h„„-v(u, g)&=0, does not have
simple solutions. It is an equation characterized
by two turning points. There is no "small param-
eter" for generating an expansion. We have a
small parameter if we consider the approach to
equilibrium as t-, for that behavior is con-
trolled by the smail-q portion of m(qe").

When g is small, the two zeros (turning points)
of v(u, q} are separated widely. The smaller, u„
is essentially the zero of A(u}, and is of minor
importance in the approach to eqailibrium. The
larger, u„occurs at u, »1. In fact, u, -l/q as
q-0. Thus, we may write explicitly [R(u) &0]

such that one seeks an expansion in a large (or
small) parameter and recognizes that turning
points play an exceptional role. They dominate
the asymptotics. Thus, the mapping is onto a
simpler equation having the same number of turn-
ing points as the original equations. The accuracy
and success of the technique is impressive. One
sees a simple version of it in elementary treat-
ments of the WKB method, when the Schrodinger
equation is mapped onto Airy's equation. '

The mapping is carried out via the Schwarz
transformation; thus, with the change of variables
(= $(u), h(u) = I/v f~($), and )„=d(ldu&0,

d2
, h(u} -v(u)h(u) =0

becomes

with

v(u, q) =R(u)(u -u, )(u, -u) $„V(f)= v(u)— (14)

1= -R(u)(u —u, )(1 —qu),

and consider the difficulty introduced by the last
factor. [See also Eq. (Vb). ] It is clear that any
simple expansion in q is doomed to nonuniformity
of convergence when we consider the velocity
variable as well. Since we seek a formula con-
necting large-u and small-u behavior, through Eq.
(12), the flaw is deadly. In addition, we expect
complicated behavior in m(s} near s =0, behavior
that will not appear in a power-series expansion.
These features appear clearly enough in the mod-
el u, = (1 -qu}, which can be solved precisely, in
terms of Airy functions of argument q '~'(1-qu). '
One finds

Im =- Im
m(pe&') m. (g)

1 4
p= - exp ——as g-0.

~2/ 3 371

One needs a powerful, nonperturbative tech-
nique. The method of comparison equations,
sometimes called Langer, 's method, provides the
nonperturbative technique. ' It is used frequently
to extract uniform approximations to functions de-
fined by differential equations of second order. '
The method is based upon the mapping of the dif-
ferential equation in question onto a simpler equa-
tion, whose solutions are known. The situation is

and Q=1/~$„. With V($) chosen to be "simple",
Eq. (14) becomes a difficult differential equation
to determine $(u). The troublesome term is the
second, which may be written

= [(lnQ)„]'+(lnQ)„„.

One expects the derivatives of the logarithm of
the transformation to be small if the transforma-
tion is gentle enough. Indeed, the term vanishes
for linear fractional transformations. Our strat-
egy, then, is to treat Q /Q as a small correc-
tion. We shall do the calculation first, neglecting
.Q /Q. Then, bymeans of estimatesand examples,
we shall convince the reader of its minor role in
the behavior of solutions as g-0. That limit is
controlled by the exceptional points.

1. Calculation

The simple equation for the problem of two turn-
ing points is the equation for the parabolic cylinder
functions,

d2
", + (-,' 5' - a)y = 0.

The differential equation for the transformation is,
with neglect of Q„„/Q,

(-,' ]'-P') („*=R(u)(u -u, )(u -u, )

with P'= a, and R(u), u„and u, depending upon q.
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The solution giving a smooth mapping is
p-2B

(0 & u & u, ) J' dg,
l
v(g, ) lc~'= du lv(cc) lcc',

8

t'u

d4I«4}l"'= J~ d lv(u)l"' (18}
-2B 81

(s.-.s) d(, IV(2))"'= f 2 Iv( ))"',
2B 82

with u=0 mapped onto $0&0, u, onto $=-2p, and
u, onto $ = 2p. g0 and p are determined as functions
of g by the equations

1 Q2
2tt'

J
ds(1, -s')"'=cccc=

J
'du lv(cc) l"',

(17a)
22' f ds(s —))' ' '= f ds~v(2)

