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Isotropic-nematic transition in an external field .
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%'e study the effects of an external field on the isotropic-nematic transition in liquid-crystalline substances. The
theoretical technique employed is called the "orientationally averaged pair correlations" approximation. It takes

into detailed account spatial correlations between the molecules while treating orientational order in a mean-field-

like manner. The results obtained for MBBA (4-methoxybenzylidene-4'-n -butylaniline) are compared to those of the

Maier-Saupe theory and the Landau-de Gennes theory, %e determine the paranematic-nematic coexistence curve,

the temperature-external field phase diagram, the Cotton-Mouton coefficient, the maximum supercooling

temperature, critical exponents, and the relation between the transition temperature and the electric field in laser-

induced isotropic-nematic transitions. These results are compared to experimental data. Their implications are

discussed.

I. INTRODUCTION

Vfe present in this paper a molecular-theoretic
calculation of the effect of an external aligning
field on the isotropic-nematic transition in liquid-
crystalline substances.

The external field considered can be a magnetic
field, on a system with a (positive) molecular
diamagnetic anisotropy, (ay. ) =y ~~

—X,. The
variation of the induced orientational order pa-
rameter a» with the square of the field 0', gives
rise to what is known as the Cotton-Mouton co-
efficient. The latter's temperature dependence
in turn gives us a model-dependent estimate of
the maximum supe rcooling temperature, ' T*.
A plot of its fractional increase over its zero-
field value with respect to the temperature
enables one to examine the critical behavior of
the system4 in the region T&T*. Moreover by
plotting o,(T) at varying H, one can obtain the
paranematic-nematic coexistence curve and a
T-H phase diagram, and identify a critical point

(Tg„,P, ) at which the transition ceases to be
first order in nature.

The external field can also be an electric field,
as provided for by pulses from an intense laser
beam. At temperatures close to the zero-field
clearing temperature T» = T~„(0), a transi-tion

from the isotropic to the nematic phase can be
induced, ' 8 which may ultimately be exploited
for practical applications.

As far as we know, theoretical work on I-N
transitions under the influence of an external
electromagnetic field has been limited to mean-
field approximations, either in the phenomeno-
logical I andau-de Gennes formulation'~ or in the
molecular-theoretic Maier-Saupe formulation. '
In our group, we have attempted to improve theo-
retical contacts with experiment in both pheno-

menological and molecular- theoretic directions.
In the former, we concentrate on going beyond
the Gaussian approximation, i.e., including the
cubic and quartic terms of the free energy in the
treatment of fluctuations, and on the consideration
of volume dependences of the free energy. Some
progress has been made, and will be reported
elsewhere. ' In the latter, we have concentrated
on improving the model by taking into account
anisotropic steric effects, ' "and going beyond
the usual mean-field approximation by considering
spatial correla, tions between the molecules. ""
We feel that our theoretical apparatus is now suf-
ficiently reliable' to warrant a quantitative cal-
culation for the isotropic-nematic transition in

an external aligning fieM.
Section II outlines our theoretical formalism,

known as the "orientationally averaged pair cor-
relations" approximation (OAPC). It shows how

the inclusion of spatial correlation effects extends
the mean-fieM theory to a somewhat complicated
double self-consistency scheme which is, never-
theless, amenable to mathematical solution. We

also give a method for evaluating the free energy
without truncating a cluster series for the en-
tropy. Section DI displays our numerical results
for MBBA (4-methoxybenzylidene-4'-s-butylani-
line). The physical quantities and the phase dia-
gram obtained are compared to those of the mean-
field calculations. Section IV interprets these
results, first for an external magnetic field, and

next for an electric field. We conclude with a
few remarks on the experimental implications
of our theory.

II. THEORETICAL FORMALISM

The theoretical formalism outlined here turns
out to be very simi/ar to that in Ref. 1'7, al-
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though there is no c priori reason to expect it
to remain so clean, now that an external fieM
has been added.

%e consider a system of N cylindrically sym-
metric molecules in a volume U, so that the
number density is given by p~Ã/'U. The mole-
cules interact via a nonchiral, pairwise potential

A

v, I=- v(r, , Q, , r, , Q,.) =- v(r, ,, 0, all, Q, i „,0, ~ i,I)
=vo(r, I)+u~(r, I)P2(Q, ~ Q,.)+v, (I'„)Pd(Q, ~ I'd,.), .

where r; and Ai denote the position and orienta-
tion of the ith molecule, and P, and P~ are
Legendre polynomials. The model represented
by Eq. (1) is far from general. It results from a
truncated expansion, and lacks dependences on
0, r;~ and 0& r,.&, which would have brought

forth important anisotropic steric effects. But
it stands for the best that one can do in the pres-
ent stake of the art. (See, nevertheless, Refs.
10 and 11.}

