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Stark effect of nonhydrogenic Rydberg spectra
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Rydberg states of an atom in an electric field are represented in terms of hydrogen eigenfunc-

tions for the same field but scattered by the ionic core of the actual atom. The effect of the

Stark field on photoabsorption is expressed in terms of scattering and frame-transformation

parameters.

Rau has singled out a set of diverse phenomena
characterized by a wave function that extends over
two regions of space, where fields of different sym-

metry prevail. ' The Stark effect of Rydberg spectra,
which exhibits remarkable features, ' affords a proto-

type example amenable to complete treatment. The
Rydberg electron's motion separates in parabolic
coordinates in the Coulomb plus Stark field at large

distances from an atom, but in polar coordinates near
or within the atomic core where the Stark field is

usually negligible.
Representing Rydberg states in terms of (a) hydro-

genic wave functions at large distances, and (b)
scattering of these wave functions by the ionic core
of an atom (or molecule) is the trademark of the
quantum-defect method (QDT). ' Parameters of as-

pects (a) and (b) of a state are calculated separately
and then combined analytically; the combination
often involves a frame transformation, e.g. , when jj
and LS coupling are used in (a) and (b), respectively.
This approach looks well suited to treating the Stark
effect.4 To this end it presupposes a full develop-
ment of Stark-field wave functions for H (Ref. 5)
and their adaptation to QDT, 6 which are now in

hand. The necessary scattering parameters are corn-
mon to other QDT applications. Combining these
two sets of parameters requires a transformation
from the frame of parabolic quantum numbers to the

angular momentum frame which is normal for core
interactions. This Communication shows how exist-

ing transformation formulas can in fact be extended,
as required by the Stark problem, within a limited re-

gion of space. Thus it introduces the concept of a lo-

cal frame transformation, which seems relevant to the
treatment of any localized interaction.

The treatment developed here disregards quantities
of order Fro a.u. , where the field strength F = O(10 '
a.u. ) in current experiments and the ionic radius

r, =O(1 a.u.).
A complete set of electron eigenfunctions for the

Coulomb plus Stark potential, e'/r +eFz,—with

(e,F) )0, is represented by' '

x uz (F, l a—P„;q)
x e+ima(2~) t 2

where —~ ( e (~ is the energy, ( = r +z
=r(1 +c so8), 7t =r(1 —cos8), n =0, 1, . . . , is the

number of nodes of u&, and m ~0. (The number n

is indicated by. ni in Refs. 5—7.) The functions u&

and uz are Coulombic for (g, q) ~ O(1) (in atomic
units), are regular and normalized to g

i' or rt iz as

(g, rt) 0, and are renormalized by /i/„, to ensure
the completeness

+inii—X,2I & 0: iF. :i e 4&i. (J''.. '.

The separation parameter P„(m,F, e) is determined

by requiring ut to converge (after n nodes) at
~ where the potential rises steadily. The poten-

tial falls instead at q ~ where u2 oscillates after
tunneling through a barrier if e falls in the range of
bound-state levels. '

Replacement of the bare nucleus of H by a
"frozen" ionic core with spherical symmetry —such
as occurs in alkali atoms —preserves the invariance of
e and m in the set (1) but couples wave functions
with different values of n. The n quantum number

I

serves here as the channel index in a scattering pro-
cess, as the orbital I does in other phenomena. Ex-
changes of energy and/or angular momentum with

the core would be treated by enlarging the set of
channels, but we forego this extension for simplicity.

The scattering effect of the ionic core upon the
electron states (1) stems from a potential V, the ex-
cess of the electron's interaction with the core (in-
cluding exchange) over its interaction e'/r with a-
bare H+ ion. Eigenfunctions 'P„ for the complete

. potential e'/r + V + eF—z are constructed by adding
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to each ilt„asuperposition of the set (I) extending over all channels and energies, but over a single m,

q'„~(F,e;g, g, $) =ilt ~(F, e;f, q, $)+ X JI de'Q, (F, e';g, q, $), N', (n'e'~K~"i(e)~ne)N„~ . (2)
I

Here 6' indicates principal part integration at ~' —~,
and the coefficients of the superposition are matrix
elements of a reaction operator K, from which N"

N C

and N„,have been factored out. The ansatz (2)
reduces the Schrodinger equation for P„ to an equa-
tion for K which we need not solve here. The label
"so" means that K operates on the eigenfunctions
ui u2 of the outer. field normalized independently
of e at (g, q) 0. This specification makes K'
"smooth and analytic"9 in its dependence on e as
well as independent of the Stark field F, which is negli-

I

gible wherever V is nonzero. The coefficients N„,
depend instead on F; they are given explicitly in
Ref. 6. .

