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A theory that is suitable for the analysis of the nonlinear behavior at or very near to a far-from-equilibrium

instability point is presented. The theory is based on the idea that far-from-equilibrium instabilities, like equilibrium
'

critical systems, have a critical space dimensionality, d„above which a quasilinear treatment yields the correct

values of the critical exponents. The results for physical systems (i.e., space dimensionality d (3) are obtained by an

e expansion, in a manner analogous to the one used in the dynamical renormalization group. We treat in detail a

case model of a chemical instability. The main result is that the critical exponents differ from those predicted by the

quasilinear approximation or by master equations (i.e., the so-called "classical" exponents). We show that great care

must be taken with the correlation of random forces, since a faulty choice of this correlation can yield results that

differ significantly from those obtained by using the correct correlation.

I. INTRODUCTION

Instabilities and transition phenomena in sys-
tems far from equilibrium have been a subject of
rapidly growing interest in recent years. ' Much
stress has been put on the analogy of these pheno-
mena to equilibrium phase transition and critical-
ity. It has been pointed out that enhancement of
fluctuations, long-range order, and critical
slowing down are typical to nonequilibrium transi-
tion phenomena in much the same way as they
characterize equilibrium critical points. '

Surprisingly, the consequences of this enhance-
ment of fluctuations and long-range correlations
were not fully accounted for in theoretical treat-
ments of nonequilibrium instabilities. The most
obvious of these consequences is that the central
limit theorem, which provides justification for
solutions of master equations and for quasilinear
approximations, '4 no longer hold near a bifurcation
or an instability point. ' A full treatment of the
effects of nonlinearities is needed.

The purpose of this paper is to suggest a method

which is suitable for the analysis of fluctuations
and the effects of nonlinearities very near to an

instability point.
The method is based on the idea of critical di-

mensionality. As has been pointed out by Mori, '
the spatial dimensionality provides an important
parameter for specifying the stochastic properties
of nonequilibrium fluctuation in much the same
way as it does for equilibrium critical points.
There is a critical dimensionality d, above which
the fluctuations are small even at close proximity
to an instability, and a quasilinear approximation
provides an exact solution to many aspects of the
problem in the thermodynamic limit. The question
that remains is how to assess the behavior at
physical dimensional. ities. To this aim we adapt

in this paper the techniques of the dynamic renor-
malization group' to provide an e expansion which

yields results for d=d, -&. The main result of

this paper is that we find the critical exponents at
an instability to differ from their so-called "clas-
sical" value which is obtained from the quasilinear
approximation (see below). In addition the effects
of nonlinearities on line shapes can be found.

We chose to present here a detailed analysis of
a simple example of a chemical. instability. The
main problem in adapting renormalization-group
techniques to this example is that the fluctuation-
dissipation theorem does not exist in its equili-
brium form and one has to consider explicitly
the renormalization of the random force. It will
be argued that a faulty choice of random force
might result in serious changes in critical behavior
and even in the disappearance of criticality.

The structure of the paper is as follows. ' in Sec.
II we present the model, discuss it in the quasi-
linear approximation, and review Mori's scaling
method to determine d, . In Sec. III we lay out the
a expansion and discuss in detail the renormaliza-
tion group. In Sec. IV we solve for the fixed
point and for the critical exponents. In Sec. V

. we show how criticality is removed by a change
in the random force correlation function. Section
VI offers conclusions and a discussion.

II. THE MODEL

For simplicity we chose a model which is very
well known and has been treated many times in the
literature. This is the Schlogl model for a chem-
ical instability

A+X 2X,
k2

M+X~A.k3

k4
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The macroscopic rate equations for the concen-
tration of X, denoted by p(r, t), is

—= -[k(y+ Z) —k(y)]+R(r, t) .BZ (2.9)

sp r, t} =DV~ p(r, t) + B + ap(r, t) —Cp (r, t) .

(2.2)

Clearly, Eqs. (2.7)-(2.9).are exactly equivalent
to (2.5).

