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Free;electron lasers operating in higher harmonics
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The nonlinear wave equation and self-consistent pendulum equation are used to generalize
free-electron-laser operation to higher harmonics; this can significantly extend their tunable

range to shorter wavelengths.

INTRODUCTION

In a free-electron laser, a beam of relativistic elec-
trons travels through a static periodic magnetic field
and oscillates to amplify coherent optical radiation
with the same polarization as the magnet. ' While the
laser radiation causes spatial "bunching" on the opti-
cal wavelength scale, 2 the large-scale electron trajec-
tories are primarily determined by the magnet.
Several theoretical approaches have been used to
describe the free-electron laser, and Ref. 3 compiles
many of these techniques. The picture of single-
particle electron currents driving the nonlinear optical
wave equation4 provides a clear, intuitive description
of both electron and wave dynamics; we use this view
to analyze the feasibility of operating free-electron
lasers at selected frequencies which are odd multiples
of the fundamental 3', 5', . . . .

Theory and experiment have been primarily applied
to free-electron lasers using helical magnets, but
many proposed experiments will use linearly polar-
ized magnets, which are magnets with alternating
poles. A small periodic longitudinal motion of elec-
trons in the linear magnet causes spontaneous emis-
sion and gain in the higher harmonics; this has been
proposed as a method of extending their tunable
range. 5 Backscattering into higher harmonics has also
been described (Ref. 3, Chap. 32, Vol. 7), but this
process does not involve gain. Recently, harmonic
gain has been calculated for the low-gain case, but an
incorrect result is presented; also, we are told of a
quantum-mechanical contribution to the topic. ' We
derive a complete nonlinear, self-consistent wave
equation for the laser field and show how the cou-
pling between the electrons and light is altered in a
nontrivial way. A useful notation allows simple scal-
ing arguments to compare operation in any selected
harmonic.

NONLINEAR WAVE EQUATION

General solutions to the electron motion in a
purely transverse, periodic magnetic field B
=B( Osink z,O)0with wavelength )(() =2m/ko are dif-

ficult; but the physical situation of interest occurs
when P, =1 ))P Py An electron's path through
the magnet is nearly sinusoidal with oscillation ampli-
tude K/yok(), where K = eBXO/2nmc, e = (e~ is the
electron charge, m is the electron mass, and yontc' is
the initial electron energy; smaller longitudinal oscil-
lations of amplitude K'/Syoko cause spontaneous
emission and gain into a few higher harmonics. '

Calculation of the detailed properties of spontane-
ous radiation is straightforward using standard classi-
cal techniques. ' In a long magnet (N = L/).0 = 10'),
emission is sharply peaked at well-separated harmon-
tcs

fee =2rtcf/(I —Po) ko = 2y()fkoc/(I + —Kz)

in the forward direction, where Poc is the electron's z
velocity; the spectral width is —I/2N Far away from.
the linearly polarized magnet the element of optical
energy received in the fth harmonic per unit solid
angle, d 0, in the forward direction per unit frequen-
cy interval, d(f~), is

2
&N yof XF ($)

dQd(fa)) I+ ' K& c
2

f =1,3, 5, 7, . . . ,

where

f ~ (1 ))lz(f 4) (f+))t2(f8— )

((: = Kz/4(1+ —,K')

The radiation is stored in a resonant cavity which
we take to be selective to only one of the harmonics.
In order to describe stimulated emission, we must
calculate the feedback of the light wave on the elec-
tron current using Maxwell's nonlinear wave equa-
tion. The detailed derivation of the wave equation is
presented elsewhere. The optical wave amplitude
E(t) and phase (t)(t) slowly evolve into a coherent
laser beam.

Relativistic electrons in both B and the radiation
fields are governed by the Lorentz force equations.
The electron motion contains factors which oscillate
periodically each magnet wavelength, but we actually

24 639 C'1981 The American Physical Society



640 RAPID COMMUNICATIONS 24

a = —r(e 'ft), fr.= —,
'

~a icos(f(+y) (2)

where ~a
~

= 4rrNefX—I(()LE/yazmcz, and
r = grrzNefXy—~($)L'po/y03mc', and a = ~a ~e'a. The
second equation is recognized as the self-consistent
pendulum equation. The Bessel functions Xf($) ex-
press the reduced coupling between electrons and
light resulting from the time electrons spend in
periodic longitudinal motion (instead of transferring
energy to the optical wave). A helical magnet has

Xf(g}-K throughout (2) and
z ~a ( (a ) in the

pendulum equation. Since the pendulum equation
is periodic in f f„, we only need to explore one 2w
section of phase space; with the transformation
( [;, v) —(f$,fv) the pendulum phase space can be
transformed into the same phase space of the funda-
mental (f= I). The separatrix v,'=2~a

~

&& [I +sin(f, + $) ] is a slowly evolving function of
~a ~

and Q which guides electrons into bunches about
the ( = m phase; this drives the wave equation and is
the gain mechanism. "

It is instructive to solve (2) for weak fields and low
gain. We expand the pendulum equation in weak
fields (~a ~

&& I) and insert ( into the wave equa-
tion. The resulting gain g (the fractional increase in
wave energy ~a ~z) and phase shift 4$ describe the
evolution of the optical wave:

