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A theory of nonuniform liquids is presented which is based on the Yvon-Born-Green equation for the one-particle

density and the Ornstein-Zernike equation of an inhomogeneous system. The necessary closure is effected by

exploiting the solution of a modified hypernetted-chain equation and making a local approximation on the (highly

universal) bridge function. The theory is successfully applied to model problems that have also been studied by

direct-simulation methods. A brief generalization to quantum liquids is also given.

I. INTRODUCTION

In spite of the importance off nonuniform fluids,
both classical and quantum, in a variety of physical
problems, the understanding of their microscopic
structure and thermodynamics is far less well
developed than is the corresponding situation for
uniform fluids. Perhaps the foremost example
of an inhomogeneous fluid is the surface of a liquid
in equilibrium with its vapor, the entire system
being subjected to a one-body force such as a
gravitational field. As is well known, the one-
particle equilibrium density changes very rapidly
at the surface, especially for temperatures near
the triple point. Because of the rapidity of this
variation a very detailed theory of the inhomogene-
ous fluid is required in order to give an adequate
description af the surface region. ' The same ob-
servation holds for a whole class of interfacial
phenomena another example being the solid-fluid
interface in which the interactions between the
atoms of the fluid and those of the solid surface
also lead to highly nonuniform single-particle
densities with important consequences for absorp-
tion-related phenomena. ' Phase separation, nu-
cleation, and spinodal decomposition are examples
of nonequilibrium phenomena in inhomogeneous
systems.

Many of the theories of inhomogeneous classical
fluids originate from the ideas of van der Waals'
and Rayleigh. 4 The key element in these approach-
es is the construction of a free-energy functional
for the inhomogeneous system in terms of the
one-particle density profile. With a properly
chosen, though in general unknown, correlation
function one then seeks a variational minimum
among a class of physically acceptable density
dist' ibutions. Although this procedure is justified
by exact existence and uniqueness theorems, '
analogs, for instance, of the Hohenberg-Kohn-
Mermin' theorems for the interacting electron
gas, the practical applications of the method often
resort to quite dra. stic approximations. In cir-

cumstances where the density distributions vary
slowly over the range of correlations in the sys-
tem it is certainly plausible to assume that the
thermodynamic functions of interest can be given
by those of a hypothetical uniform fluid whose
density is given by the equilibrium density at each
space point of the real inhomogeneous fluid. When
the density varies more rapidly an obvious exten-
sion is to expand the appropriate energy densities
about their local values in terms of density gradi-
ents. While such methods are conceptually use-
ful, ' and even quantitatively accurate in some
cases, ' they fail badly in others. For example,
gradient expansion techniques are not adequate
in cases where the density shows a nonmonotonic
trend, a,s in the case of the structure of a fluid
near .a solid wall.

An extension of the van der Waals theory has
recently been proposed by Ebner, Saam, and
co-workers. ' " It achieves what may be viewed
as a partial summation of the terms in the gradi-
ent expansion. In this type of density-functional
(df) theory a weighted integral over density dif-
ferences at different points in the fluid is involved;
the requisite kernel is related to a linear-re-
sponse function in the limit of small inhomogenei-
ties and in practice is approximated by suitably
chosen local-density values of the uniform fiuid
direct-correlation function. A related modifica-
tion of the van der Waals theory has also been
given by Bongiorno 8t al.""These transcriptions
of the density-functional theory are remarkably
simple and transparent and have proven useful
in certain applications. Yet as we shall show
below the intrinsic approximations of density-
functional theory are not always valid and actually
lea, d to quite spurious results in some instances.

An alternative approach is based on perturbation
theory. The successful application of perturbation
theory for uniform fluids" relies on the observa-
tion that the structure of such fluids is governed
by the highly repulsive short-range parts of inter-
atomic forces. The weaker attractive parts of
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the potentials provide the stabilizing internal pres-
sure, at least in nonmetallic systems. " Their
contribution to the thermodynamic functions is
calculated using perturbation theory with respect
to a reference fluid very often chosen to be a
hard-sphere system for which very detailed re-
sults are novr available. Provided that informa-
tion of comparable accura, cy could be obtained
for a nonuniform reference fluid the aim would

be similar, i.e., to evaluate the effects of atomic
attraction perturbatively. "

In the ease of a fluid in contact vrith a solid
boundary there is a class of theories that utilizes
an idea originating vrith Helfand et al." One con-
siders a binary fluid in which the concentration of
one of the components tends to zero while the size
of its "atoms'* diverges. This limiting process
leads to an Ornstein-Zernike-type of equation for
the one-particle density near a planar vrall» and

the solution of the equation can be obtained by

appealing to an analog of one of the closure ap-
proximations vrell knomn from bulk-liquid theories.
These techniques have been widely applied to the
study of interfacial phenomena including adsorp-
tion' and colloidal suspension. On the other
hand, recent studies" of dense- fluids bounded by
hard walls show discrepancies between different
integral equation approaches and also some disa-
greement with computer simulation studies. These
and other observations seem to indicate that gen-
eralizations of the integral equation and pexturba-
tive approaches, generally successful in describ-
ing the structure of bulk uniform fluids, are not
universally applicable to their nonuniform counter-
parts.