For the case treated here Eqs. (2. 8} and (2.9)
assume the form

Here we assume that the concentrations of A, M,
and N are kept constant and B= k4[N], a =k, [A]
—k3 [M], and C = k2.

The steady-state solution of Eq. (2.2) is

a+y
p88

2c
(2.3a)

y= (a +4CB)'I (2.3b)

When B= 0 one finds a transition point a = 0 for
which p" changes from 0 (a &0) to p"=(a/c)
(a)0}. We shall be interested in the behavior
near this point. In all our analyses we confine
ourselves to approaching the critical point from
above.

A. Stochastic description

The stochasticity and the spatial dimensionality

are introduced when one realizes that Eq. (2.2)
is only an averaged description of the slowly vary-
ing local densities in the system.

The density which appears in the equation of
motion, denoted by A(r, t), is in fact

Bt
=DV y(r, t) + B + ay(r, t) —Cy (r, t},

(2. 10a)

sZ(r, t)
Bt

=Dv Z(r, t) + aZ(r, t) —2Cy(r, t)Z(r, t}

—CZ'(r, t) +R(r, t) . (2. 10b)

sZ(r, t) =Dv Z(r, t) —yZ(r, t) —CZ (r, t) +R(r, t)2

(2. 11)

when the system is in the steady state, the cor-
relation of the random force reads

E(r, r') = ~ Q + (kq[M]+ kp[A])y„+ Cy„j5(r —r')

+Dv„v„, [y,.0(r —r')] . (2. 12)

Equation (2. loa) is identical in structure to Eq.
(2. 2). Its steady-state solution is y„=(a+y)/2C,
similar to Eq. (2.3a). Since we are interested in

the properties of the system in the steady state
we substitute this value of y in Eq. (2.10b). The

resulting equation is

d"0 d(o
A(r, t) = —A(k, &o)e"~ '"'

37f 2' (2.4)

=-k(A)+R(r, t), (2.5)

where A is an upper cutoff on the ~k~'s. The

equation of motion for A(r, t) can be generally
written as

Notice that the four parameters a, B, C, and D
which characterize Eqs. (2.10) are replaced by
the four parameters y, B, C, and D in Eqs. (2. 11)
and (2. 12). Equation (2.3b) furnishes a relation
between these sets of parameters. As seen from
the deterministic analysis, there is criticality
when B= 0 but not otherwise. We shall show that
the renormalization-group (RG) analysis is con-
sistent with this result.

&R(r, t)) =0,
&R(r, t)R(r', t')) = 2E(r, r')5(t —t') .

(2.6)

where R(t) is the random force that is generated

by the elimination of rapidly varying degrees of

freedom. As is commonly assumed,

B. Quasilinear approximation

In the quasilinear approximation the critical
exponents can be found on the basis of dimensional
considerations alone. Writing the linearized
equations as

The density A(r, t) can be decomposed exactly into

a systematic part and fluctuating parts. Follow-

ing Mori we define

dy-.(t) = -Dk y;(t) —ry„-(t), (2. 13)

A(r, t) =y(r, t)+Z(r, t),

sy(r, t)
k( )

Bt

(2.7)

(2. 9)
$ = (D/r)"' (2. 14)

where y;(t} is the Fourier component of y(r, t)
—y„, we see immediately that there is only one

length scale in the problem,
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which diverges like y
' as the bifurcation is

approached from below or from above. Similarly
one can conclude that the amplitude of the fluctua-
tions diverges like y . Evidently, the quasilinear
approximation predicts its own failure as the in-
stability is approached. Our main task is to de-
termine how the critical exponents are modified
by the nonlinearities which must be considered
since the fluctuations grow and linearization is
not allowed.

C. Scaling and critical dimensionality

-At equilibrium the central limit theorem states
that

z(~, t)
y(r, t)

(2. 15)

and fluctuations are always relatively small when
the thermodynamic limit is taken. This property
is lost near criticality. It was suggested by Mori
that Z and y should be scaled differently. Denoting
the scaling parameter by b, we define the scaling
exponents n, w, P, 6) and g by

—(d + (I) + 8) = —(9 + d + 2) .
Together with (2.20) we find

P=2d.

