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Electrostatic instabilities of a finite electron beam propagating in a cold magnetized plasma
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For a better understanding of the high-frequency waves observed during active experiments of electron-beam
injection into the ionospheric plasma, we do a complete investigation of the electrostatic-beam-plasma instabilities
that do occur in such a situation. The electron beam is cold, it is aligned with the vacuum magnetic field, and has a
finite radius; the background plasma is cold and homogeneous. We study both analytically and numerically the
dispersion equation of the different branches and follow the dependence of the temporal and spatial growth rates
with the beam and plasma parameters. Simultaneously we investigate the different types of instabilities (radiated or
confined to the beam) in the various frequency ranges which are of interest. We give an analytical criterion for the
convective or absolute character of these instabilities, taking into account the two-dimensional wave propagation
along and across the vacuum magnetic field.

INTRODUCTION

Beam-plasma instabilities have already been
the subject of many experimental and theoretical
works. Their linear and nonlinear behavior is of
great importance in plasma physics. The main
motivation of their study was found in traveling-
wave tubes and also in fusion research. More re-
cently it has been suggested that "coherent" natu-
ral radio emissions are mainly produced by beam-
plasma instabilities. Space exploration by rockets
and satellites give, in some cases, a direct evi-
dence of this relationship, i.e. , for the so-called
interplanetary type-III bursts (of solar origin) or
for planetary emissions (the kilometric earth ra-
diation or the Jovian decametric radiation).

Beside these natural emissions, active experi-
ments are now currently performed in the iono-
spheric plasma mainly with electron guns of rocket
payloads aboard. " In the near future, similar ex-
periments will be achieved with the space-shuttle
facilities. Let us recall the main features of these
experiments. The ionospheric background plasma
is magnetized, cold, and "infinite". The electron
beams are cold and energetic (in the range of 10
keV), and they have finite transverse dimensions,
the measurements are made far from the beam,
within kilometers as compared with a beam radius
of ten meters or less. Some of them are also
made from the ground at a few hundred kilometers.
These working conditions are somewhat different
from standard laboratory conditions. This ex-
plains why most of the results of active experi-
ments performed with electron beams were unex-
pected. From the results of the theoretical work
performed w ith these experimental conditions'
one did not expect observable emissions related

to the beam-pl. asma instabilities: The only instable
modes were found to be confined in the beam vicin-
ity and only produced in the nonpropagative fre-
quency gap v, «u& v~ (v, is the electronic cyclo-
tron frequency and (d~ is the electronic plasma
frequency). No measurements were made in the
beam vicinity but emissions were observed far
from the electron beam, which disagrees with the
previously quoted theoretical result.

The results of the wave measurements made in
the ionospheric plasma clearly indicate a band of
quasielectrostatic waves in the lowest-frequency
".window" 0& ~& ur, and also a band of emissions
in the window &o~& u&«u„[&u„=(+~2+ ra,')' ' is the
upper hybrid frequencyI. These high-frequency
emissions have only been recorded with electro-
static antennas and show both transient and con-
tinuous temporal evolution. ' ~

Electromagnetic emissions have also been reg-
istered on the ground at a frequency which corre-
sponds roughly to 2'„ the gyrofrequency being
taken at the altitude of injection (usually between
150 kM and a few hundred kilometers). ' From
these results it is obvious that our theoretical
understanding of a beam-plasma system is insuf-
ficient. The observed, very small beam disper-
sion in velocity space a few eV is a common fea-
ture of active experiments in space. This feature
gives the possibility of a spatial particle bunching
which has already been analyzed elsewhere" and
may explain some of the experimental observa-
tions, especially in the frequency range ('d~& co

& co~. Nevertheless, the origin of most of the ob-
served emissions is certainly to be found in a lin-
ear-beam-plasma instability' or in its nonlinear
consequences. Thus, in the lowest-frequency
range 0& ~& (d„ two possibilities have already
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been proposed: a linear quasielectrostatic insta-
bility' and a nonlinearly radiated guasielectrostatic
wave produced by the beats of two high-frequency
quasielectrostatic modes in the (dp range. ""0

In such a complex experimental situation it
seems necessary to proceed systematically. The
first natural step is obviously to get a better
understanding of the linear-instability theory and
of their nonlinear evolution. The progress
achieved among active experiments (laboratory
experiments are no longer undertaken in this
field) will also allow a better understanding of
natural radio-em issi, on processes.

In this first paper we limit our investigation to
the case of a monoenergetic, nonrelativistic
electron beam with finite transverse dimension,
injected parallel to the external magnetic field in
a cold infinite homogeneous plasma. Our stability
analysis is performed with the classi. cal quasi-
electrostatic approximation. This approximation
is valid for parallel beams (with beam and plas
ma parameters relevant to active ionospheric ex-
periments) only, since electromagnetic instabili-
ties are expected for oblique injection.

For the sake of clarity let us summarize the
principal feature of our model, together with the
terminology we shall use in this paper. The dis-
persion relation of quasielectrostatic plane waves
in a magnetized cold uniform plasma reads simply

}t,',(I —~~/&u') + 0,' [I —+~2/(uP —v,'}]= 0,
where k„and A, are, respectively, the parallel
and perpendicular wave numbers with respect to
the external field. %e deduce from the above for-
mula two propagating windows (Fig. I), 0«o«u,
and ~~& m& v~, which are complementary to two
nonpropagative frequency ranges v, & v& ~& and
40& (d~

The spectrum of the transverse wave number is
continuous for an infinite plasma, while it is dis-
crete when the plasma is confined in a wave guide.
Here the transverse wave number is quanti'zed

through adapted boundary conditions. This quan-
tization, which has been used in many thor-
ough investigations, ""is clearly not adapted to
the physical situation we are dealing with. Never-
theless, we shall. encounter a sort of quantization
of the internal (with respect to the beam's vol-
ume) wave number, due to the reflecting proper-
ties of the beam's radial boundaries. This de-
termines the stability of the transverse spatial
structure of the wave-equation solution as fre-
quency or other parameters are changed.