~

1 0

with 2@,= l 4 l. These stem from evaluating Eqs.
(17) at the end points of their intervals. f(c}) plays
an important role in the asymptotics, as g-0.
We shall also use the notation

where we have used the Wronskian of E and E~."
The expressions (18) are accurate only in the lim-
it t}-0, where cc and

l (, l

-~. In this limit, in the
notation of Ref. 10 we have

1 1 e-Im =-, (I+ ),
m, ()7) 2 W'(a, —

I ), I)

where the ellipsis represent exponentially small
terms. w(a, —

l $, l
} itself requires a uniform rep-

resentation when both its variable and its param-
eter are large and are functions of a single param-
eter. The expansion is available, in terms of
Airy functions "

g
1/cL

W(ccs —l(0 l) 2v r (4cc) c e" Ai(-to) 2g2-1

where f, is noted in Eq. (17}and

3t' '= du v u ' '=2P' ds s'-1 '/
8 1

(17b)

t', "=-' du lv(u) l"'
40

When u= 0, 3toc'(t}) denotes the integral in the sec-
ond equation of Eqs. (17).

We are particularly interested in E(cc, f} and
E~(a, $), the complex solutions to Eq. (15). For
(» la l, E(a, $)-(2)'c'exp(t —,'f')." since the trans-
formation, Eq. (18), gives —,'$'--,'2(t}u' ', we note
that h "(u, tt) of Eq. (12) corresponds to E~(a, $).
Then, if we write

h,(u}=Ae(a, $)+A~e*(a, (},
hc(u) =Be(cc, $)+B*e*(cc,$) 2

with ~$„e(a, $) = E(a, f), consideration of the bound-
ary conditions at u= 0 gives

h, (u, -t})= Im[e~(a, $,)e(a, ()],

4 1
a(q) =— + aa+ o (1)15 mg2

to(t})= t +o(1),

g 4 ' 1
(})()7)=(1,'-1}-= 15,(, [1+o(1)].

0

Then, we have

(20)

1 1 4 '~' e '"' exp[- ~c(l/t}'))
m. (tt) 4cc 15cc Ai'(-t, )

(21)

As a final step, we turn to the evaluation of a(tt),
t,(q), and l,(tt). These are described in Appendix
A. We find

m()7e") -=m, (tC) = e'(e, ~,)
ef(a, ],) '

1
m.(tt) I e(a, 4) I

'

(18) If we return to Eq. (10) for f"'(u, t) we note that
the crucial factor for the asymptotic evaluation is
exp(-[qt}t+ —,', (1/tt'}]]. With t- ~, the simplest ap-
plication of the saddle-point method to f'" gives

f"'(u t)- — —, I y"'4; „.. u — ». I
"o "() pcc I c&9cc [n(u)n(u )]c 2 7'

& & T (22)

with y=4/2/15, g =yet. B is the constant factor
in Eq. (21). Equation (22) with its unusual time
dependence is one of the principal results of this
paper. We have generated the expression

—1m[I/m, (tt)] = exp[- —'(I/ct2) —-,'Intt+ ]

I

to be used, for g small, in the evaluation of Eq.
(10}. We shall see that though the term 0(1) may
change upon iteration of Eq. (14}, the leading
terms will not.

If one wished to evaluate Eq. (22) for some
(u, u„q), one would be advised to construct the
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analytic h, in a direct manner, making use, per-
haps, of the smallness of p/r' ' .One would not
want to use the approximate form given by Eq.
(18), for the transformation u ~ $ is singular as
q-~ (v-~), and would introduce spurious effects
into the calculation.

IH. DISCUSSION OF ERROR

- v, (0, g) exp(- -'
I &, I'~ '),1

m. Tl 3

—,
' ~4~"'= f 'dll())(ll', l))( l, -ll)l'", l

(24}

which we estimate as q-0, u, -l/g-~. Since
R,(u', ri) is a smooth, bounded function, approach-
ing qg2 as u-~, we are led to estimate Eq. (24) as

du[pa'(u, -u)]' '-——,,3 0 15g2 '

producing the exp[- —', (1/g')] noted earlier. This
is a rather general result. The turning points,
= I/q controls the asymptotic behavior. The other
features of Im(l/m, ), the finite limiting value
[v, (0, 0)]'~', and additional terms in the exponent
depend upon details of the model. For example,
let v, lg, q) = (a'+ g')(1-qu) so that, like the cor-
rect v(u, q), the behavior when g«1 is insensitive
to q. Then calculation gives

A careful discussion of the error in Eq. (22}
would involve a difficult analysis of an integral
equation for h,(u, -g), an equation whose kernel
was constructed of parabolic cylinder functions. '
We eschew this approach and shall rely on heuris-
tic arguments to convince the reader that the lead-
ing terms of Eq. (22) give a true picture of the re-
lemtion.