As a final example in this brief overview of
theoretical approaches to inhomogeneous fluids,
one may cite the method of computer simulation, "
either Monte Carlo or molecular dynamics, vrhich,
within the usual limitations imposed by the finite-
ness of the systems studied and the restriction
on simulation sequences, gives essentially exact
information to which various analytical theories
may be compared. The data that are available
from such studies is growing rapidly. "

In the case of a free surface, the different ap-
proaches appear to agree reasonably mel1. for
simple insulating fluids near their triple points.
Fox example, all the variants of van der Waals
theory predict a monotonic surface density profile
with a width zg=2o and a surface tension y, =o'/e,
vrhere g and & are the parameters in the Lennard-
Jones potential describing the interaction betvreen
particles. These results are in reasonable accord
with both experiments on real fluids and computer
simulations. As noted above, the situation is not
so satisfactory for interfacial problems involving

fluids and solids. This presents a more stringent
test of theory and the various analytical methods
often differ markedly in theix predictions even
of the qualitative features of, say, adsorption.
It very often seems that solid-induced correlations
appear to render quite inaccurate the simple ex-
tensions of those methods that vrork rather mell
in bulk liquids. It is mainly for this reason that
vre propose a nem approach for calculating the
structure and thermodynamic properties of a
nonuniform fluid in the presence of an externally
imposed potential.

The method developed in the present paper pro-
ceeds from the (exact} first Yvon-Born-Green
equation for the one-particle density, rather than
from an approximate free-energy functional. This
equation is augmented by the Ornstein-Zernike
equation of the nonuniform fluid. The necessary
closure is achieved by exploiting the solution of
the modified hypernetted-chain (MHNC) equations
for the system which in turn require knovrledge
of the bridge function. Folloming the ideas of
Rosenfeld and Ashcroft'~ me suggest here that the
bridge function shovrs a high degree of universal-
ity, "even in the nonuniform context. It is insen-
sitive to the actual form of the interatomic poten-
tial, but most importantly it is short ranged and
well defined for all densities and temperatures.
Of the various tmo-point functions it is the one

perhaps most amenable to local-density approxi-
mation. Consequently we solve for the structure
and thermodynamics of the inhomogeneous fluid
exactly at the level of HNC and then introduce
corrections through the bridge function regarded
as a local-density dependent potential.

The method is similar in spirit to one introduced
recently by Fischer and Methfesse126 vrho also
examine interfacial phenomena from the stand-
point of the Yvon-Born-Green equation but with
a different approximate closure. In their approach
the pair potential P is split into a repulsive short-
range part and an attxactive part. The at-
tractive part is dealt with by ignoring cor-
relations in the Quid. The repulsive part is
treated in the hard-sphere approximation, the
pair-corx elation function being taken as that ap-
propriate to a locally homogeneous hard-sphere
system (with requisite averages being taken over
a volume equal to that of a single particle). The
approximations made in this approach appear to
be severe, but nevertheless have the great ad-
vantage that they also lead to a method in vrhieh

local densities avoid the liquid-gas coexistence
xegion. For the gas-solid interface problem, the
results of Fiseher and Methfessel are in good
agreement mith the appropriate computer simula-
tion data and qualitatively similar to some of the
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results we present below.
The paper is organized as follows: In the next

section we present the necessary theory of in-
homogeneous classical liquids and describe our
method. Section III formulates the problem for
a system with planar symmetry. Section IV is
devoted to some numerical applications of the
scheme; a one-dimensional-model problem is
analyzed and compared with other methods and

computer simulation results. A three-dimension-
al adsorption model is also investigated and the
results also compared with those of other tech-
niques. Section V summarizes our findings: In

the Appendix we give a discussion of the applica-
tion af the method to inhomogeneous (Bose) quan-
tum fluids.