I et us now add to this infinite plasma an elec-
tron beam on a cylindrical subset of field lines.
The beam generates waves whi. ch remain confined
to its vicinity in the nonpropagative frequency gap
v, & ~& u~ and ~& ~~. They have been previously
studied in Ref. 3. However, the beam should al.so
pick up propagating solutions in the continuous-
plasma wave spectrum. For radially confined
beam modes one expects ~imk„~»Re&, (&,
is a "radial" wave number). On the contrary,
one expects Re k„»[lmk, i

for a propagating
mode. In addition to that classification which

involves the external structure of the solution,
we shall show a further distinction between Che-
renkov and slow (or fast) cyclotronic branches,
depending on the resonance line &@=AD„V, or ~
= k„V,s &o, (where V~ is the beam's velocity, and

I;„ the axial wave number) which plays the princi-
pal role in determining the instability of the stud-
ied branches. Moreover, as already pointed out,
we must also pay attention to the internal structure
of the solution (behavior of the potential inside the
beam}. We shall classify the solutions with re-
spect to the number of internal nodes of the po-
tential. For zero-node solutions another distinc-
tion has to be made between body and surface
branches (Fig. 2).

This paper is organized in the following way:
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FIG. 1. Dispersion relation of quasielectrostatic plane
wave in a magnetized cold uniform plasma.

FIG. 2. Radial structure of waves (a is the beam's
radius): zero-node body mode, —-—zero-node
sur face Qlode and - ~ ~ t%vo-node xQode. ,
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In Sec. I we shall justify the use of our model in
the physical situation of active-injection experi-
ments, and introduce the mathematical tools. In
Sec. II, we solve our set of equations in the low-
frequency propagative range (&u& u&, ). In Sec. III,
we study some systems of equations in the higher-
frequency ranges. Qne finds a detailed study of
the convective or absolute character of the insta-
bilities there. The appendices are deVoted to the
details of the algebra. Qur study includes, in all,
frequency windows, the Cherenkov branches, and
the slow (or fast) cyclotronic branches. We also
demonstrate the absence of instabilities for ~& ~H.

I. THE MODEL: A COLD MAGNETIZED BEAM
STREAMING IN AN INFINITE

HOMOGENEOUS PLASMA

A. Physical consistency

Qur model is somewhat simple compared to the
real geometry of the electron beam injected into
the ionospheric plasma, and to the real conditions
that will be encountered in such a medium. Let
us summarize its principal features. We take a
cylindrical cold electron beam of radius a, which
flows with a constant velocity V, along a constant
magnetic field (electronic cyclotron frequency ~,)
in which all the infinite surrounding plasma is
immersed. The ratio between the beam density z~
and the plasma density n~ (which are related to
plasma frequencies &o, and &u~) is a small param-
eter g. The ionospheric ions are taken as a neu-
tralizing motionless background, which limits our
results to frequencies higher than the lower hybrid
frequencies. The plasma is taken to be cold and
noncollisional. Noncollisional dissipation proces-
ses such as Landau damping are also neglected.
For the stability analysis we take the quasistatic
approximation.

To justify these assumptions let us now specify
the choice of the beam and plasma parameters,
bearing in mind the use of our model in the frame-
work related to wave observations carried out dur-
ing an ionospheric active experiment such as the
ARAKS one. ' When the beam is injected at some
angle with respect to the earth's magnetic field,
we do not know its real structure. As a result
of the neutralizing process, it can keep helical
structure or become cylindrical. ' The relevant
generalization of the Brillouin's model has not
yet been computed and the beam structure has not
been measured in the experiments already per-
formed. Qur knowledge will be improved in future
experiments expected on the space shuttle. For
our computations, we take a cylindrical beam
flowing along a uniform magnetic field through a

homogeneous plasma. This model is justified by
the results of the wave experiments which seem
to be qualitatively independent of the angle of in-
jection. To simulate the different angles of injec-
tion and the consecutive extension of the beam's
radius we take different beam radii g between the
Brillouinradius~ =[2e/w(2m ) ~ e (u )

~ I'~ E
and the cyclotronic radius r„= (2/m, ~2P 'E" ',
where' is the beam energy, I is the injection current,
and e and m are the charge and mass of the electron.
For our ionospheric parameters one obtains
2 5E ' '.I' '&a-10E' '(the beam energy E has
been scaled to 10' eV, I is in A, and a is in
meters) In. that modeling, the ratio e between
beam and plasma densities is simply scaled
through the important plasma parameter co,/~„
which will be noted n, in the following: For the
Brillouin flow we obtain e= o.,'/2, while for a beam
with cyclotronic radius e =3 x 10 'n,'I/E'~' (with
the same scaling as above for beam energy E and
current I), with relevant injection parameters (E
= 30-15 keV and I = 0.5 A), we obtain the beam's
radius varying from 1 to 10 m and &/a,' from 0.5

. (Brillouin flow} to 5 x 10 '.
In a typical active experiment the ionospheric

plasma frequency changes more rapidly during the
rocket flight than the electronic cyclotron fre-
quency. ' We take +, -2n x 4 MHz [which corre
sponds to the apogee of the so-called North flight
of the ARAKS experiment (-300 km)] to u, -2n
x 2.5 MHz (end of the active part of the flight).
These values correspond, respectively, to n~-2 @10' and 7 x10' cm '. The gyrofrequency lies
very close to v, - 2m x 1.2 MHz. This situation
corresponds to o., varying between o, -0.3 (apogee)
to o,,-0.5 (end of the flight). With these values of
the relevant parameters the classical growth rate
of the beam-plasma, instability, y/ur, -(~,/e, )' '
-0.2I' 'E ' ', is rather insensitive to the injection
parameters. This is in agreement with the great
similarity between the results of various wave
measurements performed during different experi-
ments, despite the broad range of the injection
currents.

