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We consider an intracavity nonlinear medium interacting with two modes of the electromag-
netic field via a two-photon procesé. The cavity is coherently driven at the frequencies of the
two modes. We consider as the intracavity medium (a) a two-photon absorber, and (b) N
three-level atoms. These systems display a new class of bifurcations, and, in the case of the two-

photon absorber, optical tristability is possible.

There has been considerable interest recently in the
behavior of coherently driven optical resonators
which have a nonlinear intracavity medium.! An in-
tracavity atomic medium interacting with the elec-
tromagnetic field by a one-photon transition has been
shown both theoretically>® and experimentally*® to
give rise to absorptive and dispersive optical bistabili-
ty. Intracavity media interacting with the electromag-
netic field by two-photon transitions have also been
studied and shown theoretically®~® and experimental-
ly'® to give rise to optical bistability. We wish to
study further such processes and to demonstrate how
they may lead to a new class of bifurcations and
under certain conditions give rise to multistability.
These new types of transitions, not discussed previ-
ously, require a multilevel medium and are different
from the usual optical bistability.

We shall consider first the situation of two-photon
absorption from an effective two-level system in an
optical cavity where all atomic and cavity detunings
are set equal to zero. The equations relating the
dimensionless transmitted field amplitudes x;,x; to
the input amplitudes y,,y, are
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The cooperativity parameters C;, as well as x;,y;, are
scaled as in Ref. 7. Here and below, ¢ is scaled in
units of the interferometer relaxation time. Fluctua-
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tions are included via the random thermal forces
7,(1), which have the correlation properties

(m(Dm] (")) =28,8(r —1) @

and B8;"2, which represents the strength of the fluc-
tuations.

The steady-state solutions to Eq. (1) excluding the
fluctuating terms are
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where we have set C;=C,=C. These equations
were derived by Agrawal and Flytzanis,” who con-
sidered the case in which one driving field, y,, is held
fixed and the other driving field, y,, is varied. We
wish to demonstrate the interesting behavior that
may occur when both driving fields are varied togeth-
er. We consider the case y, =y, =y, for which Egs.
(3) yield three distinct state equations in which x,
and x, must be real
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The solutions (4b) and (4c) do not exist for C <1,
while for C =1 they coalesce. Curve (4a) intersects
curve (4b) at y =2[C — (C?—1)12]'2 and curve (4c)
aty =2[C +(C?2—1)'2]'2, These three curves are
plotted in Fig. 1 for C =2. The stability of the vari-
ous branches of these curves is best investigated by
introducing a probability distribution function
P(xy,x;). This probability distribution obeys a
Fokker-Planck equation which is equivalent to the
stochastic differential equations (1). The steady-state
solution to this Fokker-Planck equation is

P(xy,x;) =expB[Re(x))y, +Re(xy)y;
=3 (a2 +1x2»
—Cln(1+|x1|2|x2|2)] . (5)

Since x; and x, are complex amplitudes, the above
distribution function is four dimensional. A plot of
the reduced two-dimensional distribution function
obtained by taking Im(x;) =0 is presented in Fig. 2
for C =2 and y; =y;=4.5.

Varying y results in different distributions whose
maxima and minima follow the curves in Fig. 1. For
y < 1.02 there is only one solution corresponding to
the symmetric solution x; = x,; hence the probability
distribution consists of a single peak. At y =1.02 the
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FIG. 1. State equations for two-mode, two-photon
processes ( y; =y, =y, C =2). Markings s and u denote
stable and unstable branches, respectively. For curves (4b)
and (4¢), if x, is plotted above the intersection with (4a),
then x, is the part of the curve below the intersection and
vice versa.

solution bifurcates, and there are two branches corre-
sponding to x; # x; and one branch corresponding to
x;=x,. The probability distribution in this region
displays two maxima at the x; # x; solutions, indicat-
ing they are stable solutions, and a minimum at

x| =x, which is therefore unstable. Aty =3.86 the
x; = x, curve bifurcates again, and for y > 3.86 we
have five possible solutions for a given value of y.
Figure 2 shows that the probability distribution in
this region has three maxima, indicating the curves
(4a) and (4b) are stable while (4¢c) is unstable. In
this region we have the possibility of optical tristabili-
ty. (An entirely different mechanism for optical tri-
stability using the polarization states of light interact-
ing with spin-% atoms has recently been suggested by
Kitano er al.!') As yis increased the probability
maximum at x; =X, increases until there is just a sin-
‘'gle peak corresponding to the symmetric branch at
high y values.