(2.21)

(2.22)

Consequently, P &a if d&4, determining d, to be
4. As a consistency check we note that the non-
linear term in Eq. (2.19) is indeed irrelevant for
d & 4, 5 -~ and is relevant for d & 4.

These results are incorrect for d&4. Since the
nonlinearity becomes important for d & 4, we must
consider now a method that takes it into account.

III. e expansion

A. Diagrammatic expansion

d &d, . Comparing the lhs to either the first or
second term on the rhs we find 8 = 2. From the
last term on.the rhs we get

(2.20)

An additional relation is obtained from Eqs. (2.7)
and (2.12). When B = 0, the second term in the
curly brackets has the smallest exponent, and it
scales like b e ' ' which with Eq. (2.7} means that

y(r, t) = b y(r/b, t/b ),
Z(r, t) = b Z(r/b, t/b ),

(2. 16)

(2. 17)

The basis of our analysis is Eq. (2.11). De-
fining the Fourier components Z» by

(3.1)

ft(r, t) = b '"""'ll(r/-b, t/b') (2. 18)

g- 8-8 ~y- 8-2 ~2Z g 2y 8 Z
at

=

~b-eZ2 ~-(a+~e)PR (2. 19)

The nonlinear term is of no consequence for

Here d is the space dimensionality and y, Z, and
R are scale invariants at criticality. In principle
the scaling exponents are b dependent but we shall
be interested only in their asymptotic (b -~)
values. The crux of the method lies in the fact
that a and p might be d dependent. There might
be a d, for which a&P if d&d, and a&P for d&d„
even at critics. lity. If this is the case, then for
d &d, the fluctuating part Z(r, t) is small compared
to y(r, t) when b -~ and a linearization procedure
is justified and allows for an exact solution of the
problem (in the thermodynamic limit}.

We can find d, and the scaling exponents for
d &d, by assuming that there exists a d, and then
checking the consistency of this assumption.

Using Eq. (2.14) above d, we see that y ()(: b '.
Consequently, from Eq. (2.3), o. = 2 when B = 0.
The other exponents are found from Eqs. (2.12}
and (2.13). We rewrite Eq. (2.12) in terms of scale
invariants that are denoted by a tilde

We rewrite Eq. (2.12) in R, & space:

( i~t+ Dk'—+ y}Z),

cP q d&
In & n kq ttt-v qv + "kv y (3 2)

where R& is defined similarly to Z& .
Defining the un-normalized propagator G0$, a&)

G'$, , &o) = ( —tu&+Dk'+ y} '

we have

Zg =G'(fc, ~)R)

(3.3)

dq d&

(2„) 2„),-,.-. ..~

(3.4)
We wish to extract the asymptotic behavior (small
k, small ~) near the bifurcation point. To this
aim we adapt the procedure of the renormalization
group. "Thus we wish to eliminate progressively
modes with A/b &k &A. This is done by formally
solving the equation for Zg with k &A/b as a power
series in C. These formal solutions are substi-
tued in the equation for Z-„with k &A/b to elimin-
ate its explicit coupling to the high-k components.
Finally we average over the part of the random
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force that acts in the shell A/b &k «A. After each
such elimination we change the scale of Z& . and of
k and and rewrite the resulting equation in the
form of Eq. (3.4). The parameters D, y, C as well
as w and R~ will be renoxmalized. The recursion
relations of these quantities and their fixed point
will yield the needed information.

Since, as we show in the following, the fixed
point value of C is of the order e = d, -d, we as-
sume that we start with a C that is already in the
vicinity of the fixed point (as is usually done in

RG analyses). Consequently C can be regarded as
a small parameter.