1 d cosx -1
r 2dx z ~fsrp

1 d sinx —x
r 4 dx x z fvp

want to describe the slow evolution about these
periodic oscillations. This is accomplished by averag-
ing the motion over each magnet wavelength. It is
then convenient to define a slowly evolving dimen-
sionless velocity v(t) —= L [(k + ko) p, (t) —k] using
the wave number of the fundamental k = co/c, and
the averaged electron z velocity cp, . The initial ve-
locity va —= v(0) is called the "resonance parameter";
when v =0, exactly one wavelength of light passes
over an electron as it passes through one period of
the magnet and the coupling between light and elec-
trons is maximized. The dimensionless phase is

](t) =—[(k+ko)z(t) rut], wh—ere z(t) —= J cp, (t') dt';

note that f =d$/dr = v, where r —= tc/L (des. cribes
electron dynamics on the optical wavelength scale.
The total beam current is the sum of all single-
particle currents which we label by initial positions $p

(spread uniformly) and velocities vo, we average over
sample electrons ( ), then weight this result by the
macroscopic particle density pp. Furthermore, we
note that in long, periodic magnets, the fractional
changes in y are always small [ & (2N) '].

The coupled wave and electron equations are,
respectively,

These are fundamental results, and the effects of
stronger fields and higher gain are best described as
deviations from these expressions. The maximum
weak-field gain occurs at fvp =2.6056 and the max-
imum gain is g =0.067 52r; the gain curve is sym-
metric in fvo and h$ is antisymmetric. For large r, a
large optical phase shift causes the gain curve to dis-
tort and become more symmetric about vp =0. In
strong fields ( ~a ~

&& I ), electrons become trapped,
the gain curve becomes broader in vp, and decreases
in height; this is the saturation mechanism.

HARMONICS

We now examine Eqs. (2) with particular attention
paid to the possibility of operating in higher harmon-
ics (f=3.5, 7, . . . ). Several points are explored
separately:

(I) The optical wavelength in higher harmonics is
given by A.o(1+ z

Kz)/2yozf; the tunable range can

now be adjusted by f as well as K and y.
(2) The weak-field, low-gain expression (3) gives

us a good indication of many of the scaling results.
Maximum gain occurs closer to resonance in higher
harmonics than in the fundamental; vP'" =2.6056/f.
This creates a stiff requirement for the electron beam
energy and angular spreads since their initial range in
vp's must avoid the negative-gain region of the gain
curve.

(3}Since the natural energy spread of the electron
beam must fit into the narrower gain curve, we must
have Sva & rr/f. In terms of a real fractional energy
spread this becomes Sy/y & I/4Nf where N is the
number of magnet periods.

(4) For an initial angular spread, there is the simi-
lar restriction in f since a change in electron angle
also changes vo through P, . The requirement is
58 & (I + —,K )/2Ny f

These restrictions on the energy spread Sy/y and
the angular spread 48 are the most serious problems.

(5) The gain in a free-electron laser is decreased in
higher harmonics due to the factor fez in r See Fig. .
l. Gain decreases rapidly in f, but the decrease can
be diminished using higher values of K. Practical
values' can reach K = 10, but K = 2 —4 seems to be
adequate to reach higher harmonics.

(6) After a pass through the laser, the final elec-
tron energy spread is given by Sy/y =

~
a (i/SrrNf in

weak fields, and Sy/y = I/4Nf in strong fields.
These results may'be important for recirculating elec-
tron beams in a storage ring or Van de Graaff. "

(7) The laser saturates when ~a~ & 2m", this gives
the final optical-field strength. The optical power at
saturation actually increases in the higher harmonics
in proportion to (fXf) '.

(8) At shorter wavelengths, the optical-mode area
in the resonator tends to decrease. The mode area at
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FIG. 1. Gain r is proportional to the new coupling factor

fX& in linearly polarized magnets. In higher harmonics

f = 3, 5, 7, . . . the coupling decreases rapidly unless K is

large.

CONCLUSION

The use of free-electron lasers in higher harmonics
is promising; a fixed facility then has a much broader

the optical beam waist is n wo =zok/f, where 2zo is

theconfocal mirror spacing. As the harmonic
number increases, - the resonator should be adjusted so
that the overlap with the electron beam cross section
is maximized. With f =10, for example, one could
decrease the beam waist wo by 2.15 and increase zo

by 2.15. If the increase in f is shared between woz

and zo, the optical cavity for higher harmonics can
be made reasonable.

tunable range by another factor of f —10 or 20. The
major limitation seems to be in the electron beam
quality (as usual); the necessary energy and angular
spreads decrease with f. A shorter magnet length L
may relieve this restriction somewhat. The gain also
decreases in higher harmonics, but if K = 2 —4 this
penalty does not seem too severe. Van de Graaff
free-electron lasers" tend to have high gain (larger r
because of lower yo) and excellent beam quality, but
produce long. wavelengths —200 p, m; higher har-
monics may help to reach shorter wavelengths ( —10
p, m) without changing yo. Storage rings also have
excellent beam quality, but not such large gain
(smaller r because of higher yo). Even so, with suf-
ficiently high K, higher harmonics could, in principle,
extend these free-electron lasers to new shorter
wavelengths in the uv and towards x rays. For in-

stance, when y is increased to achieve an 11-fold de-
crease in optical wavelength, the normal-gain process
(r —yo' and X —yo') drops by a factor of 36 (de-
creasing Xo is worse). But, if the f =11th harmonic
is used with K =5, then only a factor of 2.5 in gain is
lost; comparisons of higher harmonics are even more
dramatic, but the excess beam quality necessary is
less likely.
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