The temperature of the ionospheric plasma is
very small (typically of the order of 0.1 eV) and
negligible, even as far as the properties of the
group velocity of the excited waves are con-
cerned. This is a consequence of a magnetized
beam. This point leads us to neglect, in our sta-
bility analysis, the usual dissipative processes
[collisional and noncollisional (Landau) damping],
even for the upper hybrid branch (&u~& ra& ~~) where
the smallness of the group velocity leads generally
to strong spatial damping. As we shall show, both
numerically [see Figs. 3(a), 4(b), 5, and 6(b)] and
analytically [Eq. (C4} of Appendix C), the electro-
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~] V,l V (where V,„ is the thermal velocity of the
plasma). In our case these quantities have dimen-
sions of exp[-10"[((o—f(o,}l(o]']'with ra- &o,. This
is always very small.

At the altitude where the wave measurements
are made the electron-ion collisions are predom-
inant. We expect a collisional damping rate of the
order of the electron-ion collision frequency which

FIG. 3. The zero-one node sheet for e=e~/2 (0;~=0.4).
(a) Re(z) or complex (0.), (b) complex-z mapping [con-
tinued lines are solution with Imo, =0, dotted lines are
solutions with Re z = cte (indicated by the number), and

crosses are separated by b(lmo, )= 5X10 3], and (c) vi-
cinity of n~= 0.909.

static waves generated in our model may become
absolutely instable at a frequency very close to
the upper hybrid frequency ~~. To play a signifi-
cant role in our stability analysis, any temporal
damping rate (say y~) must be of the order of the
imaginary part of the frequency at this particular
point.

As we are dealing with Cherenkov or cyclotronic
branches (with ro, «&o~}, which involves &o- k„V„
the temporal damping rates associated with non-
collisional dissipation processes are scaled by
quantities of the form exp(-z', ) where z, - [(&o —l&u,)l
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is about 200 Hz. Conveniently scaled with the
plasma frequency y.,„ /&o~- 5 x 10 '. This has to
be compared with the computed values of Im&o/Re&a
~ 5 x10 ' for the cases numerically investigated
in that paper. These comparisons justify neglect-
ing the usual dissipative processes in our stability
analysis.

Nevertheless, we see from formula (C4b) of Ap-
pendix C that, for small radial fvavelengths in the
beam's interior, the excited waves may be sta-
bilized when

X/2
&~-u ~&~

J
(d~ (d~ (d~

With our particular choice of parameters, thi. s
arises for X,"(n~/n&} ~ & 4 x 10~ m. This implies
a very small wavelength (with respect to beam ra-
dius), and the most amplified modes (which arises
for internal perpendicular wavelengths which are
only a small fraction of the beam radius) shall not
be perturbed by dissipation processes. Moreover,
the energy spread of the electron beam is known
to be negligible in the computation of the instabil-
ities growth rate as long as y/u&~& (ZE/E)' z, a
condition which is satisfied with a typical value
(nE/E)' '- 10 ' for I& 10 ' A, which covers all
exper iments.

Since we have justified the use of our model to
investigate the properties of the electrostatic
waves which can be excited by the beam a few
words have to be said about possible electro-
magnetic emissions. With an off-angle beam
propagation, electromagnetic instabilities are well
known. " These instabilities may explain the emis-
sions observed from the ground"' during the op-
eration of the electron gun from the rocket pay-
load. A relevant treatment under these experi-
mental conditions is left for further work. From
the measurements of the wave spectrum per-
formed in situ in the ARAKS experiment'" the
electrostatic approximations have been verified.
Let us recall that the difference between quasi-
static and electromagnetic waves is mainly pro-
vided by the difference between index of propaga-
tion: Electromagnetic waves have an index of
propagation of the order of unity. The quasielec-
trostatic approximation (exact in the vicinity of
the resonance cones} holds for an index of propa-
gation much larger than unity.

From previous works we know that the quasi-
static approximation gives correct results when
the energy of the beam's electrons is low, "typi-
cally below 80 keV (and of course when low-phase-
velocity waves are studied). Furthermore, when
the beam's radius and cyclotron electronic fre-
quency are relatively low [typically when (a&@,/c)
&1]quasistatic results give the correct negative
slope for the upper-frequency-plasma branch"
[v~ «o& v„= (&o2~+ ~,')], thus giving rise to the pos-
sibility of nonconvective instability by a back-
ward-oscillation mechanism.

B. Mathematical tools

We start from the usual system of beam- and
cold-plasma electron fluid equation, together with
the Poisson equations

&V) e
+ V) v Vq = ——(E + Vq x B),

me

e~'E= -&4= — n~ —.
fp

j= b, p for the beam and plasma electrons, respec-
tively.

After a standard linearization of these equa-
tions, one obtains the system of partial differen-
tial equations which describe the wave properties.
In a cylindrical system of coordinates (~, H, z),
convenient for the geometry of the system, we
limit our work to axisymmetric solutions (8/s 8
= 0}. For one dimensional beam-plasma waves
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we know that a Fourier analysis with respect to
time and space variables is not always convenient
for a correct analysis of the convective or absolute
character of the instabilities. The well-known
correct treatment involves the Laplace transform
of the Green's-function formalism.