The potential energy of the system is given by

V= P v; + g vP, (cos8, ),
i &j i=1

where cos8, denotes 0; n, n being the director,
and v embodies a susceptibility to the external
field. In particular, for a molecule in a magnetic
field H,

The molecular theory begins with the Helmholtz
free-energy functional

d(}' }},~ }}}}=&+ f }' ''''' d}' ' 'dN d f}" ''' }'n'~ ''''' } d} ~ ~ ~ d}}, (d}

where P}d(1,. . . ,N) stands for the N-particie
distribution function normalized as follows:

P~ 1, ... ,H 1'' dNNt, (5)

I

relations" approximation {OAPC) one assumes

P„(I,... ,~)=h ig q(Q, ) y„(r~„ , r.„.).,

and di denotes dr, dQ, . As was observed in Ref.
17, a direct minimization of 5 with respect to
P„would lead to an equilibrium distribution which,
is simply the Boltzmann distribution function, as
expected.

To render the free energy computationally
tractable, we must apply simplifying approxima-
tions to P„. The mean-field approximation
arises if P„assumes the form of a single-particle
product: P„(I,.. . ,N) ~Ãk g", I k}}(fl,}. For sys-
tems as dense as liquid crystals, one must intro-
duce at least some degree of spatial correlations.
Thus in the "orientationally averaged pair cor-

with Q and p„separately normalized to satisfy
Eq. (5), thus:

0 0=1,

„r„..., r„r, dr~ =1. 8

The reason for naming this approximation OAPC
will become obvious presently.

Substituting Eq. (8) into the expression (4)
for 5 yields

d(P„(1, . . . , }d}}=—d}Q(}}},d (r„.. . , i„}}=E+Ifi~d (r„.. . , i }dr, ~ dF»
$CJ

+ vP~ cos8,. 0, A, +&& Q 0; in@A, 0»=1 i= 1

+O'T @g r~~ ~ ~ rg ln@g r ~ . ~ s rN ~l ~rg s

where

y, —= g,.~Q 9] Q k~ fldQ~ (10)

plays the natural role of an orientationally averaged pair potential.
Mlnimizmg S with I'espec't to Q Rlld }}t}}d taking lllto Rccollll't the normalization conditlolls (7) Rlld (8) kly

including Lagrange multiplier terms with 5, leads to



ISOTROPIC-NEMATIC TRANSITION IN AN EXTERNAL FIELD 495

Q());)=X„'exp —„If;Q(,r))P, ( „,„)()),.d, ~ d +rP, (epee,.)
f(cj )

with

Z„= exp — g v, , Q(Q,.)(l)„(r„.. . , r„)dQ, dr, ' ' ' dr„+ vP2(cos8;) did; p

j(&i)
(12)

and

x 1
'P)p(ri ~ ~ ~ r|() = g exp —

&& j&f

with

(
exp — vjf dr, ' dr„.

i&j
(14)

F Fo NkT lnZ g kT lnZ

f P, , P„(r„.. . , r„)(r, d (15)

Note that even though Eq. (15) looks exactly
like Eq. (20) in Ref. 17, Q(Q) is now different.
There will be orientational order even when the
temperature exceeds the zero-field transition
temperature T». The order comes, first of all,

These results when substituted back into Eq. (9)
gives rise to a free energy expression:

I

from the external field. aligning each molecule
individually. Since Q(Q) enters (I()„(r„... , r„)
through v„, as defined in Eq. (10), there will be
many-body correlation effects in Z„, Z„, vjf& and

As a result the free energy Ewill be pro-
foundly different from that of Ref. 17. It is now

a function of p, T, and the strength of the external
field. The two quasiequilibrium phases, obtained
from solving the double self-consistent equations
(10)-(14), will now include a weakly ordered phase
that replaces the isotropic phase, and a strongly
ordered phase, which is a slightly modified

nematic phase. The weakly ordered phase is
called "paranematic" for obvious reasons.

Only one more step remains before we call
forth an explicit form of the model potential.

(t)„(r„.. . , r„) appears in the form of a Boltzmann

distribution function for a classical fluid of parti-
cles interacting via an effective potential Vjj.
One can therefore define m-particle distribution
functions in the usual manner:

AT tXY ~

(t n(rgp ~ ~ ~ r ) =,
( Q|((ri . . . r)p)dredge

' ' ' dr))(.
qv' —n~.

