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Using Landau theory, we show that the red shift of the primary Bragg reflection in

cholesteric blue phases and the appearance of more than one cubic structure can be understood

by including harmonics of the basic spatial frequency in the order parameter. A new nonsym-

morphic bcc structure, having 0 (14&32) symmetry' and no isotropic (defect) points, is found at

intermediate chiralities.

Recently there has been a sharp surge of both ex-
perimental' and theoretical ' interest in the so-
called blue phase (BP), which appears below the
clearing point in certain cholesteric liquid crystals.
Using Landau theory, we have shown9 that a sym-
morphic body-centered cubic (bcc) phase, with sym-
metry 0'(1432), can exist in a narrow temperature
region between the isotropic (I) and usual cholesteric
(Ch) phases when the chirality is sufficiently strong.
Experimentally, however, strong evidence' "has ac-
cumulated for the existence of at least two blue
phases, BPI and BPII, between Ch and I. Recent op-
tical Bragg scattering experiments have shed consid-
erable light on the structural properties of these
phases and lead to the following observations:

(a} BPI and BPII satisfy the same selection rules
for unpolarized light scattering and have cubic struc-
tures" [either bcc or simple cubic (sc)].

(b) In both BPI and BPII, all the observed Bragg
reflections of Johnson et al. exhibit circular selective
reflection; i.e., they appear in back-reflection only for
circularly polarized incident light. ' Similar behavior
was noted by Meiboom and Sammon. '

(c) BPII appears to consist of lwo distinct phases,
implying the existence of at least three blue phases!
Denoting these phases by BPII, and BPIIp (at longer
and shorter pitch, respectively), BPII, BPI (which
occurs with decreasing temperature} is second order
while BPII& BPI and BPII, BPIIb are first or-
der. "4

(d) the BPII unit-cell size is essentially temperature
independent for materials whose Ch-phase period is
temperature independent. Also, the first BPII Bragg
reflection is "red shifted" with respect to the Ch re-

flection. In BPI there is an additional, approximately
linear, red shift, or increase in the unit-cell parame-
ter, with decreasing temperature, particularly below
BPII, BPI.3

The above observations provide evidence that
cholesteric blue phases exhibit a number of different
structures. In this Communication we show, using
an extended version of our previous model, how
such structures arise naturally. In particular, we find
that a new, nonsymmorphic bcc structure, with sym-
metry 0 (14|32), can exist for intermediate chirality.

Since I-phase cholesterics lack inversion symmetry,
all cubic [as required by (a)] blue phases must belong
to the T and 0 crystal classes. Using Landau theory,
we have shown that 0' is the energetically preferred
cubic structure in the high-chirality limit, where a sin-
gle spatial frequency only appears in the structure fac-
tor. However, since additional Bragg reflections are
observed, other frequencies (harmonics) are also
present. %'e shall see that these harmonics have two
important consequences: (I) The primary BP Bragg
selection need not appear at the same wavelength as
the Ch-phase reflection, and (2) other cubic struc-
tures can, under certain conditions, have a lower free
energy than 0'. %e consider primarily bcc structures
since the optical selection rules appropriate to BP
scattering" show that only such structures are consis-
tent with (b). However, sc structures, which are
also, in principle, possible, ' will be mentioned briefly.

In general, phase transitions in thermotropic
liquid-crystal systems are described using the aniso-
tropic part of the dielectric tensor p,&( r ) with
Tr(p) =0 as an order parameter. For cholesteric sys-
tems, the free-energy density is then given by'

F = V ' Jtd r [[ap&+c, (I)lao)'+cb8;pofilpti] dpi''yp;„Blpi„+l3ppopppp+yp(p&)'}

ao( r ) =
z $[p,j(a) exp[iq(hx+ky+lz)]+cc. }

hkl
(2a)

where c.c. denotes complex conjugation, o. =q(h'+kz+lz)'l'/J2qp (qp is defined below) and, for each [hkl],
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with ~ ~0. It is convenient to rewrite the order parameter in the equivalent form