In our case a new difficulty arises from the
two-dimensional character of the wave propaga-
tion. The standard procedure used in the previous-
ly published works" "'~ when the beam-plasma
system is confined by a cylindrical wave guide
with finite transverse radius b, is to expand the
solution of the wave propagation in a complete set
of radial wave functions, in our case the Bessel
function, whose argument is determined by the
boundary conditions at the wave-guide radius.
This is a correct mathematical approach when

the wave reflection at the guide surface establishes
for t-~ a standing radial wave pattern. Never-
theless, this procedure holds only if the growth
rate of instability verifies the inequality ~imra t b

&v . In the opposite limit, the guide has no effect
on 6e instability. The unstable solutions, which
arise from the injection of a beam of radius a(a
& 5) along the wave guide are very different from
the stable modes. This effect will considerably
modify the nonlinear behavior of such instabilities.
Consequently, in such a case, we think that our
treatment, where we consider the system as an
open one, will be more correct. In such a situa-
tion, we cannot g priori expand the solutions
through a set of eigenfunctions convergent at r
-~, for the radial-wave behavior cannot be pre-
scribed independently of the stability analysis.
Let us emphasize this important point some more.
Let the solutions of the wave potential be of the

. form 4 - C(r) expi(k„z —~t), outside the beam.
Two different kinds of radial behavior may be ex-
pected, depending on the value of the real fre-
quency ar. They are as follows:

(a) In the nonpropagative frequency windows,
when ~ lies between co, and co~ or when ~ is great-
er than ~H, the propagation is possible only inside
the beam, not outside. One expects the wave to
remain confined to the beam vicinity, i.e. , in a
WEB analysis, C

- exp(+i f k, dr), with Imk„&0
and ~lmk„~ » ~Rek, ~. For relatively weak insta-
bilities, i.e. , for small values of the perturbative
parameter c =n~/n~, the deformation in the com-
plex (&o, k„) planes (necessary for the stability
analysis} will not qualitatively modify this radial
behavior. Consequently, the radial behavior can
be prescribed a priori, as in Ref. 3.

(b) In the propagative windows ~«u, and ~~«u
& ~„(where the unstable waves may be radiated
out of the beam region) we expect ~Imk,

~
«~Rek„~

in the same WKB analysis as before. This behav-

ior implies a radial Green's-function analysis be-
fore the exploration of the complex (M kg) planes.
Indeed, one cannot prescribe a normal-mode be-
havior due to the unknown sign of Imk„; and it is
possible to find, as a result of complete analysis,
that the solution is radially diverging. This is
surprising because outside the beam there is no

amplifying medium but, in fact, the explanation is
simple and is related to the propagative properties
of the magnetized plasma medium. Suppose, for
the sake of simplicity, that the spatial and tem-
poral growth rates are sufficiently small to allow
the usual expansion procedure of the dispersion
equation D(k„,k„, &o) = 0 which connects the imag-
inary part of k„,k„, ~ through the perpendicular
and parallel group velocities of the waves in the
outer medium. We then obtain the approximate
relation Imk„= (I/v'"') (Im~a —v,'"' Imk„). Inside
the beam, the parallel group velocity of the un-
stable waves v," is always positive, and due to en-
ergetic arguments (no power flow coming from in-
finity) v,'"' is also positive. When &u lies in the
low-frequency window &o& v„v,'"'- V,(&o,

' —v')/v, '
is positive. From the above relation, Imk„ is also
positive (for Imu» 0 and/or Imk„&0, correspond-
ing to wave instability), and the radial function
C(r) is expected to converge at r-~. On the con-
trary, for the high-frequency window ~~ & ~ & vH,

&
(&4- & )(& —&q)

2(o'((o' —(o' /2)

is negative (when &o, & ~,}. When the corresponding
instability is convective the spatio-temporal be-
havior of the solution is essentially given by
~imk„at Imago=0 [lowering of the Bromwich
path down to the Re(&o) axis"] and Imk„& 0, giving
rise to radial convective behavior. When the in-
stability is absolute, the behavior is given by the
(Im&a„ Imk, ) of the saddle point" and the radial-
behavior results from a conflict between the
modulus of Im~, and Imk~~, : If ~lm&u, /Imk~~, ~

&
~
v,'"„,'

~

we obtain Imk„& 0 and a radially conver-
gent solution. In the opposite case, Imk„ is nega-
tive and the observed potential at the given (z, t)
position is expected to grow with r, reflecting the
spatial growing of the wave along the beam in an
apparent radial amplif ication. Such behavior can-
not be obtained by an expansion of the solution in
a complete set of radial wave functions and can
only be treated by a radial Green's-function anal-
ysis. All the situations we have described here
may be illustrated by our numerical and analytical
analysis (see Sec. III and Appendix C).

In the remainder of this section, we construct
the complete Green's function G(r, r zo-zo, t —to)
of the linearized beam-plasma system of equa-
tions. It is well known that such a function would
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describe the temporal evolution of a perturbation
which is initially localized at r = r0 and z =z0.
The (z -z, ) axial dependence is due to the trans-
lational invariance of the system along the beam's
axis and the (f —t,) temporal dependence is asso-
ciated with conservative properties.

After a Fourier transform upon z and a Laplace
transform upon time, we get the function
G(r, r„ku 1 (O):

+I +40

G(r, ro, k„, &o} = dz d7 e ""~~' "G(r,r„z, r) .
0

The Green's function G may be obtained from G

by a complex integration along the Bromwich path:

1e& e-
~ c,(r)r—G —k,', g„(r)G =A 5(r —r,),

with

c~(r) = Y(a —r)g~" + Y(r —a)c~"',

c„(r)= Y(a -r)c,", + Y(r -a)c,',"',
where

2 2
in 'dn ~(dn

Ql QJC ( 4I k()vy} QPg

2 2

z '(c) =1-—-in
(u' ((o-k„v,)' '

(la)

if+ + I
G(r, r„z, r)= d&o dk„Ge'" ' "",

~40

where y lies above all the possible singularities
of G(r, x~, k„, v).