(16)

In particular, for a central 8,„
P,(r„r,) = P, (r„)= fexp I P, ,)dr, dr„=p d(r„),

r i &j

and

Nfl' —1)(N —2) )t -1
Q (r, r, r ) =

(In) (r,r, rs ) = e p] ~ v, ,
r i&j

—= p'g, (r„,r», r») =p'g(r„)g(r»)g(r») . (18)

The last step of Eq. (18) states the well known closure relation called the Kirkwood superposition ap-
proximation (KSA). g(r) can be solved from an equation obtained by differentiating its definition (17) and

using Eq. (18) in the resulting expression, the so-called BBGKY equation (Bogoliubov-Born-Green-
Kirkwood- Yvon):

, Ing (r~ ) = — +,v, — g(r„)g(r» ) )7, V~, dr, . (19)

We are now ready to turn toward applying the above formalism to our specific model, Eq. (1). Recog-
nizing that for uniaxiality

Q(fl) = 2„Q(t)), (20)
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we obtain with the definition given in Eq. (10):

u,.~
= v o(r,.~) +v, (r,~).a22+ v, (r, ,)o,',

where

(21}

» cos8 sined8, l =1,2. (22)

And from Eqs. (11)and (12),

1
Q(II) =

2
Q(8) =Zo'exp

kT [py, +py a/', (cos8)+pya, P (cos8)+ vP (cos8)] ~,2g ~ kT 0 2 2
i

with

(-1
Zo= exp~ kT [pyo+py, a, P, (cos8)+py, a, P, (cos8)+vP, (cos8)] dQ,

and

(23)

(24)

y»= v» r gr r, l=0, 1,2. (25)

Defining a new normalization constant:

-1
Zo = [2&exp(- pyo/kT)] 'Z„= exp [(py, a, +v)P, (cos8)+py, a,P,(cos8)] ~sin8d8, (26)

we obtain

Q(8) =Ze'exp [(py, a, +v)P, (cos8)+py, a,P,(cos 8)] ~,
-1

)

and subsequently from Eqs. (15)-(17), (21), and

(25),

F F0 Nk T ln2 & NkT lnZ8

—kT lnZ„- Npy2a,' —Npy4o 4. (28)

Finally, from the definition of Z, in Eq. (14), we

find

8 lnZ„-1
8 2kT N~y», l=1, 2.

0'2
g

Thus,
2

2
y2 2g ~

1=1

Absorbing the constants of integration into
(Fo NkT In2w), Eq-. (28) now reads:

2
02

F =F0 NkT inZo + ~N-p y, (a,', a', )da',
0

(29)

(30}

HI. PROCEDURE AND RESULTS OF CALCULATION

Equations (11)and (13), or their reduced
version, Equations (2'I) and (19), form a pair

Q 2

+—,'Np y, (a'„a,')da,' —Npy, o,' —Npy, a', . (31)
0

This completes our theoretical derivations. The
procedure of calculation will be summarized in
the next section.

I

of coupled equations which describe both orien-
tational and spatial ordering. Equation (2V) con-
tains the moments y», which through Eq. (25)
depend on g(r). It also contains o», which
through Eq. (22) depend self-consistently on
Q(8). Equations (19)-(22) and (26)-(2'I) form the
basis of a double self-consistency scheme.

Beginning with, e.g. , the mean-field solution
and its corresponding order parameters 0»", we
can use Eq. (21}to evaluate the orientationally
averaged pair potential 8,&. Equation (19) then
gives us g(r). From Eq. (25), we calculate the
interaction strengths y», which when entered
into Eq. (2"I) produce a new set of order parame-
ters with the help of the self-consistent equation
(22). This set of order parameters can now be
used to sta, rt a new cycle of calculation. The
calculation continues in this iterative fashion until
the output agrees with the input 0». That com-
pletes the second nest of the self-consistency.

Such calculations are to be performed for a
given set of model parameters in the potential
(1), and for every set of the thermodynamic
variables (p, T, v). In each case, after the solu-
tion or solutions have been determined, they are
used in Eqs. (26) and (31) to obtain the free ener-
gies. The stable phase corresponds to the solu-
tion that minimizes the free energy. (In principle,
a Maxwell construction should be carried out to
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take into account the volume change that occurs
in a first-order transition even though the volume
changes are quite small for isotropic-nematic
transitions. )

Our actual computational algorithm is some-
what different from that described above. We
search directly for self-consistent solutions in the
(o', , o,') space. After finding the solutions, we
evaluate y» along straight-line paths from the
origin (0, 0) to each solution (o,', o,'), and perform
the integrations in Eq. (31) along these paths.
Our procedure will, of course, lead to the same
results as an iterative process, but after acquir-
ing some experience we can get to the solutions
much faster. The solution of the integro-differen-
tial equation (19) is very costly. It is crucial to
select judiciously the correct regions in the
(o', , &r', ) space in our search for the solutions,
rather than letting an iterative process direct
us in the search.

For MBBA, we take the potential of Ref. 17,
i.e.,

-(~ g2
~ ) ep

~(~)=4~. I&„) -(„'&I

v, (~) = —4s,(~),
e

v, (r) = —4e, ~a
o=aa =a~ =6.655 A, ~o=118.35 kK,

&2=78.90 kK, and &4=-55.23 kK. The values of
these parameters were chosen to closely ap-
proximate the experimental clearing temperature
and orientational order parameter o'2. (Actually
the parameters were chosen such that T» at
constant density, which is what one obtains in a
calculation that minimizes F, equals approxi-
mately 31'7 K, since we know from experiment

and our previous work"'" that such a transition
temperature lies approximately one degree below
the clearing point, which is the transition tem-
perature at constant pressure: about 318 K.)
We fix the density at 0.002315 A ', the experi-
mental value of MBBA at clearing, and vary
the temperature T and the external field variable
V.