We write Eq. (3.4) diagrammatically as in Fig.
1(a). The Z-„ legs with a slash denote modes with

k &A/b that have to be eliminated. Since eventually

we average over the random force, only diagrams
with even number R& in them survive. To order
C' the diagrams that contribute to the iteration are
shown in Fig. 1(b). The third diagram on the rhs
dlsRppeRrs upon RverRglng. The reRson ls that k

is conserved at every vertex and thus the propa-
gator that connects the two vertices can have only

k = 0. But it comes originally from a high-k corn-

ponent, and this is impossible. The fourth diagram
also disappears upon averaging but it must be con-
sidered since it renormalizes R», (which indeed

vanishes upon averaging) and its correlation func-
tion (R-„„R-„..). The final equations are exhibited
in Figs. 1(c) and 1(d).

B. Intermediate parameters

The evaluation of the diagrams is straightfor-
ward. Writing

( RR»k(»l l) Tk(5$. + ff )5(a( + a( }

we find that the diagram in Fig. 1(c) is

4C TGc(k, (d)I»„Z»„,

where

(3 5)

d, {g d

%'e choose the differential renormalization-group
procedure in which b =1+5, where 5 is small. ' In

Appendix A we outline the calculation which yiel.ds
the expression for this diagram, denoted by

5G'(k, (c)MZ»„, where

4c'T ~m A~

(2s)" 3 '(DA'+ )'

+

u+ % ~+)

+ = ~ +4

l c)

form

[1-5G (k, (d)M]Z»„=Go(k, (d)R»
d'-("(k, z)(:f
dv

X —g g
2& k-q, fki-V q, V &

(3.8)

where Rk-„ is the intermediate form of Rk-„which
is yet to be found. Alternatively, we have

1 I
G'(k (c) —5M "" G'(k (c) —6M

dg dV
~

~

(2s)l 3s k-((, (L(-u ((,v

The new propagator G~(k, (c) is defined as Gc —(IM

and is written as

(3.9)

Gl(k, (c) = ( i(dg'+O'D'+y-') ', (3.10)

It(l (R R) - I ~ 2 Q
FIG. 1. Diagrammatic description of the renormaliia-

tion'-group procedure. A heavy line denotes Zp . A light
line with an arrow denotes GIt„. The random force is de-
noted by X. A heavy dot stands for -C J «~ [d"q/(sv)~l

j dv/27(. An X in a circle denotes (R»„Bg„). Part (a) is
Eq. (3.4). In the second line the contributions of high k's
are denoted by a slash. (b) represents all the diagrams
that contribute to 0(C2) and that have an even number of
R~„. (c) shows the diagrams that survive an averaging
over the random force which acts in the shell A/5& k & A.
(d) shows the diagram that renormalizes the random-
force correlation function. The diagram stems from the
first diagram on the second line of part (b).

p,'"la
(DA'+y) '( (oA'+v(')'

m h"
4 '(DA'+y)', ' (3."I)

The equation of Fig. 1(c) can now be written in the

m2+y 4 '

01=1+5E,
y'=y- NF'(DA'+y),

(3.11)

(3.12)

(3.13)
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where

(2x)"' ' (DA'+ y)' (3.14)

which yields the renormalized form of the relevant
quantities. To this aim we introduce the quantity

Z,k-,e defined by

Notice that to this order we have no renormaliza-
tion of the vertex and thus we add the equation

Zk b + +
Zyk yg (3.17)

c'=c. (3.15)

The diagram in Fig. 1(d) can be computed along
the same lines, yielding the intermediate form of
the (RR) correlation function. The result is gI —bF (3.18)

The difference between Eqs. (3.17) and (2.17) is
due to Eq. (3.1). In addition, we use the fact that
b =1+ 5 to write Eq. (3.12) in the form

TI= T+ 5I'T . (3.16}

C. Rescaling and renormalization

The last step in the implementation of the re-
normalization-group procedure is rescaling,

In (3.18) and subsequently the exponentiation is cor-
rect to O(b).