Hence, as y is increased from zero, the symmetric
solution x; = x, undergoes a continuous bifurcation
to the solution x; # x, corresponding to Eq. (4b).
The system remains on this branch as y is increased
until fluctuations cause it to jump to the branch
x; =x; which has dominant probability for large y
values. As y is reduced the solution x; = x; under-
goes a discontinuous bifurcation to the x; # x; solu-
tion [Eq. (4b)]. For increasing values of C > 1 the
region of tristability diminishes. For example, for
C =6, the tristability is observable only for 10
<y<1L

Let us now consider a three-level A\ system. Opti-
cal bistability from N three-level atoms driven with a
single mode of the radiation field was recently
predicted by Walls and Zoller.!?> In the present paper
we wish to consider N three-level atoms interacting
with two modes of the radiation field. The equations
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FIG. 2. Reduced two-dimensional probability distribution
P(x,,x;) for two-mode, two-photon processes (C =2,
y=y =y,=4.5).
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of motion for this system are
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where x; and y; are dimensionless transmitted and in-
put field amplitudes defined so that v2|x;|/T; is the
ith transition Rabi frequency and pj are the density
matrix elements of a three-level atom for which the
decay rates exceed the cavity decay rates. The
cooperativity parameters are C;=N |g|2T,/2«, where
g is the atomic dipole matrix element, « is the cavity
decay rate, N is the number of interacting atoms, and
T, is the atomic dephasing rate. We shall henceforth
write all equations in terms of intensities Y;=|y;|2,
X,=|x]12 Although we have developed a computer
program for finding solutions for the more general
two-mode problem, we shall now assume that the de-
tuning of the two modes to the respective atomic-
resonance frequencies are equal and opposite (8 and
—35, respectively), the damping is purely radiative
(T,=2T,), and that C,=C,=C. Then the state
equation is

2CX; 2CX;-
Yi=X {1+ 2
e n(xl,xz)[ (X}, X5)
X§
. VX |1+82—Xo+— )]
0 452]“
i=1,2

where Xo= (X, +X,)/2, and

XZ
1+82—Xo+—

H(XI,X2)=3X|X2+2X0 462

We have plotted this state equation in Fig. 3 where
Y, is held fixed at 10 and Y, is varied. This shows a
bistable behavior in both field intensities X and X,.
Both driving fields are varied together for Fig. 4, in
which case there can be up to three solutions (X,X;)
for a given value of Y =Y, =Y, No potential solu-
tion exists for the steady-state distribution function,
but a linearized stability analysis of Egs. (6) reveals
that the closed loop with X; # X, is completely
stable, while the curve with X| =X, is unstable up to
point B and stable for y values beyond point B. Thus
as one increases Y from zero, the system assumes the
asymmetric solution X; # X,. Which mode assumes

FIG. 3. State equation for three-level atoms interacting
with two field modes (Y, =10 fixed, C =10, 8=1).

the high intensity solution and which the low is
determined by initial fluctuations and any small
asymmetry in Y, and Y,. As Yis increased up to the
point B the two solutions coalesce and for larger Y
values only the symmetric solution X; = X, remains.
Point A is not a bifurcation point since the symmetric
curve with X, = X, does not intersect the two asym-
metric curves for X, and X, at a point where X =X,.
Thus, if viewed in three-dimensional space, point A4
is not a curve crossing.

Analytic expressions for these results may be ob-
tained in the limit of small detunings 8 << X << 1,
where for Y, =Y,=Y we find two solution curves
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FIG. 4. State equation for three-level atoms interacting
with two field modes (Y =Y, =Y,, C =10, §=1).
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parametrized relative to the mean intensity Xg:

X=X,
(8a)
= )
v=xl[1+ C_z CX32
1+ X3 14+ X2
=, )1/2
_ - 1+ X3
x”=n1¢h-cﬂ ],
(8b)
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Equations (8) display behavior similar to that shown
in Fig. 4 with a bifurcation point at X, =X,
=(C-1'\,

The existence of a new class of bifurcations in
two-photon processes, including the possibility of op-
tical tristability, has been demonstrated. All of these
phenomena should be accessible to experimental
measurement. Further studies in nonlinear optical
systems involving more than one mode such as the
Raman effect and four-wave mixing should reveal a
rich variety of bifurcation phenomena.
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