The integration over e' in Eq. (2) may seem labori-
ous but is in fact trivial just at q ~ where (2)
serves to determine the channel mixing and the nor-
malization of ip„.Note that the second term of (2)
may be viewed as resulting from the application to

firstly of the operator K' ' and then of the
standing-wave Green's function for motion in the
Coulomb-Stark (CS) field'

G ( r, r ) = X JI de'ilr (F, e';(, g, di), 4i (F, e';g', q', 4')
I

At q ~, p„oscillates so rapidly, as a function of e', that its contributions to G' ' cancel except at ~

where they yield'

G'cs'( r, r ) -n XX i (F, e;(, rt, Q)Q„i (F, e;(', q', $ ), (4)

Here x„is identified as that solution of the equation for P„which oscillates at q ~ with the same amplitude
as i'„butwith a 90' phase lag; this identification suffices to define X„atall g, but (4) remains qualified by

Substitution of (3) and (4) reduces Eq. (2) to

qr~(F, e;f, vt, $) =Q„~(F,e;(, g, Q)+w XX (F, e;g, q, Q)N, (n'e~K~~~~i(e) line)N„„ (5)

((, 7t) & O(1 a.u. )

This reformulation relieves us of any need to consider matrix elements of Ki ' off diagonal in (e', e). The diag-
onal elements are treated next. Note how the integration over ~' has served here to isolate relevant aspects of

at g ~, while aspects relevant at (g, q) = 0 (I ) are considered below; the behavior of qr„atintermediate
ranges of (g, q) is not relevant to us.

Invariance of the ionic core under rotations about its nucleus implies that V and K' ' are diagonal in the orbi-
tal quantum number I. Indeed, the Schrodinger equation with the potential e'/r + I'has solution—s analogous to
(2) but separable in polar coordinates,

Fo(e, r) Y (8, $) = f, (e, r) + Jt de'f, (e', r)N, ', , N, , (le'(K' '(e) )Ie) Y, (8, $) (6)

Here fI (e,r) is a hydrogen radial function normalized to r'at r 0 and renormalized to unit energy (at ~ & 0)
by the separate factor N„.9 (The index 0 means "normalized at r 0," as in Ref. 9.) Reference to the
Coulomb (C) Green's function

G'c'( r, r ) = X Yt (H, qh) de'ft (e', r)N. . . N, ',ft (e', r') Yt (O', P')
lm

00 le ~ ~' le

= ir X Yt (9, qb)gt(seri))N, t[ ft (e,r') Yt (8', $'), r & r'

where gt(e, r) (Ref. 9) lags 90' behind fto(e, r) at r ~, yields the analog of Eq. (5)

Ft (e, r) = ft (e,r) + ng, (er) [Nt, (i(le,[K ~ (e) (le) (8)
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The reaction matrix element can thus be expressed as

(I e[(K' '[!le) = rr —' tang('(e) ~N(, ~

in terms of the phase shift gj*' of F( (e,r) with

respect to f(a(e, r). This phase shift can be obtained
from the zero-field spectrum of bound-state levels of
the atom, by quantum-defect analysis, ' or it can be
calculated ab initio for the e of interest. Note that
SI" &0 for I ~ 3 only, as higher partial waves do not
penetrate atomic cores.

We come now to our main task of transforming the
matrix (9) to the frame of parabolic coordinates. The
transformation can be introduced through the expan-
sion of the parabolic p„ into spherical harmonics
with r-dependent coefficients,

(F, e;g, rt(b) =, N„,gb„((F,e, m;r) Y( (8, (t()
I

(I0)

Since (I(„/N„, and f(a Y, obey equations that differ
negligibly at r ~ O(1 a.u. ), where (eFz ( (( ~

e~/—r (,
and have analogous normalization, the coefficients b„I
must be proportional to f 0(r) at small r and do not
depend on F explicitly. However, b„Idoes depend on
F implicitly through the separation parameter P„of
Eq. (I) which results from the quantization at g
It is the restriction to r ~ O(1) which makes the
transformation (10) "local." Recalling that

u( u2 (((:r()™l2=rsin 8 as (((:, (r-0) while

fI (~,r) r'as r 0, we write

b„((F,e, m;r) =a( (P„,v)r'[I +0(r)]
On the right-hand side, e has been replaced by
v = (—e/13. 6 eV) 't~ and n by P„ofEq. (I). Accord-

ing to (10) and (11), the coefficients a( are obtained

by projecting the confluent hypergeometric factors of
p„,with F =0, onto the associated Legendre poly-
nomials P( (cos8),

i

a(~(p„v)= r ', d(cos8) sin' 8P( (cos8)
( (

xF —p„v+—(m+I) m+1 F (p„—1)v+ —(m+I) m+I
V V

. (l2)

This integral over powers of cosH reduces manifestly to a hypergeometric polynominal.

