
P H Y 8 I C A I. R K V I K%' A VOI. UME 24, NUMBER 1

Case of broken symmetry in the quadratic Zeeman effect
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A particularly simple instance of broken symmetry arises in the problem of a hydrogen atom in a uniform magnetic
field. In a limited sense, the magnetic Hamiltonian nearly commutes with the unit projection of the Runge-Lenz
vector upon the field direction.

Zimmerman, Kash, and Kleppner have recentl. y'

given evidence for an approximate constant of the
motion of a hydrogen atom in a uniform magnetic
field; Ken Taylor and I have reported' similar
findings, though with a different emphasis oa their
interpretation. The purpose of this communication
is to identify an approximate constant of the mo-
tion visible at the level of perturbation theory;
but one which, since it gives a connection between
states of different parity, is not obviously related
to the "experimental" data of the first two refer-
ences.

Consider the Hamiltonian for a hydrogen atom
(without spina or center of mass motion) in a
uniform magnetic field 8=Bz, with the magnetic
vector potential taken to be X= ——,'r XB:

H = -,' p' —1jr +pl, + ~p'r' sin' 8
I

in atomic units. The parameter P is one half the
magnetic cyclotron frequency, 2P = ~,= e8/me.
Clearly l, is a constant of the motion, so its as-
sociated linear Zeeman shift may simply be in-
corporated in the energy eigenvalue. Then

H =H~+aP H~=H —Plg,

where H is the ordinary Coulomb Hamiltonian
and 0"=r' sin'8. For terrestial laboratory fields

P is small, e.g. , / =10 ' when &=47 kG, so for
states with not too high principal quantum number
n it is appropriate to treat the second term of (2)
by degenerate perturbation theory (for O'I kG this
is satisfactory for n & 20). In short, the lower
part of the spectrum of (2) is generated to a good
approximation by diagonal. izing H" within each
manifold of hydrogenic states of constant principal.
quantum number n, with n running from one up to
some maximum value.

Since P" is invariant under inversion of al.l space
coordinates, the standard method of carrying out
the calculation has been to treat separately the
states of even and odd parity. In the usual basis
of states lnlm) with definite principal quantum
number n, angular momentum l and projection

m = I„ the matrix elements (nlm l

P" lnf rn) vanish
unless l l —I l

~ 2. Thus in this form the problem
reduces for each n to the diagonalization of two
separate tridiagonal matrices. The matrix ele-
ments involved are simple algebraic functions of
n, l, and m. '

I shall, however, consider the problem as it
appears in the parabolic coordinate system. As is
well known, the Schrodinger equation for H se-
parates in the system of coordinates $ =r+z,
g=t'- z. Its normalized eigensolutions are

&m4

ln, n, rn) =
( )„,u„($}u„(q},

21/4 ( ) ) I /2

f

(4)

The I.t are the associated Laguerre functions as
defined by Szego. ' The principal quantum number
n = n, + n, +

l
m l+ 1, and n„n, are non-negative inte-

gers which for given n assume all values consis-
tent with this equality. The solutions (3) are not

eigenfunctions of the parity operator I'; clearly,
since P interchanges f, and q,

I ln, n,m)=(-1) ln, n,m).

In this coordinate system &" takes the form

H" =r' sin'8= gg,

so that in contrast to the spherical polar system
it is linear, rather than quadratic, in the separate
orthogonal coordinates, and also symmetric in

those coordinates. An obvious consequence
of the second fact is that (n,n,ml& lnin2m)
= (n, n, m lH" ln, n, m). As regards the linear de-
pendence, a short calculation shows that within a
given n manifold, for which always n, = n, +j and

n, = n, —j, the matrix element (n,n, rn
l
P

l n, +jn, —jm)
vanishes except when j=0, +1. For completeness
I give the correct expressions for these matrix
elements, though the remaining part of the argu-
ment does not really depend upon them:
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&n,n, m (H" (n, n,m ) = (2n, + (m (+1)(2n2+ (m (+1)n'+ ' [n2(n2+ lm I) + (no+1)(n2+1+ Im I)]
n(2n, +(m(+ 1)

+ '
2 [n, (n, + (m()+(n, +1)(n, +1+ (m()],

n(2n, + (m (+1)

(n, n, m (H" (n, +1 n, —1 m)=2n'[(n, +1)(n, +1+ (rn ()n, (n, + lm ()]' '.

Therefore, if the states ln, n,m) are ordered ac-
cording to increasing value of n„ the n —m di-
mensional matrix of F" is tridiagonal. Henceforth
I shall discuss only the cases for which this di-
mensionality is an even number, the numbers of
even parity and of odd parity states being then
identical. When n- m is odd the qualitative con-
clusions turn out very little different from those
drawn below, and they can easily be developed
along the same line of argument.