We begin by arguing the key role played by the
turning points (exceptional points} —indeed, by the
point u, (g), which is close to 1/g as g - 0. Sup-
pose v(u, g) =R,(u', q)[u, (q) -u], with g, as before,
and R, &0. That is, we alter v(u, q) when u is
small, to remove the first turning point. Now the
comparison equation is Airy's equation, V($}= -$.
The mapping takes u, to )=0 and u=0 to (=(,&0.
Thus

Tc 3f

(0- u- u, I)-0} Jl d4& I4& I"'= dg[v (u}]"'
(23)f4

(u-u. l& 0)
0 u2

and the function v g„e($}now denotes the standard
solution Bi($)+ i AN)). The calculation of Im[1/
m.(g}]goes as before. We find, with the neglect of
exponentially small terms, that as g-0,

v„(u)=v, (u)- ', m=1, 2, . . .
e-1

v, (u} = v(u),

(25)

and at each stage we proceed as above, Eqs. (16)
onward. Of course, we require that all of the v
are alike —in particular, that all have two turning
pointy, so that the parabolic cylinder functions
are always the correct comparison functions.
Then, to prove that the asymptotic behavior of
Im[l/m. (g)] is indeed q '~' exp[- —,', (I/g'}], we need
to show that for every m,

a (g) —,+a„+O(l),
4 1
15 wg'

and that

lim (fu Iv~0
is finite and not zero. As the calculations of Ap-
pendix A indicate, these two facts guarantee the
conjectured asymptotic form. , We do not prove the
result for arbitrary m. Instead, we consider the
case m =1, which suggests, strongly, the truth of
the conjecture.

We shall evaluate the first correction

v, (u) —v, (u) =Q, /Q„Q, =($0 „)"',
in the important region u» 1, where we may re-
place v,(u) by g'(1 —gg), and V(f) by P(-,'( —P).
Then, calculation gives

3~»«3w
I

))}g

(1+—'qu)'i'

Qp, 3+Bing+ 4(gu)',
( )Q, u'(2+ 3qu)'

The correction, falling as u ', affects the small-g
behavior of a(g) (see Appendix A} only in the O(l}
term. It vanishes at the turning point, pe =1, as

—,
' a'Inq+ O(1)15 g~

as g-0. Thig leads to1,a ( 8 1-Im =Ay' expI ———, [1+O(g)],m.(q) i 15 rP

and the degree of sensitivity to model is apparent.
Let us turn to a more systematic discussion of

the accuracy of Eq. (21). We seek the smooth
transformation ](u} that satisfies the differential
Eq. (14) with V(() =(P'--,'$') and v(u) =A(u) —p&(u).
Imagine that we obtain $(u) via convergent itera-
tion, beginning with g,(u), the approximate solu-
tion discussed above. Thus

g'„„(P'-—,'$2)=v„(u), m=0, 1, . . .
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IV. THE CASEl)0

A. Genera&~~

'i'he case l & 0 is complicated by the appearance
of a new term in the kinetic equation. For exam-
ple, Ekl. (6b) is now

d2

du , h, (u, s) —v, (u, s)h, (u, s) = H,(u), - (26)

with vk(u, s) =A(u}+ [I(I+1) /u]D, ( u) /D( u)+ sB(u)

It is safe to conjecture that further iteration
will not disturb this result.