II. INTEGRAL EQUATIONS FOR NONUNIFORM
FLUIDS

Consider a simple fluid subjected to an external
one-body potential V,„,(r); at fixed chemical po-
tential the one-particle density n(V) satisfies the

exact equation'

Vn(T) = —Pn(r) VV,„,(r)

which is familiar as the first member of the Yvon-
Born-Green (YBG) hierarchy. For a uniform

system Eqs. (1}, (3}, and (4) are trivial; for the

nonuniform fluid they are an exceedingly fruitful
source of information.

There have been attempts" " to apply the YBG
equation to nonuniform systems by invoking some
approximation to p"'(r, r'). Such an approach is
simple in principle and also in practice, but the
approximations to p&"(r, r'} have on the whole

been somewhat artificial constructs and have led
to very different results for, say, the case of

the density profile of a free liquid surface. Thus,
for example, any local-density approximation to
p& i is to be viewed with caution if the local density

happens to lie in the liquid-vapor coexistence re-
gion. This point is discussed further in what fol-
lows.

Following established procedures developed
for homogeneous fluids, it is possible to carry
out a diagrammatic expansion of the total correla-
tion function

h (r, r') =g(r, r') —1

in powers of the density n(r). The result is a.

resummation in the form"

—p dr' & rfr' n rn r' VV t

(1)

1+h(r, r') = exp[-PP(r, r') + h(r, r')

—c(r, r')+E(P, r')), (6)

P=(h, T)

where

p&')(r, 'P') = n(r)n(r') g(r, r'} (2)

rc(F) f dr'c('F, r') ( ).rrcF

Notice that Eqs. (1}and (3) contain no explicit
reference to the form of the interparticle poten-
tial: This information is implicitly subsumed
in p~ & and c, respectively. They are both quite
general statements about the equilibrium of mech-
anical and thermodynamic forces. For particles
interacting via pairwise potentials (t)(r, r') a third,
and again equivalent form, is

Vn(r) = —pn(r) VV,„,(f)

-p dP 7, Q l, x' p~i 1,r

is the two-particle distribution function and g the

radial distribution function. Using the fact that

V,„,( F) is ess'ential for the localization of n(r) in

space, an equation equivalent to (1) can be de-
rived"" that involves the Ornstein-Zernike di-
rect-correlation function c(r, r'):

Vn(&) = - Pn(&) V V...(r)

where c(r, r') is defined by the Ornstein-Zernike
relation

)dF, F')=c(, r') fdF"c(F,F")c(F")c(F',

(7)

and the function

E(r, r')

dr, dV,c, r, r„r, n r, h r„r' n r, @ r„r'

+ ~ ~ ~

is the bridge function. In (8) the higher-order
correlation functions are defined by

(8)

5' '[pV,„,(r, ) + Inn(r, )]

The bridge function corresponds to the sum of non-

nodal elementary graphs in the diagrammatic
expansion.

If E(r, r') is set to zero, then (3}, (6) and (7) con-
stitute a closed set of equations. This is the
hypernetted-chain approximation (HNC} widely

used in the theory of bulk liquids. More generally,
let E' be an approximate form of E, assumed
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known. Then the first YBG equation [most practi-
cal in the form of (3)] together with Eqs. (6) and

(7} again constitute a closed system of equations
which, in this instance, can be solved for h(F, 'f'),
c(r,P), and n(T) once the pairwise potential
p(r, P} and external potential p,„,(r} have been
specified. As noted by Rosenfeld and Ashcroft, '4

for the homogeneous case this procedure leads
to an exact solution (for g, c, etc. ) for a system
in which the particles interact via an effective
state dependent potential P('P, f')+P '[E(i,P)
-E'('P, r')]. With the exact E'=E, the solution
would also be exact for the true physical potential.
With approximate forms &', the procedure leads
to a modified hypernetted-chain equation; in what
follows we shall extend the notion to a modified
nonuniform hypernetted-chain equation, to be
augmented by the exact first YBG relation.

The key factor underlying the success of the
modified HNC method'~ is the observation that E
in the homogeneous case is a highly universal
function. The defining elementary diagrams lead
to a function that in the dense-fluid regime dis-
plays a remarkable insensitivity to the assumed
pair potential. It depends mainly on the density z,
and it is therefore possible to describe E by a
one-parameter family of curves, for example,
by the family appropriate to the hard-sphere fluid.
This system is characterized by the packing frac-
tion g, a quantity that can be determined in prin-
ciple, by imposing the requirements of thermo-
dynamic consistency. This procedure works ex-
ceedingly well for a wide range of interatomic
potentials, densities, and temperatures. As shown
in Ref. 24 (see Fig. 1 there) the bridge function E
can be regarded as a short-ranged repulsive con-
tribution to the effective pair interaction. For
practical purposes it matters little" whether one
uses the exact E (for instance, the one obtained
from numerical simulation studies of an appro-
priate reference system), or a computationally
more convenient form (for instance, the Percus-
Yevick result for the hard-sphere fluid).