We rewrite now Eq. (3.9} and (3.10) in terms of
scaled quantities

y,-28+d+8
b-0+4+eZ ktd

-i(abc)bz-e+ b-aDqbkP+ &
r i(ubg-bz e+ b 2-Dr(bk)a+-&z

d~(qb) d(vb )—
~2 ~~ 2q&h/b

'lT
(3.19)

Notice that Rk- „is not yet written in terms of
scaled quantities. Multiplying numerator s and
denominators on the rhs by b~F and the equation
by b~' ~ we find the equation (k —= bk, 2 -=be~)

From Eq. (3.16) we have

T'=bFT

which means that finally

(3.27)

Z tw
ktu Z& + b &F 2DEy2 + b

8"FyI

Cb-a-F

b &F-2D&$2+ b&FyI

X
dq dv-Z««««Z»

(2w)~ 2x
@CA

(3.20)

k, td Ltd (3.21)

This equation must be accompanied consistently
with Eq. (3.16). Once Eq. (3.21) is written, the
rest of the renormalized quantities are read from
Eq. (s.so):

Equation (3.20) is the renormaiized equation if we
identify

T"= bm-F+~T . (s.28)

To obtain a consistent RG scheme the renorm-
alized equations of motion have to be identical in
form to the original equations, with the original
parameters being replaced by the renormalized
ones. As we argued before, if B+0 we expect no

criticality. This will be shown to be true in Sec.
V. At this point, however, we set B=O. The RG
relevant term in the noise correlation function is
(k, [M]+k2[A])y„. The other terms scale more
strongly and are therefore irrelevant. Using the
value of y„=y/c the only way to get a consistent
(self-similar) RG scheme is to demand that the
renormalized noise correlation function is

(3.22)
T&=Z (3.2s)

y& yIb8-F

C~ Cb-O

We now use Eq. (3.21) to find T". Writing

(3.23)

(3.24)

(s.so)

where K= (k,[M]+k,[A]). This condition will de-
termine P. Using Eqs. (3.13), (3.15}, (3.23), and
(3.20) we find

TB TbP-2F(D h2) -2F

(3.25)(R"- R"-,-.) =b'~~-"(Rf R' )key k' tLi
' ad k'td'

we have by definition of RI&

R R } b2 - -wTrb(h+k )6(a+up

= b~ ~~~T'6(k+0')6(~+&a') . (3.26)

where F=F/y. Comparing (3.28) and (3.30) we
find

bg yW-2Fah -F (s.sl)

%e see that the previous result of the linearized
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theory above d„P = 2d, is not likely to be refound.
At any rate Eq. (3.31}is an important equation that
will yield the recursion relations.

Using (4.1) in (4.4) we have

—(2 —2DA2F 7QDA2F)Q .
db

(4.6)

D. Recursion relations

Substituting Eq. (3.31) in Eqs. (3.24) we get the
recursion relation

The second and third terms in the parentheses
are 0(&) and O(e ), respectively. Thus the only

fixed point for Q is

dc
db

= (28 —d+2FDA )C . (3.32)
Qg 0

From (4. 5) we then find

(4.7)

This recursion relation must be consistent with

the analysis of Sec. II. In other words, we hope
to find that for d & 4 dC/db & 0 and vice versa. We
will see that this is the case.

The other recursion relations are obtained from
Eqs. (3.11), (3.13), (3.22), and (3.23):

F» = e/2D-A'

and from (4.2)

(4.6)

(4.9)

"y = (8 —3F —2FDA2)y
db

(3.33)
to first order in e.

dD DA2

db
=D(8-F —2) 4FD -—, -- . (3.34)

6 DA2+y 4

These recursion relations have a nontrivial fixed
point that is obtained in the next section.

B. Linearization and critical exponents

The most important information is obtained from
the linearized recursion equations around the
fixed point. We find

IV. FIXED POINT AND CRITICAL EXPONENTS

A. Fixed point

d5F — 3~-e5 +
DA2 5Q,

d5Q
db

= (2+ e)5Q .