Table I displays our numerical results. The
variable —v/kT is dimensionless. The parane-
matic phase refers to the lower branch of the
solutions of the double self-consistency, while
the nematic phase refers to the upper branch.
The transition temperature Tp„at p =0.002315 A '
refers to the temperature at which paranematic
and nematic phases coexist, i.e., when the
Helmholtz free energies corresponding to the
two branches coincide. At zero field, the
paranematic phase is, of course, isotropic, and
thus T~„(0)—= Tz„by definition. (The zero-field
results are not exactly identical to those given
in Ref. 17 since we have written new computer
codes which allow us to examine the numerical
output in finer details and higher accuracy. All
results are shifted, however, in the same direc-
tion. The changes are unimportant. )

In Table II, we select for display some of the
intermediate details of the calculation, for the
convenience of readers who may wish to repeat
or extend our work. It shows two ways of iden-
tifying the transition. In the top part of the table,
we fixed —v/kT at 0.0060 and varied T. The
final column identified the transition as taking
place at Fp=F„, or 319.4 K. In the lower part
of the table, we fixed T at 325.5 K and varied
—v/kT. Interpolation of the numbers that appear
in the last column indicated that the transition
takes place at about —v/kT =0.0193. A more de-
tailed look into that region then determined

TABLE I. Transition temperatures and order parameters in an external field.

-v/kT
TpN (K)

at p=0.002315 A 3
Paranematic Nematic Tpg ( v) —TpN (0)

—:Tpg (v) —Tlg (K)

0.0000
0.0030
0.0040
0.0050
0.0060
0.0070
0.0080
0.0090
0.0100
0.0150
0.0192
0.0246
0.0289

316.74
318.06
318.50
318.95
319.40
319.86
320.31
320.77
321.22
325.50
325.50
328.00
330.00

0.000
0.008
0.011
0.014
0.018
0.021
0.024
0.028
0.032
0.051
0.071
0.107
0.165

0.000 00
0.000 04
0.000 07
0.000 10
0.000 15
0.000 21
0.000 30
0.000 40
0.000 51
0.001 30
0.002 60
0.006 00
0.013 00

0.335
0.325
0.322
0.319
0.316
0.313
0.310
0.305
0.300
0.282
0.260
0.226
0.171

0.052
0.049
0.048
0.047
0.046
0.045
0.044
0.043
0.042
0.037
0.031
0.024
0.014

0.00
1.32
1.76
2.21
2.66
3.12
3.57
4.03
4.48
6.76
8.76

11.26
13.26
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Table II. Selected intermediate details in our numerical work.

-v/kT

0.0060

0.0180
0.0190
0.0195

T( K)

317.4
318.4
319.4
320.4
321.4
325.5

0.01960
0.018 60
0.017 66
0.017 00
0.01616
0.062
0.069
0.073

0.000 19
0.000 17
0.000 15
0.000 13
0.000 12
0.002 0
0.002 3
0.003 0

-0.017
-0.017
-0.016
-0.015
-0.015
-0.144
-0.165
-0.177

Paranematic
F~-Fp(k K/N)

0.342
0.329
0.316
0.302
0.271
0.245
0.258
0.262

0.054
0.050
0.046
0.042
0.034
0.028
0.031
0.032

-0.481
-0.239
-0.016

0.187
0.363

-0.062
-0.145
-0.188

Nematic
o4 Fg —Fp(k K/N)

F~ —FN
(k K/N)

0.464
0.222
0.000

-0.202
-0.378
-0.082
-0.020
+0.011

0.44—

0.40—

0.36—
0.00

+ II.op/op

0.00400 .0
.00

.00$

0.32—
09

pip~+op~'0.28—

02
0.24—

0.20—

O. I 6—

0.0192

$0246

.0289

0.12—

0.08—

0.04—

0—
I I I I I I I . I I

317 319 321 323 325 327 329 331 333
T (K)

FIG. 1. Coexistence curve: o2 at transition tempera-
tures T~N. The flags refer to values of —v/kT for pairs
of o2 in coexisting paranematic (circles) and nematic
(crosses) phases. Solid curve: present calculation.
Dashed curve: Ref. 5.

—v/kT exactly at 0.0192, as indicated in Table I.
The advantage of the latter method is that, for a
given model potential and a chosen set of (o', , o,'),
Eq. (19) is density and temperature dependent,
but not dependent on v. Since solving Eq. (19)
constitutes the most costly and repeated part of
our numerical calculation, sharing it among a
spectrum of v values results in significant savings
of computer time.