For an inhomogeneous fluid the bridge function
is no longer a function of ['P -$'~; it depends on r,
T, and is a functional of the density profile n(r).
There are a number of ways to construct, at least
approximately, this functional, and the built-in
variational degrees of freedom can be used to
impose constraints (minimization of the free en-
ergy, for example) on the solution. However,
in view of the fact that at a given density E(F)
for uniform systems is a monotonic short-ranged
function we propose that for the nonuniform fluid
a local-density approximation on E is not only
physically plausible but is also expected to be
numerically accurate. We therefore set

(10)

where E,(~ 7 -7'~; n) is the universal bridge func-
tion for a uniform system evaluated at a density z
intermediate between the densities at $ and P.
For example, we might choose the standard

n=p N r+N

It is interesting to contrast the local-density
approximation to E(r, i') with similar approxi-
mations applied to other two-point functions, such
as /g(r, r') or c(V,$'). The familiar form of den-
sity-functional theory~" requires the construction
of a free-energy functional by an approximate
functional integration and a subsequent local-den-
sity approximation to c(f,'5'}. However, an in-
cautious application of this approach can lead
to situations in which the local density n is such
that the corresponding bulk fluid is actually un-
stable. For a given temperature T the point (n, T)
actually lies well inside the two-phase region of
the phase diagram. In addition to this difficulty
it may also happen (low-temperature adsorption
is a case in point} that the local density is actually
higher than any bulk-liquid density for the given
conditions.

It is not at all clear that the bulk direct-correla-
tion function actually exists in the unphysical
(unstable) region. The standard assumption af
density-functional theory is that an analytic con-
tinuation does exist and that a satisfactory inter-
polation formula can subsequently be devised to
obtain c(F,P} i'n the unstable region. This pro-
cedure may lead to spurious results and is, we

suggest, one reason why the density-functional
theory of certain adsorption systems differs quite
radically from the results to be presented below
(Sec. III) and also from computer simulation stud-
ies. ' In this context especially, it is important
to stress that E,(~ P-P~, n) exists for all densities:
the universality principle guarantees this. Further
E has the extremely important advantage that it
is a simple monotonic function of both its argu-
ments.

The approach we follow requires the solution of
coupled hypernetted chain and the Yvon-Born-
Green equations. The method is general but at
first sight appears numerically quite demanding.
However, as we show below, the solutions we
need can be obtained for planar of spheri. cal in-
terfaces in three-dimensional fluids with reason-
able computational capacity. An important reason
underlying the practical feasibility of the method
is the inherent stability of HNC equations, as noted
in Ref. 24. For computational reasons it is useful
to recast the three equations to be solved in the
following form:
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c('P, F) =exp[- p(t)('P, 'P')+E('P, 'P')] exp[y(r, r')]

-y($, f'}—1, (12)
F(Q, z, z')=f dz"C(Q, z, *")

x n(z')[y (Q, z",z'}+c(Q,z', z')], (21)

vz(r)= —dz(r)vV„, ('3)+fdpc(r p)vz( '), (13)
and

and

3(1','P)= f dl"c(l', 'F')c(F )c[("FP') z, r(P 3 )]".,
'

(14)

1
y(R, z, z') =

2
dQ QJ'Q(QR)y(Q, z, z').

0

In these equations

(22)

E('P, V') =E„g('P —f'(; q},

where

c pv(r, q)+» cd(r, g) +1, r&(x
Ess r}=

grd(r, F)} —lngpv(r F)) 1, r&a'

where

(15)

(18}

Next, in effecting the local-density approximation
for E(r,f') the hard-sphere fluid is used as a
reference system since it has been studied exten-
sively both by simulation and analytic methods. "
For both thermodynamics and structure it is quite
satisfactory'4 in bulk fluids to use the Percus-
Yevick (PY} family of bridge functions. A similar
viewpoint is taken here. We write

and

r=[R +(z —z ) ]

n=&nz+nz' .