(4. 10)

(4. 11)

e = 2+ —,'FQDA2. (4.1)

This result allows us to find d, . Assuming (and

confirming later) that F» is O(e} we see from Eq.
(3.32) that d, =4, indeed, consistent with Sec. III.

From Eq. (3.14) we have

or

7t A"

(2v)'" ' (DA'+ y)'

dF F dc F dQ
db C db 1+Q db

(4.2)

(4.3)

It is useful to rewrite the recursion relations
(3.32)-(3.39) in terms of the variables Q—= y/DA',
F=F/y, and D Moreo.ver we require thatD"=D.
Thus Eq. (3.39) becomes a constraint equation that
guarantees the preservation of the form of the dif-
fusion process. Starting with Eq. (3.34} we as-
sume (and confirm a posteriori that y is O(e)
where c=d, -d. Thus the condition dD/db=0
yields

The eigenvalues are evidently X&
——2+ e and X2

Defining the critical exponent of the correlation
length by

(4. 12)

we find'

(4. iS)

(4. 14)r, =(5Q} f(b5) =5 *"f(bh) .
Since we found 0=2 we conclude that x= T com-
pared to 1 in the linearized theory.

Most interesting is the behavior of the static
correlation (Z& Z&) and the relative fluctuations
(Z&Z&)'12/p. Writing

v = I/x, =
2 (I —p e) .

In three dimensions v = 4. We recall that the lin-
earized theory predicted v = 2.

Similarly the relaxation time exponent will be
denoted by x

From Eq. (3.33) we have

db
= (8 —3FQDA2 —2FDA2)Q (4.4)

Combining Eqs. (3.32), (3.33), (4.1), and (4.3) we

find

( )
(Z-Z-t)

b
2s,„(ZrZC)

5(q+ q') 5(q+ q'} '

we use Eq. (3.31}to find that p = 2 and

x(q) = b 'x(bq, &/b) .

(4. 15)

(4. 16)

dF
db

= (4 —d)F + (2DA')F2 —6QF . (4.5}
Choosing b = $ we get

x(q) = ( 'x(B) (4. 17)
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meaning that X(q) vanishes at the critical point.
The relative fluctuations, however, diverge since

From Eq. (5.4) we get

DA 8-3F* ' (s.9)
1/2 ~) -e/2

X (qJ C( f( t) t2+I ~ /2/( () (4. 18)

In three dimensions the dicergence is like $ '.
These results are in qualitative agreement with

the master-equation approach, " where it is also
found that the fluctuations vanish whereas their
relative size diverges. The critical exponents,
however, are different. dF„—=(6 d)F+sz' 3elq, (5.10)

Since y~/DA2 is O(E), Eq. (5.9) means that so is
E*. But then Eq. (5.8) means thatd, =6' In fact,
once E* is O(c) it is inferred from Eq. (5.3) that
dc/db&0 for d&6 and vice versa, meaning again
that d, =6.

The recursion equations for Q and F are

V. RENORMALIZATION WHEN CRITICALITY
IS REMOVED

We now consider the case that the parameter B
in Eq. (2. 12) is not zero. The quasilinear analy-
sis indicates that there is no criticality in this
case and $ is finite. It is important to see that
the method presented in Sec. IV predicts the
same thing. In fact, we shall show here that keep-
ing track of the renormalization of the random force
force is of great importance in determining the
critical behavior.

dQ
db
—= 2Q —2F —-'QE

The linearized equations are

d5F = 5q5F —6q5Q,

ding = (2 —-'g)sQ —(2+ -'q)sF,

The eigenvalues are found to be

X, =2+ —", q,

(5.11)

(5.12)

(s.i3)

(s.i4)
First, we consider the case that the correlation

function of the random force is simply a constant.
Thus the requirement (3.29) becomes T"=T.
Prom Eq. (3.28) we see that the condition for that
is

. pe-F&-g (5.1)

or

~F /2W/2+ &/2 (s. 2}

The recursion relations now assume the following
form:

—= (-e —-d —vF)C,dg

db

dv =y8- 3Fy- 2FDA,2

db

dD &i DA' i—= D(e -F -2) -4')-
db (6DA +y 4

(s.3}

(s.4)

(s. s)

Equation (5.5) has to be considered again as a con-
straint equation. Assuming y~ to be of O(c) we get
from dD/db =0

The critical exponent v = I/X, is now

v= p(1 —-"E}.
6

(5.15)

Evidently, these results are very different from
those obtained in Sec. IV. Consequently, the form
of the random-force correlation function is very
important in determining the critical properties.