]p( r ) =~I(—]5 n)]/2 X (p (o) (Y2 (hkl) exp[iq(hx+ky+Iz) +i]I] (hkl)]+CC ()
hkl;m

where Yj (hkl) is the (jm) spherical harmonic in a suitably chosen local coordinate system whose polar axis is
along [hkl]. The quadratic (in 8 or ]p) part of F now becomes]p

(3)

hkl;m

mdq(I]2 +k2+ I2)1/2 +[c+c(4m2}]q2(I]2+k2+ I2)]&(]r)2 (4)

where, for stability, c] &0 and c, +4c, &0. Not all 8 (]r}WO (see below).
For nonchiral or racemic (R) systems, d =0, and the transition is to a state with q =0. When d WO, we have

a cholesteric system and, for example, the usual I Ch transition is associated with the m =2 branch minimum
(for d & 0), its c.c., and the state m = q =0. In general, the equilibrium wave vector is found by setting
BF/Bq =0. In Landau theory, the explicit q dependence of higher than second order in ]p contributions to F is
ignored, thus BF/iq =BF2/Bq =0, and

] T

r = = X[m(h'+k'+I')' '8]]]] 2' X I +(4 —m') —' [(h'+k +I')8']
qo ] C2

(5)

with qp= d/J2c]. Ch is characterized by the single
wave vector, Qcp —= qcp(h +k +I )' = J2qp, and
the wavelength (in the material) at which the Bragg
back-reflection occurs is Ich ]44r/Q=ch 4'/J=2qp

The I 0' transition has been described by in-
cluding in q] only the states (110;m =2). Of course,
if I BP were second order, this description would

be adequate and only one spatial frequency would ap-

pear in the structure factor immediately below the
phase transition. %e would then observe a single
Bragg reflection only, associated with the [110(
Planes, which are seParated by d]]p=22r/J2qp. Thus,
in this hypothetical case, the BP (110}Bragg back-
reflection would also occur at Ach. However, since
I BP is in fact first order, other spatial frequencies
and helicities m can appear in 4, as indicated in Eq.
(3). As a result, the lattice constant 24r/q is not

equal to 2]r/qp and is dependent upon the relative in-

tensities of the harmonics. For bcc structures 8 (o)

I

can be nonzero only when h + k + I = 2n (n integer)
and it is clear from Eq. (5) that q ( qp. We thus ex-
pect a "red shift" of the BP (110] back-reflection
with respect to I].cp, in agreement with (d). Note that
this shift is a collective effect and that it provides a
quantitative measure of the harmonic contribution to
the BP order parameter.

The full selection rules for a given 8 (o) to be
nonzero have been given elsewhere. " Consider, for
example, the lowest-lying (200;2) harmonic. For
0', symmetry demands that 82( J2r) =0, and these
states are therefore forbidden. For 0, on the other
hand, (200;2) states are allowed. Let us therefore
examine the consequences of including these states
in ]p. Rewriting 82(r) =j4, 52(J2r) =v, and
]1],(110), ]I]2(110), ](]2(200) and their cyclic permuta-
tions as gj, gj, and fj, respectively (j =1,2, 3), the
higher-order contributions to F for both 0' and 0
are

F] = p' ]8 J6 cos 6ap —X71/ + Xcos(6ap+gj —
g/4]

—2IJ+2) I4
81 3

—
4 (346+442) X[cos()j—gj —22/+]) cos((j Fj+2 TIJ+2) ]J4 v
3 , t (6a)

F4= y —+—Xcos(gj ]]/+2+ vs 2]j+2) J4 +39v

+ —,(151+12+2) g [cos(fj + f&+] 2') +cos(fj——fj+] —2') ] J4'v'
]

—
4

(17+1242) X[sin(pj —pj —
22J

—zj+])+sin((j fj+2IJ+]+ //+2')