At this point it is worth noting that if c(R,z, z')
is known [from solution of (19)-(22)] the inter-
facial tension and other thermodynamic quantities
can be obtained. The interfacial tension follows
immediately from considerations of the require-
ments of mechanical equilibrium in the context
of the planar geometry. For, by integrating the
difference of the normal and transverse compo-
nents of the pressure tensor from one uniform
phase across the interface to the other, one ob-
tains"

q = —c'[n(r) +n(r')]/2
6 y =y — dz zn(z)

B ~ext

Bz
(23)

Here Qpy and g~ are the Percus-Yevick direct
correlation and pair-distribution functions, re-
spectively" (for g~ we use the analytical repre-
sentation given by Smith and Henderson" ).

where y, is the planar geometry free surface ten-
sion. A particularly convenient form for y„which
involves the direct-correlation function, is" "

III. FORMULATION FOR A PLANAR SYSTEM

P(Q, , z')= f dRRd (QR)R(R, z, *'),
0

(18)

For one-particle densities n(z) varying in a
single spatial dimension, the two-particle func-
tions c('P, 'P') and y(f, r') in Eqs. (12)-(14) are
functions of z, z', and [ R-Et~, where %=r
—(V'z}z is the component of f perpendicular to z.
Jf we define a two-dimensional Fourier transform
by

w
" ",dn dn

yd
= — dz dz' —, dRR'c(R, z, z'}.

2P „„dzdz'

(24)

We may also use forms (1}and (3) of the first
YBG equation to analyze particle correlations,
not only in a direction perpendicular to the sur-
face, but also parallel. The importance of the
transverse (or horizontal) correlations was first
pointed out by Wertheirn. " Our treatment will
follow the discussion given by Evans': For a
planar interface we rewrite (1) [using (14) and (18)]
in the form

—'"=-Pn(z) "' + dzc(O, z, z) ", ,Bz Bz ' ' Bz'' (2o)

then we readily find the following as the basic set
of equations to be solved:

c(R, z, z') = exp[- p(t)(r}+E(r, F))] exp[y(R, z, z')]

-y(R, z, z') -1, (19}

——=P dz' '*'S(O z z )
Bz ~ Bz

where

(25)

S(0,z, z') = n(z)5(z —z')

+n(z)n(z')[c(O, z, z') +y (O, z, z')]. (28)

The inverse of (25) [the equivalent of (3)] is



THEORY OF INHOMOGENEOUS FLUIDS 565

where

C(0, z, z') = 5(z -z')/n(z) —c(0,z, z').

(27)

(28}

value dominance then leads to

d(Q, z, z') —-=, ll dzd(z) +Py—,()*)
~z ~Z OZ

(38)

In addition, for any transverse wave vector Q,
the Ornstein-Zernike equation can be written

r dz'C(Q, z, z")S(Q,z",z') =5(z -z').
ad)O

(29)

We now analyze Eqs. (25) and (27) by using spec-
tral techniques. Since C(0, z, z') can be regarded
as a real symmetric matrix, it can be written in
spectral form (as noted by Wertheim"')

C(0, z, z') =g A,,e f(z)e, (z'),
f

where Z, are the eigenvalues and(a, (z}) is an
orthonormal set of eigenfunctions. Using (29}

(30)

S(0 z z )=g AI e~(z)Eg(z ). (31}

If the external force is

F( )
dxt8V

BZ

then, from (31) and (25) we have

(32)

A)fg zEg, (33)

where

E& =P dz'I' z' c& z' . (34)

Next, suppose that Bn/Bz is strongly peaked. Then

we expect the eigenvalue spectrum to be dominated

by discrete values, the lowest eigenvalue being
most important. " If this assertion is correct then

for small Q. In arriving at (38) we have used the
Triezenberg-Zwanzig form [Eq. (24)] for the sur-
face tension in the presence of an external poten-
tial.

Equation (38) has an Ornstein-Zernike-type of
behavior for the transverse structure factor or
density-density correlation function. For a free
surface under gravity [F(z)= mg] the correlation
length

(=[y,/(nd -n„)mg]'A

(where n, —n„ is the liquid-vapor density differ-
ence) attains macroscopic dimensions. In turn
this implies nearly singular behavior in S close
to Q=0. The form of (38) is therefore suggestive
of horizontal correlations corresponding to sur-
face (capillary) waves, these waves being ther-
mally excited against surface tension and gravity.
An external perturbation, such as a solid sub-
strate, will tend to suppress these long-range
correlations.