So, let n —m =2@,, and consider the matrix of
8" in the standard basis defined above: the first
state (1) being (0 2y. —1 m), the second (2)
= (12' —2 m), and so on. The symmetry of the
magnetic Hamiltonian under interchange of ny

then gives &&",- = 8,"„„&,„„,. Now recombine the
parabolic functions to form a new basis of func-
tions with definite parity, as follows:

(1 &=2 '"(I»+ I»&)
=2 '~'((0 2p —1 m&+ (2g —1 0 m)),

(2 )=2 'i'((2&+ (2p —1)),

I~ &=2 "(l~&+ (~+1)),
l(~+1) &=2 "(I»- (2~&),

l(i +2) &=2 '"((2&- I»-1)),

l(2u)'&=2 '"(I»- lu+»).
An elementary manipulation then shows that the
matrix of &" in this new basis takes the form

'H' 0'
(Hz)

'

.0 a'.
(9)

where B' and ~ are both tridiagonal, and refer,
respectively, to states with inversion parity
(-1) and (-1) ". Moreover, H' and H' are iden
tical except for their last diagonal elements: that
is,

a'„= 8', ,

unless i =j = p. . A simple mechanical analogy for

this problem is thus suggested. The eigenvalue
spectrum of ~' is equivalent to the set of fre-
quencies of normal modes of oscillation of a sys-
tern of p, collinear point mass particles, each con-
nected to its nearest neighbors by springs, and

with the two end particles attached with springs to
fixed walls. The masses of the particles and the
force constants of the springs are generally not
all equal. The spectrum of &' is represented by
a similar mechanical system, which is in fact
identical to that for ~' except for the spring which
connects one of the end particles to the wall.
This end spring is, moreover, the stiffest in both
systems. One then expects that those modes of
oscillation which occasion only small displace-
ments of this stiffest spring, will be very nearly
equal in frequency and relative amplitude for the
two systems. Calculation readily confirms this.
For n=40, m, =0, as an example, the three
lowest eigenvalues of 8' and 8' coincide to thir-
teen, eleven, and seven decimal figures, re-
spectively. It is also worth noting that H» —8»
=n'(n' —m'). Thus the average shift of levels with

parity (-1) —which is determined from the trace
of H' —is greater than the average shift of level. s
with the opposite parity. This is in accordance
with our expectations, as states with parity (-1)
have finite amplitude in the plane 8= v/2 where H"
obtains its maximum.

To recapitulate, the matrices for even and odd
states are nearly identical; or in other words,
the exchange of each even state with its odd part-
ner yields only a minor change in the Hamiltonian
matrix. So it is possible to state in a well-de-
fined sense that the Hamiltonian 8"measly com-
mutes with the operator which affects this ex-
change: the commutator being representable as
a matrix consisting extirely of zeros but for the
last diagonal element. This is about as elemen-
tary an example of symmetry breaking as I can
envisage.

Now there is a familiar dynamical operator
which does exchange even states with odd in the
right way. The parabolic basis functions (n,n, m&

are simultaneously eigenfunctions of the energy,
the & component of the angular momentum, and

the z component of the Runge-Lenz vector X (not
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to be confused with the vector potential):

g= —,'(p x 1 —1 x p) —r/r.

A, ~n, n, m) =n '(n, —n, ) ~n, n,m) . (12)

Thus the sign Z of A, is well defined in this basis
as the operator

Z= (A') 'i'A, ,

and it is clear that Z effects the required change
of even to odd states. So, the direction of the
Runge-Lenz vector is, in this sense, nearly a

The classical anal. og of this operator is a ve'ctor

pointing along the major axis of a Kepi. er orbit
from its focus to its perihelion, and the magnitude

of the vector gives the eccentricity of the orbit.
The uncertainty principle prevents one from speci-
fying more than one component of A simultaneous-

ly. The eigenvalues of A, in the parabolic basis
are given by'.

constant of the motion of the perturbed Hamilton-
ian. (Though one cannot define the components of
A perpendicular to the field as well in quantum
mechanics, in the classical picture one would get
a precession of A about the field direction induced
by the linear Zeeman term. )

Whether this observation remains relevant be-
yond the realm of perturbation theory I shall leave
as an open question. Ken Taylor and I have indeed
observed, in much more elaborate calculations,
some remarkable near degeneracies of even and

odd levels in the Balmer emission lines, though
these are characterized by different values of l,
as well. ' Nevertheless, it may aid the successful.
placing of some small pieces in what remains a
very large and complicated puzzle.

1t is a pleasure to acknowledge several stimu-
lating conversations with Professor Vincenzo
Aquilanti.
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