The first correction is a smooth function of u

for all u. If we examine it in the neighborhood of
the first turning point, we find that its value at u,
is proportional to g' '. Thus, in the limit g-0,
it disturbs neither u, nor u,. Its value at u = 0 may
also be computed. It is nonzero in the limit, a few

percent of the uncorrected value. Thus, the cor-
rection does not alter the picture of a (somewhat}
parabolic potential with two turning points. It is
extremely unlikely that higher corrections will do
so. We conclude that k)

'~' exp[- —,
' (1/k)')] is un-

doubtedly correct, our estimate for the multiplying

constant, the O(1) term, being subject to some
error.

=Ak+sH and H, (u) =(u'/Mb, )fk(u, t=0). The new
term, a centrifugal potential, causes the point u
= 0 to be singular and forces us to refer to another
point in the construction of the analytic basis
functions which are so helpful in the analysis of
the Green's function g, (u, u„s). As before,

ho(u&, s}h,(u&, s)
gk&ue uos) =

(0 2)
(27)

h, being regular at u = 0 and h, falling as u- .
[We shall suppress l, as we have on the right-hand
side (rhs), whenever we can. ] Now (l&0) neither

h, no~ h, is analytic in s. We write them as

h,(u, s) = (t o(u, s) + m, (s)(t)k(u, s),
h, (u, s) = (t)o(u, s) + m, (s)(t),(u, s),

the analytic basis functions (t),(u, s) being defined
through (t) o(a, s) = 0, (dldu)(t) o(a, s) = 1; (t),(a, s) = 1,
(d/du)(t), (a, s) ~0. The point a is arbitrary; it
should not affect the principal results of our cal-
culation.

The analytic continuation of the Green's function

goes as before, as does the discussion of the La-
place inversion contour. m,(s) and m, (s) are ana-
lytic in the s plane cut by the negative real axis.
When / e 0 the point s = 0 has no special signifi-
cance. We are led to

g, (u, u;, t) = —e ' [w, (k))y,(u, k))go(u-„k))+w, -(kt)kt, (u, k))kt, (u-„ki)-d g ~67/

0

+wo(ki}[eo(u k))ek(uo -k))+ ek(u--k))eo(uo -k))]] (28)

with

wk(kt)= Im, w, (k))= Im o k1 mm

() ( m, (28)
~ m. -m. ..

I
differential operator of E(I. (26) is introduced,

(M I/2
(u u(t)) = 4kk duu'I(—

kD„

, M
duou() D I gk(ueuois} eD„j

The weight functions w~(k)) will control the relax-
ation of g, ( t). A special case is worth noting
here. If mo(k)e") is real, we find w, (k)}=mow, and

w, (kt} = m,'w„so that the compact ekluation

g, (u, u„ t) = —e "'wk(k)) h,(u, k)e")h, (uo, k)e")(30)~at
0

leading finally to

(k'k(e))= f' e(e))(ee,(e))J'"',
0

)e(e))= f e e' —e,(,ee")
0 II

(32}

obtains.
The most important member of the h, is h, be-

cause of its connection with the autocorrelation
function for velocity. In terms of u, the dimen-
sionless velocity,

if mo(kte") is real. Since ho=(t)o+mo(t)„ the (t),
being regular in k), the asymptotic (t-~) behavior
of (u u(t}}will be controlled by possible singular
behavior of Qlg and m, at q=0. Estimation of these
functions is the primary concern of the next sec-
tion.

M
(u u(t)}=4kk du™h(u, t),

& a(u)
(31)

B. Solution via comparison equation

with h(u, t) the solution corresponding to l = 1 and

h(u, t = 0) =u)t g. When the Green's function for the
As before, we use Langer's method to generate

uniform approximations. The approximating po-
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16 p
yl 16 [/{/ 1)yy2 t

and a, = y,(s, y,-/v', ")+[Ag+o(1)]y,(~, -y, /v P'),
the o (1) referring to the small quantity y, /v ', ~'

The dependence of g, upon / is quite weak. As we
have presented the quantities e, and D, they may
depend upon the (arbitrary) point a. In that case,
the dependence will be removed by iteration, as
sketched in Eq. {29). There is no point in evaluat-
ing these constants here.