It is now clear that any extensions of the van

der Waals theories which start from a local-
density approximation for p"'(r, r'} or c(r, r'),
cannot correctly generate the transverse cor-
relations ~ On the other hand, the method we

propose does reproduce the correct small-Q
result and does contain such correlations. This
strongly suggests that the theory will lead to
further insights into the physics of horizontal
effects associated with symmetry breaking in the
perpendicular direction. Near the gas-liquid
critical point these may be particularly interest-
ing.

e,(z}=~—an

Eg 8z
(35} IV. APPLICATIONS OF THE THEORY

and

S(o,z, z')=——'" ", P dzF(z) —",
Bz 8Z d)o ~Z

(36)

which is clearly consistent with (25). For small

Q the argument is generalized to"'

., (d) Z, .(d fdz f =z d(zz*))(zz) z'
%de ~OO

@RE'c B,z, z', 37
0

where the second term arises from the expansion
of C(Q, z, z') in Q. An assumption of lowest eigen- P(z }= 4z[(o/z }"—(c/z }'] (39)

As a first example we apply the method des-
cribed above to the case of a classical one-dimen-
sional fluid. In a recent paper" Ebner et al.
have examined a class of inhomogeneous one-
dimensional fluids by a variety of methods based
on the minimization of an approximate free-energy
functional. The systems were also studied by
Monte Carlo simulation techniques. To facilitate
comparisons with their results we have solved
Eqs. (12)—(14) for identical systems. We have
therefore considered one-dimensional fluids in

which the interactions are derived from Lennard-
Jones potentials



566 R. M. NIEMINEN AND N. W. ASHCROFT

and are under the influence of external potential
of the form

V„,(z) =- Eo sinh(w/2t)/[cosh(u)/2t) +cosh(z/t)] .
(40)

The effect of V,„,(z) is to produce a localized
"phase" whose density and extent can be control-
led by varying E, and w, respectively. The
parameter t controls the thickness of the edge
region separating the localized phase and the
asumptotic uniform fluid. We set the unperturbed
uniform fluid density at

n(z-+~)=0. 05o ' or n,"=n,v=0. 05

IO—

0
Z
I4

Z

I

0.5

z/0

I

I.O

T $ I.O

No= 0.05
Eo'35
W il.6cr
t = O.lcr

I

I.5

and the temperature at

T*=kzT/e=l .

These correspond to the conditions chosen in Ref.
12.

We generate the requisite bridge function
E(z, z') by taking the Percus-Yevick solution
for hard rods of length cr: It is exact in one di-
mension. E(luations (12)-(14) are then solved
for c(z, z'), y(z, z'), and n(z) by straightforward
numerical iterations of a starting trial solution
conveniently provided by setting v(z, z') =0. Nor-
mally 10-15 iterations are quite sufficient to en-
sure good convergence. The density profiles we
obtain are shown in Figs. 1-3: These profiles
correspond to the same choice of external poten-
tial parmeters as used by Ebner et al. " (wells 4,
2, and 3, respectively, in Ref. 12). If we com-
pare the results with the Monte Carlo data for the
same systems, ' we find agreement within the
numerical inaccuracy (-5%) of the simulation
procedure. ' Notice that the small oscillations

FIG. 2. Density profile for a one-dimensional Len-
nard-Jones fluid in an external potential corresponding
to well No. 2 of Ref. 12. The dotted line is the density-
functional result also taken from Ref. 12.

and

1

c(r, r') =2 do. (1 —n)c[n (r);r, r']
0

(41)

t:,( )=J d 'c(, '), (42)

where n is a parameter representing the func-
tional integration from a reference system [den-
sity n, (r)] to the final physical state with density
profile n(r). Along the integration path the

outside the range of the wells (most pronounced
in Fig. 1) are also discernable in the simulations.

Ebner et al. ' carried out a number of density-
functional calculations for these systems: They
are based on a minimization of the (formally
exact) functional' obtained by integration of the
direct-correlation function of the nonuniform sys-
tems with respect to density. This functional in-
volves the functions

IO—

T =IO

No 0'0
o=

W =Scr
t = O.lcr

0
Z

o 4-j
X

I

I.O

z/cr

I

2.0
I

3Q
I

I.O
I

2.0
z/cr

I

3.0 4.0

FIG. 1. Density profile for a one-dimensional i.en-
nard-Jones fluid in an external potential corresponding
to well No. 4 of Ref. 12. The crosses denote Monte Car-
lo simulation results also taken from Ref. 12.

FIG. 3. Density profile for a one-dimensional Len-
nard-Jones fluid in an external potential corresponding
to well No. 3 of Ref. 12.
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density is chosen to vary as

n (r) = n, (r) + n [n(r) —no(r)] . (43)

potential

(&) Z2 ~&~ 61
e(r)=4 l-l

(r] (r) (47)

For the density a, the direct-correlation function
is c(n;r, r'). The simplest density-functional
approximation then amounts to the choice

c(r, r ') = c„{I r —r' l, [n(r) + n(r ')]/2], (44)

n=~2[n (r)+n (r')], (45)

where c„ is the uniform system direct-correlation
function.