For our system, 6 is the solution to the follow-
ing differential equation:

eoUt f l5(p)polit ztn(p)

and Y(x) is the usual Heaviside's step function. The
Green's function G must be continuous and con-
vergent along the Fourier-Laplace inversion path
(&o, k„) and satisfy the connection condition (see
Appendix A):

0 if a&r0

, A if a=r
(1b)

As shown in Appendix A, where Eqs. (la)
and (1b) are solved, the radial dependence of the
transformed Green's function for r& sup[r„a] is
given by G-Hoc'(K;"'r) or H"'(K;"'r} where

2 2 ~2 2 1/2
K'"'=k ( '"'/ '"')' '=kJ =

II il i ll
QP2 (d2 (d2

H

and H ~', H ',"are Hankel functions. " The choice
of the correct Green's function is related to the
radial convergence of the solution when r-+ as
(k„, v) lies on the inversion path.

It is also shown in Appendix A that the "good
choice" is

$Z f n+T f n=p
II J

$2Z2gout + U 2~out
II

(2b)

(2c)

Let us now, using previous formulas, explain the

with the usual branch cut for the square-root
function (on the real negative axis). Then, the
dispersion equation is simply the equation which
gives the singularities of the Green's function in
the (~, ki} planes. " With the normalized variables
a = (o/a)„z = k„V /(o„a, = (o,/a)„a„= (o„/(o„and
S= &a~a/V, this dispersion relation reads

J,(T) z'"' H" '(U)
Z,(r) e," H&»(U} ' (2a

I

connection between our result and the result ob-
tained previously in a system with a wave guide of
radius b (Eq. 11 of Ref. 11). To simplify the alge-
bra, we take the limit of plane geometry and ob-
tain, respectively,

TtanT= -IUg "t/g n (3a)

~out 83U(1-b/a)+ e-)U(1-5/I)
T anT=-z

qin e,~(, ,/, ) e,U(, ,/, ),J
(3b}

using the previous definition for the variables T
and U. These two dispersion relations are com-
pletely different for real (d: The right-hand side
of Eq. (3a} is purely imaginary when that of Eq.
(3b} is real. Hence, the limit b-~ of the disper-
sion equation (3b) cannot give our result in that
case. Nevertheless, the two dispersion equations
become identical, if we first make Im(d& 0 and
then take the limit b- . This last identification
is necessary because in that case the instability
does not depend on the reflection at the wall: This
is only approximately correct if Im(k„b)» 1 (or
b ~lmu&

~

» v }, when the potential of the wave is
strongly attenuated at the guide radius b.

II. LOW-FREQUENCY INSTABILITIES (w &w )

ln the lowest-frequency range (~& ~,} we are
dealing with. radiated beam-plasma waves (

~
lmk„~

« ~Rek„~) which have been found previously. ' We
expect the unstable waves to have the following
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feature: For real k, and complex ~ the sign of the
parallel group velocity Bo1/Sk2& 0 implies that the
waves have a radial mode structure (i.e. , they con-
verge for r-+~).

In principle, we have to follow the singularities
of the Green's function by a classical deformation
in the complex Laplace plane (o1,k,) from (complex
o1, real k,) to (real o1, complex k,). We have made
a complete numerical study of the Laplace trans-
form of the Green's function. The operating
scheme of the numerical analysis will be de-
scribed latter (Sec. IIIC). As expected from pre-
vious remarks we have only found convectively un-
stable waves: they remain radiated in the radial
direction in the sense that Rek, "'& Imk, "' and are
convectively amplified along the beam axis. In
this section we complete both analytically and nu-
merically the published results. ' We consider suc-
cessively the cyclotronic and Cerenkov modes ~

k
) Vy + co and co kli Vg We compare the spatial

growths of the two kinds of instabilities for differ-
ent values of the beam and plasma parameters and
different radia. l wave structures (characterized by
the number of nodes of the electric wave poten-
tial inside the beam).

.z'
U' = -S'—(a' —n')

n2 Cy

T2 S2 n2 n2)
z' 2 Q'

' 22)a,X+ e(a2 —a,')

(4)

The dispersion relation is solved analytically with
good accuracy only for large or small values of U.
For cyclotronic modes z- a,(1+2}a,/n} and U- S(1+2}n,/n)(n, ' —a')' '. For a thick beam (Sa,
» 1}, U is large in the whole frequency range, ex-
cept in the close vicinity of the cyclotronic fre-
quency. For a thin beam (Sn, «1), U is large for
small frequencies (a &Sn,'), i.e. , o1«'r o/V,o. We
may take for large values of U the asymptotic ex-
pansion of the Hankel functions and obtain

T= j1 „+ilU, (6)

where j, „ is the zth zero of the Bessel function
J,(z) for n~ 1. An approximate solution of the
dispersion relation is now given by

A. Cyclotronic modes

It is convenient to introduce a small, dimension-
less variable X=z —n Y}n (2-} = +1, respectively,
for the slow and fast cyclotronic waves). Taking
into account the conditions of geomagnetic experi-
ments (n' «1, c «1) and of weak instability (

~
X

~

& n, /2} we may easily simplify our system of equa-
tions (2):

1 j1(T) 1 Hiu'(U)

T Jo(T) U H '(U)

z —gc+Q —g yC 20C

y=( j, „IU)'(a,' —a')(1+2i/Uj, „}
x [1- ( j, „/U) (1+2i/Uj1 „)] ',

U= S(1+1}a,/a) (n2 —n2)'i 2

We verify with Eq. (6) the standard result; the
only unstable cyclotronic mode is the slow mode
Imz&0 for r)=1. Imz (like ImzlRez-Imzla, )
grows at first like a'. For a thin beam (Sa, «1)
the spatial growth rate is maximum (Imz

~- z a, j,' „/4) for n close to Sn,'Ij, „(o1/&o,- e,r,!Vz},
when for thick beams, it grows up to frequencies
very close to n, where the previous formulas
break.