Figure 1 shows both branches of the order pa-
rameter e, at transition as a function of T~„.
As a phase diagram, one considers o, (T) descend-

ing toward a point (marked by a cross) on the
upper branch of the curve as temperature in-
creases. At that point, it drops discontinuously
to a point (marked by a circle) on the lower
branch. After which it continues to descend
asymptotically toward zero. The solid curve
shown in the figure is then the coexistence curve.
The numbers along the curve at indicated points
represents —v/kT values. The cross and the
circle at each Tp„correspond as a pair with the
same —v/kT. The dashed curve was obtained by
Wojtowicz and Sheng' using the Maier-Saupe
theory and scaled by us to MBBA temperatures.
Note that each curve is symmetrical about a
horizontal axis. At TpN =330.1 K, a, critical point
with o, =0.168 appears in our case, beyond which
the two phases merge and the first-order transi-
tion disappears. The Maier-Saupe critical point
is higher.

Figure 2 shows both branches of the order pa-
rameter 04 as a function of TpN. Note that o, is

0.06—

0.000

~choo~

0.003

0 00~4+~0.007

~ 0192

0.04—

lT4

0.03—

0.02—

0.0 I—

.0246

~ 0289

0.00 c
I I & I I I I I I

317 319 ed I 323 325 327 32 331 '333

T (K)

FIG. 2. Coexistence curve: o4 at transition tempera-
tures TJ N.
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not symmetrical with respect to the critical value
o', =0.0135. This is a new discovery. We do not
yet have an interpretation for it. It suffices to
say at the moment that 04 has been known to ex-
hibit strange phenomena. For example, in MBBA
it turns negative at temperatures near the clear-
ing point in the absence of an external field. '
There has not been much study done on o4. We
speculate that these strange phenomena may be
related.

Figure 3 expresses the phase diagram in a
different form. The transition temperature is
seen to be almost linear in v, both for the Maier-
Saupe theory' and our present OAPC calculation.
Each line terminates on a critical point.

A. Magnetic field

In a magnetic field H,

(b'X )max H
3

(33}

where (bx),„denotes the diamagnetic anisotropy
y~l

—y, of a single molecule. The results in the
previous section can all be interpreted in the
light of Eq. (33).

Each of the three figures indicates a critical
point at TpN

= 330 1 K and P = 0 029kT py-
=- 1.32X10 "erg, or a critical magnetic field

H, = [-3v,/(bX), „]'b =8.6 x10' G or '7 x108 G, (34)

depending on the value of (bX),„assumed for
MBBA. The fact that we have two answers needs
further explanation. In Ref. 2, bX was reported
as 1.25 x10~ erg G ' cm '. It was used as
(bX),„p. If we follow that practice, H, obtains
the former value. On the other hand, if b,y is re-
garded as macroscopic data, as we suspect that it
should have been, the relation'

&x =p&.(&x) .,
would yield" (bX),„=(bX)/o, p =Sx10 "erg G '
(taking o, as 0.67 at the experimental tempera-
ture). H, would then obtain the latter value. In
either case the critical field is too large to at-
tain. The same conclusion was reached by
Wojtowicz and Sheng in Ref. 5 using the Maier-

IV. COMPARISON WITH OTHER THEORIES
AND EXPERIMENT

The external field can be magnetic or electric.
We look at the two cases separately.

l4—

hC

—IO—

B—
I

Z
I—

4-
ocr

~-r I i I & I i I i I i I i I i I & I & I

0 2 4 6 B 10 I 2 I 4 I 6 I B 20

-y tl0 erg)

FIG. 3. T-v phase diagram. Solid curve: present cal-
culation. Dashed curve: Ref. 5.

Thus
~

—v —,
'

(bX) ,„H'.
py, +5kT py, +5kT (35)

30k~ && py
bn (be} .,„(bX) 5k

Taking as in Ref. 2 e =2.605 and (b, e) =1.09,
the Cotton-Mouton coefficient is determined as

(36)

Saupe theory. Note that the Landau-de Gennes
theory yields a Tp„which is less than 1 K above
the clearing point, and a critical field of only
about 1X10 G. We shall return to this point near
the end of this paper.

When we deal with the magnetic field, then,
only an extremely small portion of the phase dia-
gram (on the left end) is useful. 'I%ere, our in-
terest is on the Cotton-Mouton coefficient defined
as the slope of H'/bn as a linear function of the

' temperature, where bn denotes the magnetically
induced birefringence. As shown in Ref. 20,

(be),„
2 '~

where

& = s (eii +2ej ),
and

b6 =6( —fj =o~(bf)m „
t ~~(cj ) being the long-wavelength dielectric con-
stant parallel (perpendicular) to H. As H-O,
the induced o', -0; an expansion of Eq. (2'I) leads
Eq. (22) to

30k' '+

(«) „(ax).„
1.13x10"G'K ' for (bX),„= =5.4x 10 "erg G '&x

0.'75x10' G K ' for (bX} = =Sx10 '9 erg G ~bX
maX g p2

(37)
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This is, of course, no different from the result
that one obtains using the Maier-Saupe theory.
The difference comes in the intercept of H'/sn
on the temperature axis, or the maximum super-
cooling temperature T*.