The results that follow'from this method are
rather close to ours, suggesting that the local-
density approximation (44) is indeed useful for
the one-dimensional case. The reason why this
might be expected may be traced to the absence
of phase transitions in one-dimensional systems
with short-range interactions. The construction
of an approximate c(r, r') never involves contri-
butions from a two-phase region, a difficulty
that is inevitably encountered in the three-dimen-
sional case where the crossing of the infinite
compressibility gas-liquid phase boundary for
a local density in the spinodal. region can lead,
in some cases, to spurious results.

Ebner et al. '2 also determined c(r, r') by assum-
ing that c(n, r, r') in Eq. (41) can be calculated
by solving the Ornstein-Zernike equations for a
uniform system taken at a density

where e/ks =119.73 K and v=3. 405 A. (Note that
the liquid-gas critical temperature for the Lennard-
Jones fluid is T~ = 1 32k. s T, /e) T.his system has
been studied by Saam and Ebner" using both den-
sity-functional and LPY techniques. It has also
been examined more recently by Lane et al."
using Monte Carlo simulation methods ~ For
temperatures T & T, and for asymptotic densities
n, less than vapor-pressure densities [n,
&nv~(T)] Saam and Ebner found a formation of
unsaturated films on the substrate with thick-
nesses of up to ten layers ~ Our results ' are
shown in Figs. 4, 6, and 7: They are in good
agreement with the computer simulation data, but
like the simulation data they show no film growth.
Figures (4)-(7) also show an interesting mani-
festation of the effect of interactions between
atoms in the fluid. At low densities the bridge
function plays a very minor roI.e, but as density
increases its presence is increasingly felt. The
density profiles show generally smooth behavior
with a gradual onset of maxima at roughly z =o,
z =2o, and z = 3o corresponding to the growth
coverage from a monolayer to a multilayer con-
figuration. For the systems studied here the
second peak is quite weak and we find no evidence
at aB for the unlimited growth of a thick film.

an approximation that leads to density profiles
depending on the integration path [i.e. , on n, (r)
in Eq. (43)]. The path independence of the exact
c(r, r') is guaranteed by uniqueness theorems. ' '
The one-dimensional case can also be treated by
the linearized Percus-Yevick (LPY) approxima-
tion but as noted in Ref. 12 this approximation
fails badly for the one-dimensional case.

We turn now to a three-dimensional and some-
what more realistic example of a nonuniform
system. We describe the structure of a classical
fluid near a solid substrate, a problem of some
importance in the understanding of adsorption,
wetting, contact angles, and so forth. The model
we treat is chosen to represent adsorption of ar-
gon on solid carbon dioxide. The substrate is
taken to be a smoothed planar wall of atoms in-
teracting with atoms of the fluid via a Lennard-
Jones potential:
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V (z)=
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with e /k~=153 K, o' =3.727 A, and n o~ =0.988.
For the atoms of argon we have a Lennard-Jones

FIG. 4. Density profile for a gas-solid interface of a
Lennard Jones system (Ar/CO2) at T*=1 1 and Ãp*
=0.030. The dotted line is the result for an ideal gas,
the full curve the present result, and the crosses de-
note Monte Carlo simulation results taken from Ref. 41.
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FIG. 6. Density profile for a gas-solid interface of a
Lennard-Jones system IAr/CO2) at T*=1.1 and no*
=0.040.

FIG. 5. Direct-correlation functions for the gas-solid
interface. Full curve: Bulk gas c(r); dashed curve:
c(R'; z =z'=-cr(R'; z=z~=-g) (see Fig. 4); dotted curve:
c(0; [z -z'i; z =-cr).

FIG 7. Density profile for a gas-solid interface of a

=0.100. The dotted curve denotes the result corres-
pon ing o e od t th mission of the bridge function (i.e., to
HNC).

Further, the peak positions are quite different
from those obtained by Saam and Ebner, whose
results indicate peaks at 1.50 and 2.5'. As
noted, our results are in accord with computer
simulation data (where the latter are available)
and are also qualitatively similar to the LPY
resu s.lt The latte r s eem to be rather good for

ethodthese problems, however, this particular me o
is quite sensitive to the form of the approxima-
tions used and as a. consequence cannot be re-
garded as generally reliable.

It is worth noting here that attempts to find a con-
vergent solution to Eqs. (19)-(22)at fixed T*= 1.1
fail when np exceeds 0.047' . This value of np

is close to the coexisting gas density at T*=k /cz
=1.1 and we therefore find that the approach to
saturation density and the coexistence region is
signaled quite clearly by uncontrolled variation
of the calculated functions between successive
iterations. Since in a variational scheme a
solution is always expected, it is p lausible that
the thick unsaturated films found by Saam and
Ebner near the coexistence region correspond
to unstable states.