In the close vicinity of the cyclotronic frequency,
we take U- 2S(a,' —n')' '-0 for the slow mode,
use the expansion of the Hankel functions for small
argument and obtain

T =j, „+ .' ln [2ey(a,' —n')"']+—
~,

4S' a,' —n') 2 2j. 2

~( jo,.)'z=2n — ' ———(a —a ).c 8$2~ 2 ~ c
C C

j, „ is the nth zero of Jo(z) and y is the Euler con-
stant.

B. Cherenkov modes

To limit the somewhat cumbersome algebra we
restrict our analytical treatment to the thin-beam
case (Sa, «1). We easily deduce from Eq. (2) the
following approximate dispersion relation:

TJ1(T) a' —az
J (T) (1+ / )(

", ,) (lnU/2 —iv/2) ',
n2 2

(z —n)' (I+~/n,')(n'- a,') '

with n, = n, [1+I/(c+ a,')]' '.
For a weak instability we expect z- a and U

-S(a,' —a2)'~' to be small compared with unity.
We may expand Eq. (8} in the vicinity of TZ, (T)
=0. If we take T=j, „we obtain a negligible
growth rate. The fastest growing mode has a
wave potential with a zero node inside the beam
(T —0) '

T Q —Q U iw

2 (1+e/n, '}(n2 a,'} ( 2

(I a')(a' n2)»2 ~+11/2
x ln +

2 QH —Q 2

We verify later on the numerical results that are
in agreement with Eq; (9), that ~lmz

~

is maximum
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for a- o.,/M2 and vanishes when o.- a,.
From our analytical results [Eqs. (6), (7), and

(9)] we verify our initial assertion: The disper-
sion relation is essentially real and, in this fre-
quency window, follows the cold-plasma disper-
sion relation. The beam has nevertheless two ef-
fects; it removes the degeneracy of the cold-plas-
ma dispersion in infinite medium and quantizes the
radial wave number, and it drives the instability.
In the dispersion relation for the beam-plasma
system the spatial growth rate follows from the
radiative character of the wave, that is to say it
arises from the imaginary part of the function
UH,'/H', for real values of U. Let us now give our
numerical results to confirm and extend the ana-
lytical formulas.

C . Influence of the beam parameters
on the unstable modes

As shown by Eqs. (6), (7), and (9), Imz is es-
sentially proportional to the beam density (param-
eter z), for the cyclotronic mode and to
SMg(&u»x r,/V, ) for the Cherenkov mode. Hence,
for a given injection experiment, where SMz is
fixed (S'z= 3x10'I/V'~', with I in amperes, the
injection current, and V in volts, the injection
voltage), as well as the local parameters of the
ionospheric plasma (&o, and &o„hence o.,}, the
Cherenkov instability is quite insensitive to the
beam radius, when the cyclotronic one is more
intense for thin or dense beams and takes place
essentially at a very low frequency (say o.-Sa,'
or &o/v, -roe, /V, j, „).

Figure 7 shows the evolution of the relative
spatial growth rate (Imk„/Rek„) for a realistic in-
jection situation [S'& = 10 ' for I = 1.7 A (0.6 A);
V= 30 keV (15 keV}; &o,/&u~ = 0.4] and different val-
ues of the beam parameters (e= o.,'/2; z= a,'/20;
& = o.,'/200). We choose the zero-node Cherenkov
instability and the one-node cyclotronic instability.
From the numerical results we obtain the lengths
of exponentiation, for the cyclotronic and Cheren-
kov modes L, =(V~/&o, )(imz/Rez) and L, = [1/
(Imz} )V, /&o~. They may be very different for
the two unstable branches and are quite sensitive
to the beam's parameter g. For the first case,
(z = a,'/2= 0.08)L, = 8L, , while for the second one,
(z= Q,'/20=0. 008)L, =0.6L, .

D. Influence of the radial structure of the modes

For modes with a higher number of internal
nodes, the numerical computation shows that the
Cherenkov instabilities are much weaker. In the
case of Fig. 8, (Imz/Rez} is two orders of mag-
nitude smaller for the one-node wave than for the
zero-node wave. On the contrary, the relative

spatial growth rate of the cyclotronic instability
has a larger maximum, which occurs for lower
frequencies (a-Sa,'/j, „},(see Fig. 8), when the
number of internal nodes increases.

E. Influence of the plasma parameters

The only important parameter is n, = u&, /&u~.

The cgclotronic mode is enhanced by a decrease
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of the relative gyrofrequency; (Imz/Rez} oc-
curs for ~a/a&, -So.,/j, „which grows with o., (Fig.
9}. On the contrary, the zero-node Cherenkov-
type instability increases with the relative gyro-
frequency (see Fig. 10),

III. THE HIGH-FREQUENCY RANGE (w~ &m &w~)

We limit our investigation to the range of fre-
quencies co, (~( ~~. As demonstrated in Appendix
B, the waves are stable in the upper-frequency
range (v) &uz). In contrast with the low-frequency
range, where the instabilities are weak and con-
vective, the complex mapping k(v) for real values
of the frequency greater than &„has double roots
and even saddle points outlining the presence of
absolute instabilities. These singularities occur
in the [&o~, &oz] propagative range where the nega-
tive group velocity of the plasma waves may in-
duce, by coupling with the Cherenkov and cyclo-
tronic beam's waves, a backward-wave mechan-
ism.