—sin($/ —]]j+gj+] gj+2) —sin(gj (J+] 2]/ + 21J+2) ]j4'v (6b)
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where ao=arcos( 3)'~', y )0, P &0 for rodlike

molecules, and all sums are on j(mod 3).
For 0', we set (J =Ytj =0, noting that, as expected,

the p, v, p, v, and p, v terms now vanish for all f&.
The contribution proportional to v2 (from F2 and F4)
is easily seen to be positive at the I 0' transition,
and 0' is thus stable with respect to a transition to a
new phase with p, , v ~ 0. Noting that (= (& ( T,~ )
= (c~/a)' ' is a correlation length at the I R transi-
tion, we define p = gib.(:h.

Considering only I, Ch, and 0', we obtain the
phase diagram shown in Fig. 1(a). As expected, 9 0'
appears for sufficiently high chirality p. The ordinate
is in units of the difference between the actual and
extrapolated-from-the-disordered-phase transition
temperatures for the racemic mixtures. This is"
0.5—1'C; thus cubic phases are thermodynamically
stable only within a narrow temperature range. Note
that we have assumed, for simplicity, that the Landau
coefficients are additive as one changes p by, e.g. ,
mixing left- and right-handed enantiomers.

Considering now the possibility of an 0' phase, we
obtain the new phase diagram shown in Fig. 1(b).
We find that a ne~ cubic phase, with 0 structure, can
appear for intermediate values of p. This structure,
unlike 0', is nonsymmorphic and has no isotropic
(defect) points. The inclusion of (200;2) states in 4&

is a key element in obtaining this new phase. Experi-
mentally, n = 1.6 (Ref. 3) and g =250 A (Ref. 18);
thus, for p =0.10—0.15, we have A.~'"=4000—6000

0
A, in agreement with experiment. ' '

Of course, Fig. 1(b) is only suggestive; the in-

clusion of all allowed higher harmonics and helicities
in 4 could, in principle, result in 0 (or some other
structure) being energetically preferred. However, at
least as regards 0' vs 08, the allowed additional
states —except for (200;2) —are essentially the same
for both structures. ' Thus their effect on the free-
energy difference between the two structures is likely
to be small. Further support for an 0 phase comes
from observation (b), since in 0' (but not 0') the
(200) line will exhibit circular selection reflection.

In 0' the calculated red shift is approximately
r =0.9 or 10%. This is less than the experimentally
observed values of 20—30%, and indicates that other
states, in addition to (110;2) and (200;2), have
non-negligible amplitudes.

It is pertinent to ask how other cubic structures
could be obtained since, as noted in (c), additional
bcc structures appear to have been observed. Two
candidates for such phases which immediately present
themselves are T (I23) and T (l2i3). The former
is a subgroup of 0' and can be obtained to lowest or-
der by including in 4( r ), in addition to (110;2),
the states (200;2). The latter is a subgroup of 0'
and appears when (110;1) is added to 4( r ) of 0'.
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FIG. l. Calculated phase diagrams when (a) only I, Ch,
and 0 phases are allowed, and (b) only I, Ch, 0, and 0
phases are allowed. Here T,~, T,~ are the actual and extra-
polated I R transition temperatures for racemic mixtures,
A, &" is the Ch-phase Bragg back-reflection wavelength in air,
n is the index of refraction, and (& ( T,~ ) is a racemic-
mixture correlation length at the phase transition. All tran-
sitions shown are first order.
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Both O' T and 0 T' can, by the Landau rules,
be second order and are described by n = I (Ising)
order parameters, The 0 T' transition is especial-
ly interesting since, if we assign 0' and T' to BPII,
and BPI, respectively, the additional linear red shift
in the latter phase noted in (d) follows naturally from
Eq. (5) when (110;1)states are introduced. Simple
cubic structures can be obtained similarly; by adding
(100;2) to (110;2) we produce an 0' (P4232) struc-
ture, while adding (100;2) and (110;1)gives
T'(P23). In all cases, both bcc and sc, appropriate
phases must be chosen. Details are planned to be
given elsewhere.
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