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Large-scale properties of unstable systems governed by the Kuramoto-Sivashinksi equation
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The dynamic renormalization-group method is developed for investigation of correlations gen-

erated by the Kuramoto equation with random initial conditions. It is shown that elimination of
modes from domain A ( k (~ generates the random force and "viscosity" which is positive

in the c/=1 and negative in the d ~2 cases. The stable fixed point is found in the d-1 system

while the theory is asymptotically free when c/-3. No fixed point exists in the d =2 case which

explains the patterns formation obtained from computer simulations.

It has recently been understood that a wide class of
collective phenomena associated with instabilities
(chemical turbulence, ' ' self-turbulization of flames
in combustion, 5 processes-in certain biological sys-
tems6) can be described by the nonlinear equation

= —(~ 7O't+Fa'7')8(r, r)
Qt

+ ['78( r, r) ]' .

The dynamic variable 0( r .r) has different meanings
depending on the context. Equation (1) is remark-
able not only because it represents an extremely wide

class of phenomena close to the bifurcation points.
Computer experiments revealed that (1) with deter

minisric initial values 0( r, 0) show a turbulencelike
irregular motion in a one-dimensional case." That is
why the processes described by (1) is often classified
as self-turbulization. 4' It was shown further that in

the two-dimensional case Eq. (1) generates different
patterns, hexagonal cells, for example. 7 No data on
the three-dimensional systems, governed by (1),

v = '70 (rot v =0)
Substituting (3} into (1}we readily obtain the
Fourier-transformed equation of motion

(3)

have been published in the literature.
Analytic investigation of (1) is difficult, although

there have been some attempts to attack the problem
using the methods borrowed from the theory of hy-
drodynamic turbulence based on the different kinds
of closures. The principle result achieved by these
methods was that in the d =1 case,

(0'(k) ) ~ —when k —01

k2

which correlated with the data obtained from comput-
er experiments.

The aim of this paper is to develop a dynamic
renormalization-group approach suitable for (1) plus
initial conditions and to investigate correlations gen-
erated by this equation of motion in the systems of
higher spacial dimensionalities d ~ 1.

As it is widely accepted, let us introduce the new
variable

iruv (k, co—) =(Kok' —Fok4)v(k. ru)+ikok, JtvI(q. 0)v(k. q, cu —C))dq d0 (4)

where the bookkeeping parameter AD =1 is intro-

duced for convenience.
Althou'gh at first sight Eq. (4) resembles the

Navier-Stokes (NS) equation, we can notice the
very deep differences between them. First of all, (1)
or (4) are unstable against large-wavelength perturba-
tions due to the sign of the term proportional to k2.

Nonlinear interaction transfers these small-k excita-
tions into the region of large wave vectors where they
are dissipated. The second difference is that instead
of divv =0 in the NS case, here we have (3). As it

will be shown below, this is a very important factor,
i.e., determining the different properties of (4) in

I

cases of different dimensionalities. The third point is

more subtle, though it is of utmost importance. The
NS equation is the result of some approximations
made on the equations describing real interacting par-
ticles. It is clear that it is valid only for the scales
1 ))a—the mean distance between the particles.
We can state that there is natural ultraviolet cutoff
(k « 1/a) in the theory based on NS. The micro-
scopic scales (k = 1/a) enter the description through
the bare viscosity vo and the random noise which
must always be written on the right-hand side of'NS.
Unlike the NS equation, Eq. (4) is the result of a
mathematical model and thus it is defined on the
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vp(k, t) = vp(k, 0) exp( Fpkc—t) (5)

domain 0 & k & ~.
To begin development of the dynamic renormal-

ization-group method for (4) we should introduce the
ultraviolet cutoff. This must be done with great cau-
tion. One can, in principle, apply the Zwanzig-Mori
formalismP to project the space of variables of (4)
onto a smaller space 0 & k & A. We, however, will

be using a different approach which is identical to
one developed in Ref. 9.

Choosing A very large, such as FOA' ))KOA', we
can assume with the good reasoning that in the
zeroth approximation

for any k & A ~. The initial velocity field is
chosen to be Gaussian with the correlator

(v(k, 0) v(k, 0)) =D(k)5(k+k') (k ~) . (6)

Taking v (k, 0) from (6) we, in fact, accepted the as-
sumption that Eq. (4) describes a stochastic process
disregarding the actual initial conditions v(k, —~),
or in other words, we believe that after some time
the solution of (4) is always random.