As we have already mentioned in the Introduc-
tion, we classify the solutions of (2), when the
real part of the normalized frequency n varies
from n, to aH, by the number of their internal
nodes. The real part of T(a) remains bounded by
two consecutive zeros of Z,(z), j», and j, , „and
the number of nodes (or zeros of the real part of
the associated potential) for a transverse variable
r below the beam's radius a, are consequently l
or I+ 1, depending on the position of Re[T(~)] with
respect to the lth zero of J,(x} ( j» &j, , &j»„).

This corresponds to following simultaneously
the different branches of the dispersion equation
which belong to the same sheet of the Riemann
surface associated with the k„(v) mapping [or the
z(o) mapping]. On each of these sheets we distin-
guish a "normal" and a cyclotronic branch, which
connect continuously, for Re(o.) & a„with the

Cherenkov and the cyclotronic waves (respectively)
met previously in the low-frequency region. In
addition, there is also a "surface" branch (for
zero- or one- node sheets) which is characterized
by the fact that for a certain value of the real nor-
malized frequency (a, = o.,[l+ 1/(z+ o.,'}]'i'j the
imaginary part of the function T(a) diverges, giv-
ing rise to a surface wave and an essential branch
characterized by the divergence of the complex
function z(a) at the plasma frequency (a= 1}.

In Sec. IIIA we shall give the analytical expres-
sion of z(a} for a real, and low values of the
beam's plasma parameter (weak-beam approxi-
mation and/or low normalized gyrofrequency a,)
which allows a simplification of the dispersion re-
lation. In the second part we present systematic
results of the numerical investigation, with real-
istic parameters for an ionospheric injection ex-
periment.

A. Analytical results

In this section we obtain partial analytical re-
sults. Our formulas do not describe the whole
mapping of z(n) which is necessary to understand
the convective or absolute character of the vari-
ous instabilities, or to follow the radial behavior
of the Green's function. These results are in fact
obtained by the expansion of our system of equa-
tions in terms of small parameters, or in the vi-
cinity of some frequencies. Nevertheless the
analytical formulas are useful to classify sys-
tematically the branches of the dispersion rela-
tion and allow an interpretation of the numerical
results. In Appendix C, we take a complementary
point of view and compute the analytical condition
for absolute (convective) instability in the upper-
frequency window. In the following, we treat sep-
arately the cyclotronic branch and the other
branches of the dispersion relation.

1.5-
3.

K
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E
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0.1 02

FIG. 9. Influence of G.~ on the RSGR of cyclotronic
one-node wave (S a=10, e =2x10 ): —~ —a, =0.2;---n =04. .- e =0 6 a =0.8, +++ 0. =1.

0.5 ca~

FIG. 10. Influence of e, on the RSGR of the Cherenkov
zero-node wave (same notation as Fig. 9).
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1. The eyclotronic brunch

As in Sec. If A, we assume a weak deviation
from the cyclotronic resonance line (&o -kv, +rite,
where q=al), and introduce the small dimension-
less parameter X defined by X = z —e -ye, . To
the most significant order in X the dispersion
equation (2) may then be written

2 2 &c & -1 n —+c" a (n' —a'„)

T =-S I+q—
i

1-—,(n -a)2 +c
Q j 0

2qa, „(a' —a,'}
2'9 n~X( a —nz) —z( a —ng)

1 J,(T) 1 Hj~'(U) a —1
T Jo(T) U Huo'(U) (1 —e/a, }(a —a,}'

(10a)

(10b}

(10c}

where the characteristic frequency e, is given by

a,'= 1/(1 —e/n, ').
For a real e between a, and 1, we see from

(10a) that U is purely imaginary; the right-hand
side of (10c) is consequently purely real as T, and
from (10b) we conclude that X is real; Neverthe-
less, due to an intricate behavior of the Ki~(+)
mapping [see Fig. 3(c)] the cyclotronic branch
becomes unstable for Q 2 Qy In the propagative
range[1, nz], X has a.n imaginary part. Assuminga
thin and dilute beam (a,S«1 and z «n,'), choosing the
real. frequency outside the close vicinity of 1 and z„
(1 -e/n2) '~'«a «n„-S'a,'/2a„, the right-hand
side of (10c) is large and T is of the order j, „
[j,„ is the nth zero of J,(x)]. Then we obtain the
following approximate formulas:

( —n a,')A

(ll)
2U Hu'(U)

S2 n2 n2 (n2 1) Hu&(U)

with U given by (10a). The results are similar to
the lowest-frequency range (a& a,): The imaginary

part of X is directly related to the radiating wave

behavior outside the beam [ImX comes from Im(A),
i.e. , ImHp(Hp' )]. ImX vanishes for n- nz and

has a maximum value for an intermediate fre-
quency. If a cyclotronic mode is convectively un-
stable along the magnetic field, simultaneously
the potential becomes divergent outside the beam,
as follows from the relationship between U and z.
In (10a), X has been neglected in comparison with

1; taking this correction into account one finds
Im(U)&0 for ImX&0, and Re(U)&0.