By adopting a Landau-de Gennes interpretation:

II =C(T- T+)
~n

Eq. (36) identified T» as —py, /5k, which in the
present calculation turns out to be 294 K, or
23 K below the transition temperature, if we use
the y, value at the transition temperature. In the
Maier-Saupe theory, the corresponding numbers
are 288 and 29 K. The fact that the molecular-
theoretic values lie so far from the Landau-de
Gennes value of T —T*-1 K has long been a
source of puzzlement. No resolution can be
reached as long as we insist on truncating the
Landau-de Gennes free energy at the quadratic
term in c„which is responsible for Eq. (38}. In
Ref. 9, we offer a new analysis of the Landau-de
Gennes theory which appears to shed some light
on a possible resolution of this dilemma. Such
a discussion lies outside the scope of our present
paper.

There is an alternate way of obtaining T* which
is physically more appealing. Following Ref. 4,
we write for small v:

give us (ao, /av)„oand whose slopes at small
v give us —,'(a'o, /av')„0. Plotting next the re-
ciprocals of (ao, /a v) „0against the temperature,
the intercept on the temperature axis gives us
T*. Furthermore, plotting

(4O)

(
a.,&(

av & „0 5kT+py, (v=O, T)

1
oo ( oy(v=o, r)

)
'

50

(41)

against (T T*)—on a log-log scale yields a slope
b, which is a critical exponent. In the Landau-de
Gennes framework 6 distinguishes tricritical
behavior (L = ~4) from mean-field behavior
(~ =2).'

We have attempted to follow the procedure out-
lined above to obtain T* and 4. Unfortunately,
the range of our v values is too far from v =0 to
allow for meaningful extrapolations, and numeri-
cal accuracy does not permit us to seek solutions
for smaller v. It is far better to alter the pro-
cedure slightly, as follows.

By differentiating Eq. (22) with respect to v,
we find

(39}

Taking o,/v from the paranematic entries in Table
I and plotting it against v for varying tempera-
tures, we obtain a set of curves whose intercepts

Table ill lists y (v =0, T) and (ao2/a v) „0, and lists
a few values of the latter as extrapolated from
plotting o,/v versus v for comparison. Plotting
the reciprocal of (ao, /a v)„0 against temperature
and extrapolating yields the intercept T*, which

TABLE IH. Data for determination of the maximum supercooling temperature.

T (K)

—pY2(v= 0, T)
5k

-k ~ (K )

From Eq. (41) From plotting 02/v vs v

314.4
315.4
316.4
317.4
318.4
319.4
320.4
321.4
322.5
323.5
324.5
325.5
326.5
328.0
329.0
330.0

293.55
293.63
293.70
293.77
293.81
293.88
2g3.95
294.01
2g4.12
294.19
294.26
294.33
294.40
2g4.50
294.57
294.64

0.009 591
0.009187
0.008 811
0.008 464
0.008 135
0.007 838
0.007 560
0.007 303
0.007 048
0.006 824
0.006 614
0.006 417
0.006 231
0.005 970
0.005 809
0.005 656

0.0084
0.0081
0.0078
0.0074
0.0070
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turns out to be 292 K.
Differentiating Eq. (22} twice with respect to v

gives us:

( vv'&„35k' pv. (v=0, T})'
5k

(42}

From Eqs. (40)-(42) and the identification of T*
as —py, /5k, we obtain

1 -vl 7'
f(T —T*) =

7 kT)l (T —T*)2 ' (43)

The critical behavior, given here as 4=2, is
still mean field. This is not unexpected since
OAPC treats the orientational order in a mean-

fieldlike manner. In order to find a molecular-
theoretic basis for the data reported in Ref. 5,
we will. need to go beyond OAPC, and quite pos-
sibly beyond the present potential model as well.
Both directions are at present under exploration
in our group. See, for example, Ref. 11.

(49)

With the help of these relations we reduce Eq. .