Specifically, Eq. (12) is known to reduce to a Wigner coefficient, '0

( ! i/2
n!I'(v —n —m)I (v+ I+ 1)

a( (P„,v) =(—1)'(im (j m, ,jm2) 2
(n +m)!I'(v —n)I'(v —i)

(

j= —,(v —1), m, = ( —, —p„)v+ —,m, m, = (p„——, ) v+ —, m
1 1 i 1 1

2'm i'

(2i + I )'v'
(13)

The origin of this result is that the transformations among H wave functions with equal energy are generated by

the orbital momentum L together with the Lenz vector A. Each of the combined operators —(L + A) acts on the

wave functions as a spin of magnitude j=
2

(v —I), and these two spins add up to /as indicated by (13).'0 The

anaiyticity of (12) shows that irrational values of the effective spin j, which become complex for e ) 0, are no

obstacle to this limited extension of angular momentum algebra. The influence of the Stark field F on the coeffi-

cients a„Iis implied by 'the parameters P„which are themselves determined by the wave-function convergence at

The reaction matrix elements in Eq. (2) are thus given by (9), (11), and (13) in the form

&n'e~!1(C~("'(e)(!ne) = rr ' $a('(p „v—) tang("(e) ~N(, ~
'a(~(p„,v) .

I
(14)

In this key result the sum extends only over the few

terms with SI' &0, thus making it unnecessary to
consider higher terms of, the expansion (10). It is

this circumstance that justifies setting F 0 in the
calculation of the transformation coefficients al
though not in the value of P„.

Finally, the Stark effect of the photoabsorption
spectrum is to be calculated by evaluating the transi-
tion dipole moment D„ from the atomic ground
state to the various states +„.These states overlap
with the ground state only at ((r, r() ~ O(1 a.u.),
where the first term of Eq. (2), (I(„,is expanded into
radial functions fP (e, r) by (10) and (11). The

I

second term of +„depends on r through the func-
tion G'c '( r, r ), Eq. (4), which coincides locally

with G' '( r, r ), Eq. (7), because G' ' and G' '

obey the same inhomogeneous equation at r ~ 0 ( I ).
Accordingly, the entire Eq. (2) is expanded in terms
of (6),

q(„(F,e;$, 'g, (b) QF(0(e, f) Y( (8, $)
r ~o(&)

(lS)

This expansion enables us to expand the desired di-

poles D„ in terms of the corresponding zero-field di-
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=Naca&m(Pn "}di (a) ~ (16)

where r equals z for m =0 and 41/2(x+iy) for
m = I, and R (r) is the wave function of the s ground
state. The dipole dto(a) can be obtained from the in-

tensities of zero-field spectral lines, much as the
Q" (a) are obtained from the levels, or it can be cal-

culated ab initio.
Equation (16) merely distributes the zero-field di-

pole amplitude di linearly among the parabolic chan-
nels to yield the D„.The effect of scattering on the
Stark spectrum emerges when the P„areorthonor-
malized. In the spherical frame, Eqs. (8) and (9)
show F& to be normalized by the coefficient

poles dso„ for transition to the eigenstates (6) of 1 .
In the alkali-type atoms considered here, with spheri-
cal ionic cores, the only transition allowed in photo-
absorption leads to p states; hence only the I = 1 term
of (15) contributes to the spectrum. Thus we have

D„(e)= Jl dr 4„'r R (r)

=N„",a~' (P„,v)

x Jl dr F~o (a;r)rR (r) Jl/3

cosSI" =(I+rg'Sj'} '~'. In the parabolic frame the
matrix element n N ', (q'a{K t"~(a) {ne)N„,plays

the same role as

w{N(,{'(la{Kt"~(a){la) = —tangj'~(a)

does in Eq. (8). Accordingly, the set 'p„ is ortho-
normalized by the matrix [1+(wN,"K '"'N, )'] ' ',
and the photoabsorption spectrum is proportional to

XD', (a) {1+[nN,"K~~~~(a)N, ]'] j D„~(a), (17}

with m =0 or 1 depending on the, incident polariza-
tion. [A corrective factor g, which appears in Eqs.
(4.15) and (3.17) of Ref. 9 but is very small for Ryd-
berg states, has been ignored here for simplicity but
should be considered in more complete treatments. ]

Application to the observed Stark spectra of alkali
atoms is planned.
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