As an example" of the correlation functions
determined by our method, we show in Fig. 5
th direct-correlation function c(R, z,z z') for thee
case of adsorption at T* =1.1 and n =npv
=0.030. As a function of parallel separation A,
we find that c(R, z, z') closely resembles the
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bulk-gas results obtained with the modified
hypernetted-chain method. This remains the

case when z and z' are chosen from the high-
density layer. In addition c(R, z, z') shows the
same kind of behavior as a function of I

z' —z I

when R =0 and z' have been fixed in the high-
density region. In this respect the results are
again in accord with the computer simulation
results which find the monolayer and bulk radial
distribution functions to be very similar, sug-
gesting a structure of a two-dimensional dense gas
for the adsorbed layer. Computer simulation
studies of a hard-sphere system near a hard wall
also find that the pair-correlation function in

planes parallel to the interface is essentially
independent of distance from the interface (and

also almost independent of the local density).

APPENDIX: INHOMOGENEOUS QUANTUM FLUIDS

Diagrammatic and integral equation methods
developed to deal with uniform classical fluids
can also be applied to the variational theory of
quantum fluids. ' The analogy between the Jas-
trow theory of a ground-state Bose fluid and an

appropriately chosen classical fluid is especially
useful, but even for Fermi liquids the added com-
plications arising from the requirements of anti-
symmetry can still be handled in a HNC-type of

theory. 4'

The method developed here can also be straight-
forwardly generalized to the ground state of a
nonuniform quantum liquid. ' We outline the
application to an inhomogeneous Bose liquid (num-

erical calculations will clearly be of interest for
interfacial phenomena involving 4He). Consider
an N-boson Hamiltonian:

V. CONCLUDING COMMENTARY

We have presented above a general method
for calculating the structure and thermodynamics
of a nonuniform one-component fluid. It is based
on the notion that the requiements of thermody-
namic and mechanical stability should be incor-
porated in the theory from the outset ~ The ap-
proach avoids the use of local-density approxi-
mations for functions that are not defined in the
two-phase region. We have shown that the method
described above is numerically feasible by apply-
ing it to model problems where Monte Carlo and

other theoretical results are already available.
The results we obtain agree very well with those
resulting from simulation studies. The method
can be extended to other problems involving in-
homogeneous fluids, for example, the structure
(including transverse oscillations) of the gas-li-
quid interface in a gravitational field. It can also
be adapted to multicomponent systems and to
charged systems (the surface and interfaces of

liquid metals, for example).
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and make the standard variational ansatz

p"'(r, r')=)V()V —()J dr,

=n(r)n(r')[I + h(r, r')], . (A3)

we obtain the analog of the first YBG equations
[Eq. (4)]

v ( )= ( )v(( )+J p 'v, ( — ')p'"(, ') .

4)

In a similar way, if we perform a translation of
the whole system we obtain the equivalent of Eq.
(3).

(A5}

where the direct-correlation function is again
defined via the Ornstein-Zernike equation. A
variational estimate for the ground-state energy
is then

g(r, , . . . , r„)=IIe't"'"&' II exp[ u(r, —r&)],
(A2)

where the one psrticle fu-nction t(r) is ultimately
manifested in the physical nonuniformity, and the
two-particle function represents correlations
between particles. Using the def initions
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(-8
z=((&&&(l(&=f a (r)v.„( &+ f. err ( )& &')&( &

2

+ ~2 dr dr' p r —r' +~2 — v'g r-r' n r n r' 1+& r, r' (Ae)

Either (A4) or (A5) can now be used to eliminate t(r) from (35). Using (A5), and definition (12) we obtain

drn r p„, r ++ dr ++ dr dr' U rr' 1+c r, r' +y r, r' n r n r'

where
2

U(r, r') = Q(r, r') — V&2u(r, r') .
4 )lt

2

c(r, F)vm(r) v (r')),4m

(A8)

The energy expression [Eq. (A'7)] must now be minimized, for example, by resorting to local-density
approximations to p"&(r, r') or c(r, r') and performing variations with respect to any parameters used
in specifying n(r) and n(r, r ). However, we can also perform the minimization exactly, at least in
principle, by regarding n(r), c(r, r ), y(r, r ), and u(r, r ) as independent functions and deriving the
relevant Euler-Lagrange equations by using f drn(r)=N (conservation of particles), and Eqs. (12) and
(14) as constraints. The practical realization of this optimal theory, originally developed and success-
fully applied to untfor&n quantum fluids by Lantto and Siemens, " is currently under investigation.
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