(4'l) to the following simple form by approximat-

ing e,. by e in its denominator:

f +2
Q = Q~ ~

(50)

3f
CSV

(51)

Thus

1 3f
2 2f +1

1
(E '),„(a}} cos'8+ a,' sin28), (52)

4 2f+1

Now, the orientational energy V „ is given by
——,'E„„p. The field inside the cavity E~„can be

determined from solving the Laplace equation and

matching boundary conditions. It is the first term

in Eq. (45):

B. Electric field

In an oscillating electric field,

-ka f(E +2)
6 2m+1

(44)

where 8 is the angle between E and the molecular

axis. Using Eq. (50}and omitting terms not de-

pendent upon the orientation we obtain

where 6m =—0.
~~

—0., denotes the single-molecule
polarizability anisotropy and (8 ),„ is the time-
averaged value of E'. This result comes from
considering the orientational energy of a single
molecule in a field F that includes the cavity field
and the reaction field. Following Ref. 6, we find

first of all:

V„=- '" aa'P, (cos8)2f +1

1 e(e+2)
6 2f+1 aa (Em) P,(cos 8);

SV

thus the result in Eq. (44).
We can now interpret our results in the light

of Eq. (44). Taking e as e =2.605, and

(53)

3e - 2(e —1) ~F= E+2f+1 2f+1 a' ' (45) aa = (n, ~),„,1 (54)

where a is the radius of the cavity that contains
the molecule. Let P,. stand for the direction
cosines of E in the molecular axis coordinate
system. The polarization vector appears as

p
—+JP @

3e 2(e —1)
2e +1 ' ' (2e +1)a'

Thus,

3fg Nf

(2e +1)a' —2(e —1)a;

Under cylindrical symmetry, o.,' = a'+ e'
and e,' = 0.'}~. Let

a = s(2aj. +a}}),

(46}

(4V)

(46)

and take from Lorentz's formulation of the local
field

with p =0.002 315 A ' and (Ae} „=1.09 as before,
we obtain the numerical results shown in Table
IV. The last column gives the root-mean-square
electric field required to induce a transition at the

temperature Tp„(E) shown in the second column.
To reach the critical temperature 330.1 K, which

is about 13 K above our constant-volume transi-
tion temperature 316.74 K, our theory indicates
the requirement of a field strength of approxi-
mately 10~ esu. We understand that this is not

very demanding: Such field strengths can be
readily obtained by focusing a 100-kW laser beam
into a 50-gm spot. ' So optical-field-induced I-N
transitions should be observable throughout the

phase diagram. In particular, one should be able
to see the critical point:, which is so far outside
the range of experimental capability in the mag-
netic case but well within reach with a laser
beam.
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TABLE IV. Transition temperature and root-mean-square electric field.

-v/k7. '
&~pr (E)—~var (0) (K) (E ) (10 esu) E~(104 esu)

0.0000
0.0030
0.0040
0.0050
0.0060
0.0070
0.0080
0.0090
0.0100
0.0150
0.0192
0.0246
0.0289

0.00
1.32
1.76
2.21
2.66
3.12
3.57
4.03
4.48
6.76
8.76

11.26
13.26

0.0000
0.1092
0.1459
0.1827
0.2195
0.2565
0.2935
0.3307
0.3679
0.5558
0.7158
0.9242
1.0924

0.000
0.330
0.382
0.427
0.469
0.506
0.542
0.575
0.607
0.746
0.846
0.961
1.045

It was called to our attention by Wong' that our
analysis depends on two conditions. First, since
we used equilibrium statistical mechanics in our
analysis, the laser pulse used must have duration
which is long compared to the molecular reorien-
tation time. Next, since we dealt with the con-
stant-volume transition temperature, the pulse
should be short compared to the time required
for macroscopic volume adjustment. Wong fur-
ther pointed out that these two conditions could
readily be met with laser pulses for a few psec
duration, ' (The molecular reorientation time for
MBBA is of the order of 100 nsec.') In fact, for
experiments with electric fields (laser beams},
our use of the Helmholtz free energy. turned out
to be entirely appropriate.

Our results are very different from that of the
Landau-de Gennes theory, as was pointed out
earlier in this section. Let us review very
briefly the latter analysis.

The free energy is expanded in a power series
in the order parameter o„ thus,

S =F, +a(T- T~)g,'+Bas+Co4+vo (55)

8$
802

= v+2a(T —T*)a, +3Bo*,+4Ccr,'. (56)

where a, B, C, and T* are parameters to be de-
termined from zero-field experimental data in-
cluding the I-N transition temperature
Tz„—= Tv„(v =0), the order parameter at that tem-
perature a, (Tz„}, the latent heat, and light scat-
tering data. Such an analysis depends much more
heavily on empirical information than our mole-
cular theory. The relation between the two ap-
proaches, in particular that between the free-
energy functionals (55) and (9), will be examined
in detail in Ref. 9.

Possible states of equilibrium occur at the solu-
tions of the equation

For every set of the thermodynamic variables
(T, v}, there will be up to three real solutions.
Tv„(v) is given by the temperature at which the
two solutions that produce minima give rise to
equal values of p. This yields a T-v phase dia-
gram: a coexistence curve. Since eventually at
some T~„and v, the two minima will coincide,
the curve will terminate on a critical point. In

fact, at that point all three solutions will coincide.
Simple algebra shows that

and

c SBT'" SaC
+ (57)

(58)

Using the values a =0.0315 J/cm' K, B = —0.160
J/cm', C =0.197 J/cm', and T*=T,„—1 K, as
given in Ref. 1 (beware of the difference in the
definitions of a, B, and C}, we find

Tcp„=T»+0.55 K, (59)

u, = —0.0066 J/cm'or —2.85x10 "erg per molecule.