V. FINAL COMMENTS

A. Diffusion in two dimensions (2D)

The analysis of Eq. (1) is quite straightforward
in a (2D) velocity space. Thus,

D, = 2~« " "[&.(as' ) + &,(~a')],

D„=a~« " "[4(ks') —/, (k~') ],
The relation D„=(s/sg}(ND, ) holds, as it did be-
fore. As in the case of (SD), D„=O(N '}, for u

This aspect of the diffusion tensor comes as
a surprise. In fact, D„=1/2u'+ ' ' ' . When the
kinetic equation for (2D) is written in the form of
Eq. (6b) in Eq. (26), one notes that the dominant
large -I behavior is altered only in the replace-
ment of s (or g) by 2s (or 2r/), and the dominant
behavior at small I is altered only by the replace-
ment of /(/+1) (/=0, 1,. . .) by /'. Thus, except for
trivial changes, the relation, at long times, of
the (2D) equation is quite similar to that of the
(SD). The equation describing relaxation via a
sequence of weak scatterings in a passive medium
does not show the interesting dependence upon di-
mension that appears in systems of hard spheres
and/or hard disks. "

8. PhfslcsY
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APPENDIX A

1. The function u(q)

We define g(q) as

u2{g)
a(n) =„d-s&u(s),

uj {W)

(A1)

and in estimating it for small q, we are making a
ealeulation analogous to the determination of the
period of a classical motion, as a function of a
parameter in the Hamiltonian. %e shall use

u, (q) =u„+O(1),

u,(q) =-+O(rP),

u(a g) -gu +s + + (I-~)3 2 3
4N2

and by Baus,"may provide a clue. The plasma
shouM, of course, be quite "hot" (I'« I) and the
autocorrelation function should be examined in an
interval of time that is long with respect to the
time between collisions, but shoxt with respect to
the time required for hydrodynamic feedback to
oeeur. I have not been able to find such a regime
in the computer dynamical data. Qn the other
hand, our observations about the Fokker-Planck
equation in 2D versus SD may have some connec-
tion with recent remarks of Baus. In Ref. 16,
Baus provides arguments to support the computer
discovery that self-diffusion exists in the two-di. -
mensional as well as the three-dimensional elec-
tron liquid. As we have remarked, analysis of the
Fokker-Planek equation l.eads to the same conelu-
s ion.

Do our results have anything to do with any sys-
tems of physical interest'P Plasma physicists cer-
tainly use the Fokker-P1anck equation with aban-
don, "but not much attention has been paid to its
asymptotics. One might expect the equation to
govern the x'elaxation of certain fluctuations in a
model plasma at long times (low frequencies).
Thus, the computer studies of sen-diffusion, car-
ried out by Hansen Mcoonald and Pollac
the related discussions by Gould and Mazenko"

where the ellipsis represent exponentially small
terms and

u„(s, g) =- -gu'+ u', F20=- &s,(g)

to show that

4
a{q)=— +a, +o(I) as g-o.i5 ~q2

We compare the integrals a(q) and
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We see that

2. The function t(q)

We write

v[a(g)-a (g)]=- Jl du~v+ Jl dh(v v -v v )
0 g

2f@

+ dh(l/ v(gg) (A3)
"ao

The first integral is O(1}, the third is o(1), since
u, -u,a is o(1) and the integrand is bounded. The
second integral is

vu -v~u
du

&v(s) +&v (s)

and its principal contribution comes from the re-
gion u&u~» i. Then, it is

I (e)
f', /'(g) =-,* duiv(s, g) ix/

0

approached

"eu Wu '~'
0

(A4)

as q- 0. A(u) is the function defined in E(l. (6b).
Numerical integration gives t„=—( ~ }' 'v'/'
=2.2¹. . (more precisely, t =2.306. . .).

3. The function fp(g)

From E(l. (17) and the definition of t(g),

ds(s
(lp 1 P/2( )

3 g(g)
(A5)

As q-0, f-1. Expanding both sides of the equa-
tion gives

+ O(1) .

The integral is —'(1/s2~)+o(1), whence the right-
hand side of (A3% is O(l) and (A2) holds. Numeri-
cal integration gives

g =-0.392.

00 (
15 v)2/8~4/8+. . .

0 2 4

Then, the combination g(q) =(i;, -1)a/t„appear-
ing in E(l. (19) becomes

((v) l~(n) J" -((5„1'-
in the limit.
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