Let us denote the modes corresponding to domains
0 & k & A and A & k & ~ by v;~( k, cu) and v;~( k, cu),
respectively. It follows from (4) that

vc~(k, cu)=i tcpk, GP(k, cu} vi'(q, 0)vi'(k —q, cu —0)dQ

+i }cpk GP(k, cu) Jt[ vP(q, 0)vP(k —q, cu —0) + v)(q, 0)vi (k —q, cu —0)

+ vf (q, 0)vp(k —q, cu —0) ]d 0
Expression (5) combined with (6) implies that in the limit k ~ or cu 0

(7)

(vp(k, cu}vp(k, cu')) cc
4

5(k+ k )5(cu+cu')
k4

(8)

Using (8) it is possible to eliminate the modes v~ from the equation of motion (7). To do so, one must express
v~ in all the integrals in the brackets of the right-hand side of (7) through Eq. (7) itself. This gives rise to the
perturbation expansion in powers of the nonlinear coupling Ao. After that all the modes v should be taken in

the zeroth approximation (5). Assuming statistical independence of v~ and v~ we can average according to
prescription (8) and, as a consequence, eliminate modes v~ from the problem.

It is a matter of simple algebra to show that in the second order of perturbation expansion the equation of mo-
tion (7} becomes, after elimination of fast variables from the domain A & q & oo (k 0; cu 0),

v (k, cu)=fGt +itcpGtk, Jt d,Qvi(q, 0)vi(k —q, cu —0)+O(}c2pk~), 0 & k & A (9)

where

Go I
—(OJ+v(k +Fok

(10)

the elimination of the fast variables is given by

f;(k, t)= i}cpk, J
—(v6i(q 0}v6i(k —q, cu —0))

is the propagator acting on a smaller space 0 & k & A.
It is important that the new viscosity v,( depends on
the spatial dimensionality:

2 —d
Ko+ ~r(

with

oo

A,t= t qd PD(ct) dct )0
2t i tnI (d/2) Fpt J P—

Recalling that Ko is small at the bifurcation point
we can always choose a cutoff such as v~ )0. At the
same time v2 = —Ko & 0 and v3 & Kp & 0. As we
shall see below this is a key to understanding why the
systems of different dimensionality governed by (I)
behave in a drastically different way.

The "stirring force" f which has been generated by

x exp( —Fpqt) exp( —Fp/k —q/t) d'q

(12)
goo

Jf(ct) dq ~ Jlf(q) dq, ,

Using (6) we derive readily that (f, (k, t)) =0 and
thus f has the properties of a random force. It can
be checked by the simple calculations

(fc( k, cu) ft( k, cu') ) ~ kkt5( k + k )5(cu+ cu') (13)

in the limit k 0, ~ 0.
The main outcome of the present development so

far is that introduction of ultraviolet cutoff by elimi-
nation of the modes from the region A & k & ~
brings about a stirring force into the equation which
was free being defined on the entire space
0 & k & ~. In addition to this effect we derived that
the "viscosity" (coefficient in front of k~ in the prop-



644 RAPID COMMUNICATIONS 24

(u, (k, cu) c;(k, cu') )
g(k+k )g(~+~')

and, taking into account definition (3),

(14)

agator) is positive when d =1 and negative for any
d ~2 ~ This is understood easily if we recall that the
"kinetic energy" is conserved only in the d =1 case.

Equation (9) with the stirring force with correlator
(13) can be investigated by the dynamic renormaliza-
tion-group method developed for different problems
of hydrodynamics by Forster, Nelson, and Stephen
FNS} co

Being interested in the limit k 0 we can disregard
the term proportional to k in the propagator G I ~ In
principle we could keep it but it is clear that it disap-
pears upon rescaling. Thus Eq. (9) is reduced to the
Burger's equation with negative viscosity, however,
in d ~2 cases. From now on the results of FNS can
be applied directly.

a. d = l. A stable fixed point can be found' and
the correlator, corresponding to this fixed point, is'

dv3 -2= v3(1)(—2+z+ —K3Z ) X
d1 4

(16)

(K3 ) 0, Ref. 10)

Combining (16) with the results of FNS we obtain
recursion relation for the dimensionless coupling
parameter 2 = VDa/~ v3~' (all the notations are given
in Ref. 10):

dX -2

d1 2
= —}c(-1 K}c ) (—d-=3} .

4 3

We see that in this case the theory is asymptotically
free in the limit k 0. The scale-invariant solution
ls

fluence the FNS conclusions.
c. d =3. This case differs from the one con-

sidered by FNS. ' It can be readily shown that the
negative bare dissipation v3 becomes more and more
negative upon renormalization. This is evident from
expression (11}.One can check that all the recursion
relations of FNS hold except the first one for the re-
normalized viscosity which now reads

(0'(k)) ~ Jl F(co/k'~') dcorr-r 1

k 7/2 k2
(15) (O' ( k) ) cc —J~ CX

( '/k4)+1 k'

which coincides with (2) obtained from computer
simulations.

b. d =2. - There is no fixed point. ' This means
that the system does not possess scale-invariant prop-
erties. This manifests the possibility of the pattern's
formation, obtained by the computer simulations.
We must emphasize that the negative sign of the
viscosity which, as we have seen above (see also Ref.
10), is not renormalizable (d = 2) and does not in-

The. systems of higher dimensionalities are of a

doubtful interest. It is to be stressed that starting
with the positive bare viscosity (like FNS) one ob-
tains the unstable fixed point when d ~3.' Thus
the negative value of this coefficient brings about the
most important consequences.
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