Using more recent values': a=0.0265 J/cm'K,
B=-0.170 J/cm', C =0.272 J/cm', and
T*= T» —1 K (again note the difference in the
definitions of a, B, and C), we find

T~„=T~„+0.50 K (60)

p, = —0.0042 J/cme or —1.81 x 10 ' erg per molecule.

In either case, T~„ lies only about half a degree
above the zero-field clearing point, while v,
lies nearly two orders of magnitude lower than
that calculated in the molecular theory. This
means that H, is an order of magnitude lower:
about 1&10 G, and likewise E~: about 10~ esu.



ISOTROPIC-NEMATIC TRANSITION IN AN EXTERNAL FIELD 50$

The critical magnetic field becomes possibly
attainable. " The critical electric field is cer-
tainly well within reach.

The discrepancy between results from the
Landau-de Gennes theory and our present mole-
cular theory comes from many sources. The
first problem, in our opinion, is the inadequate
treatment of order-parameter fluctuations in the
Gaussian approximation, i.e., in omitting B and
C in Eq. (55}, as employed in the Landau-de
Gennes model. This leads to errors in T*, and
subsequently the equilibrium values of B and C,
by as much as an order of magnitude. ' In the
present problem, the Landau-de Gennes model
further neglects the v dependence of the pa-
rameters, which has highly nonlinear effects and
may become rather dominant when the fields ap-
proach the critical region.

We understand that there are experimental
indications of laser-induced transitions, but the
data are not yet conclusive. ' Such experiments
are well worth pursuing, partly because they will
help solve some of the puzzles that occur in the
fundamental structure of the theory of liquid
crystals, and partly because of obvious possibili-
ties of technical applications.

ACKNOWLEDGMENTS

This work is supported in part by the U. S.
National Science Foundation through Grant No.
DMR80-08816, and in part by the Chinese Acade-
my of Sciences. We are indebted to Dr. L. Lin
(Institute of Physics, China}, Dr. L. Senbetu
(University of California, San Diego}, Dr.
G. Wong (Northwestern}, and Dr. P. Sheng
(Exxon} for valuable and stimulating discussions.

«Permanent address of Chia-Wei Woo.
/Permanent address of Juelian Shen.
~For a quick review, see E. B.Priestley, P. J.Wojto-

wicz, and P. Sheng, in Introduction to Liquid Crystals
(Plenum, New York, 1975), Chap. 10.

2T. W. Stinson and J.D. Litster, Phys. Rev. Lett. 25,
503 (1970).

3Y. Poggi, P. Atten, and R. Aleonard, Phys. Rev. A 14,
466 (1976).

4P. H. Keyes and J.R. Shane, Phys. Rev. Lett. 42, 722
(1979).

P. J. Wojtowicz and P. Sheng, Phys. Lett. 48A, 235
(1974).

J. Hanus, Phys. Rev. 178, 420 (1969).
G. Wong and Y. R. Shen, Phys. Rev. A 10, 1277 (1974).
Y. M. Shih and G. Wong (private communications).

SL. Senbetu and C. -W. Woo (unpublished).
L. Senbetu and C. -W. Woo, Phys. Rev. A 17, 1529
(1978).

~~J. Shen, L. Lin, L. Yu, and C. -W. Woo, Mol. Cryst.
Liq. Cryst. (in press).

' S. Chakravarty and C. -W. Woo, Phys. Rev. A 11, 713

(1975); A 12, 245 (1975).
Y. M. Shih, Y. R. Lin-Liu, and C. -W. Woo, Phys.
Rev. A 14, 1895 (1976).

~4Y. M. Shih, H. M. Huang, and C. -W. Woo, Mol. Cryst,
Liq. Cryst. (Lett.) 34, 7 (1976).
M. A. Lee and C. -W. Woo, Phys. Rev. A 16, 750
(1977).

~ V. T. Rajan and C. -W. Woo, Phys. Rev. A 17, 382
(1978).
L. Feijoo, V. T. Rajan, and C. -W. Woo, Phys. Rev.
A 19, 1263 (1979).
S. Jen, N. A. Clark, P. S. Perhsan, and E. B. Priest-
ley, Phys. Rev. Lett. 31, 1552 (1973).
K. Miyano, Phys. Lett. 63A, 37 (1977).

20See, for example, discussions in E. B. Priestley,
P. J.Wojtowicz, and P. Sheng, in Introduction to Liqu-
id Crystals (Plenum, New York, 1975), Chaps. 4 and
6.
J.G. Ypma and G. Vertogen, J. Phys. (Paris) 37, 557
(1976),
N. Miura, G. Kido, M. Akihiro, and C. Chikazumi,
J. Magn. Mater. 11, 275 (1979).