Now we turn to the case that Bt0 but the corre-
lation of the random force is given by Eq. (2.12}.
When Bc0. the fixed point found in this section is
not consistent. To see this, suppose that B*=O(1}.
This is self-contradictory and violates self-simi-
larity because of Eq. (2.33) and the fact that y*
= O(g). On the other hand, if B*= O(g), we cannot
have 7 = T. Clearly, the fixed point obtained in
Sec. IV is not consistent with Be 0. (Remember
that the condition TR=Ey "/C" was used, assuming
that B=0). In fact, we found no way to obtain a
stable fixed point, while preserving self-similar-
ity, when Bo 0. We are thus led to claim that the
RG procedure is consistent with the deterministic
result that there is no criticality when Bc0.

8 = 2+-E* (s.6) VI. DISCUSSION

8=6 2d
3

From Eq. (5.6) we find

F~=6-d.

(s.7)

(s.8)

'Ibe surprise comes from Eq. (5.3). At the fixed
point,

The main result of the present analysis is that
the critical exponents of the model instability con-
sidered above are found to be non-"classical. "
It is important to stress that such a result cannot
be obtained by an analytic expansion of the equa-
tions of motion in the distance from the bifurcation
point, " since the values of the critical exponents
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indicate that the correct expansion is nonanalytic.
In addition, a system size expansion, assuming
that the fluctuationg part is smaller by a factor
of 1/~V compared to the systematic part, ' '~ will
not yield these critical exponents since it has been
shown above that this scaling is correct only for
d &d, . Our results differ also from these pre-
dicted by the birth and death master equation in
number space." Although we get the same qualita-
tive behavior, i.e., that (Z;Z, ) -0 and (Z;Z;)/
(p) -~ at the instability, the exponent of the diver-
gence is different. Needless to say, a quasilinear
treatment is not capable of finding non-classical
exponents. A more critical comparison of the
various approaches that appear in the literature
to the present one is interesting but is beyond the
scope of this paper.

It has been shown that the structure of the ran-
dom-force autocorrelation function is of great
importance in determining the critical behavior.
Qne cannot assume that

(R(r, t)R(r', t')) = Q6(r —r') 6(t —t')

with Q being a constant. If such an assumption is
made the critical dimensionality, as well as all
the critical properties, are changed.

The ideas used above are not limited to chemical
instabilities. In fact, applications of a similar
approach to lasers near threshold, the Benard
instability, "and the Gunn instability are in pro-
gress and will be reported soon.

APPENDIX

Writing

Is„= d q d(u'~Gg „.
~

Gf~
a/a

we expand I„-„around k = 0, (d = 0:

a'I„-„aI;„
I„-„=I«+& Z k kz

" +
8k~8~ ~ 0 eu)

40a0 Cda0

Thus for example I« is

(Al)

(AS)

Ioo= d q d G~„G~ ~. (AS)

A;= 2'-&v t'r(d/S). (A5)

In the differential renormalization-group tech-
nique b=1-5, 6-0, and thus A/b=A(1+5). The
q integral is then written by inspection. Since the
integration interval is infinitesimal, 6A, we have

The frequency part of the integral is done readily,
yielding

m
~ 1d400 2 1 (Dqm~ y)2

(A4)
=-E "d

'f(D 2~y)»

where K~ is the total spherical angle in d dimen-
sions ~
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The other parts of Eq. (AS) are calculated similar-
ly, with the result Eq. (S.7).
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