We already pointed out in part I that Imk, "'
= -Imk„v, /v, . Then in the frequency range 1& a
& az, v, &0 and v & 0 outside the beam [the en-
ergy has to flow from the beam, a condition equiv-
alent to Re(U) & 0] and Imk„& 0. The wave potential

2. The other branches

To explore the other branches of the dispersion
relation analytically, we still restrict ourself to
a thin beam (Sa, «1) and small gyrofrequencies
(a, «1). Assuming a, Cherenkov resonance (z = a
or QJ kg Vg) we see that the right-hand side of the
dispersion equation (2a) has to be small, except
in the vicinity of the characteristic frequency n,
= a,(1+1/n,'+ q)' ' where e™must have a zero
(for z = a). If e & n'„a, - az is no longer a char-
acteristic frequency. If a, &z~ o,'a, & 1, e, mat-
ters for a discussion of the Cherenkov mode. In
this case, for aW n„we shall look for solutions
with ~T

~

=0 or ~T~ =j, „[nth zero of the Bessel
function J,(z)] which are the values of T that min-
imize the left-hand side of (2a), when, for n= a,
we shall look for solutions with ~T

~

=~ or ~T
~

= jo „[sth zero of Jo(z)].

TABLE I. Variation of the maximum value of Imz for
1 & c)t & nz on the cyclotronic branch.

10-' 10-2 10 3

(a) Corresponds to the zero- or one-node sheet
7s, s).

0.2 3.4 x10 4

0.4 2 7 x10-2
0.6 +10-'
0.8 *10-'

10
2 x10-'

4.8 x10 3

1.6 x10 3

(b) Corresponds to the one- or two-node sheets
~l|,|(&~2|,2).

6x10 ~

1.16x10 2

gx10 3

*10-'

5.4x10 3

*8.5x10 2

1 7 x10-2
6x10 3

6.5x10 ~

3x10 5

5.4x10 3

1.12 x10 2

0.2
0.4
0.6
0.8

seems to be divergent outside the beam for a con-
vectively amplified mode. Formulas (2} have been
integrated numerically and the results for the
maximum value of Imz are given in Tables I(a}
and I(b) for different values of a, and a„eS' has
the constant value es'=10 '. These partial
results show an enhancement (for values with

an asterisk) of the spatial growth rate of
the cyclotronic instability for certain val-
ues of the parameters n, and g. In Sec. IIIB such
an enhancement will be explained by the mutual

influence of three different branches of the dis-
persion relation: A secondary saddle point which

involves the cyclotronic branch is created by at-
traction of a double root by an existing primary
saddle point. For these values of the beam and

plasma parameters, the cyclotronic branch par-
ticipates in a nonconvective instability.
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a. Zero node and surface solutions. From (2),
assuming T'«1, we obtain

(12)
1 g 2 ff&»(U)

(z —«.)' U ff', (U)

where U is given by (2c). For a thin beam and pa-
rameter values which allow a close vicinity of the
Cherenkov resonance, we compute z easily:

.SMz a' —«.' & '/'z=a 1+i ~2]

i2

(where y is the Euler constant), together with

2 2 X/2Qyy- Q

&&l —n') (1 ~ a/ a.') )

c
~ [(1 —&r')( &r' —&r.')]'"

&& —ln —,, 2 e ~ (14)
2 (aH —e')

In the range of frequencies a, & a&1, if e, &1, or
a, & e& n, in the opposite case, the previous for-
mulas show an unstable convective behavior for a
body mode (T being essentially real and U imag-
inary). These formulas are not valid for o. =n&
(divergence of T) and also for a =1 (divergence
of z). I et us now consider successively these
two cases.

(i) For o& = a, our exact numerical solution indi-
cates that now T =j» (first zero of J,). By ex-
pansions of the system (2) in the vicinity of this
value we obtain

(g &r )& / 2 ( &r2 p g) 2
z=n —

i~ . '~ a. i — ' ' (n,' —a*)),
4, jp g] 2f S(Z, Qg

(15}

and the zero- or one-node branch remains un-
stable when a goes through the value a„contrary
to published results. ' Radially the unstable wave
has a mode structure (if a, &1) and is convectively
amplified if a, &1 (in this case U is mainly real
and positive and has a small negative imaginary
part).

In addition to this zero- or one-node branch, a
new branch becomes unstable when a crosses the
value a, . T is still given by (2b) and becomes di-
vergent: T is imaginary for 0.- Op&1 and complex
for e, &1, the wave has in both cases a surface
structure inside the beam. Assuming

~

T
~

» 1 and
a- a, we obtain

c (&zm &r2)&/2(l +/1-2)-&/2. Q' +f
1

(16)

(ii) For a=1, we also have two possibilities.

One branch shows a logarithmic decrease of z
when a approaches 1, due to the behavior of the
Hankei function Hoa'(U) when U becomes small:

z = ', /, e "/'[1 —1/ln (-x/lnx)],

with

x = (1 —&r'),

Another branch shows an "essential" behavior
( ~z ~-~ when a-I}. From (12) we obtain z as a
function of n,

n, Up

$ (o&2 I)1/2 t (18)

where U, is complex and may be easily computed
from (12).

b. Solutions neith many nodes. Assuming T =j, „
for a&& a, the dispersion relation reads [from
(2a)]

(19}

and with z —n = 0:
2 1/2

z=e 1-guy 1-a~ + 2 2
'" . 20

For n- Qg T )p, and the formula for z is ob-
tained from the zero- one-node result (15) with
the substitution Jp g )p g For n-1 there is also
an essential branch with a similar result for z.
In this section, we have not considered the vicinity
of the upper hybrid frequency. This is in fact the
most interesting domain of frequency where the
instabilities may become absolute as observed on
the numerical results and explained in Appendix C.

B. Numerical investigation: Stability analysis
and structure of the solution

1. Methodology

In order to p'erform the stability of the Green's
function we use the well-known mathematical
criteria of Bers and Briggs (13)-(15}. It is then
necessary to study the mapping of the ~ complex
plane into the k„complex plane, which is asso-
ciated with the solutions k„=k(&o) of Eqs. (2a}-(2c)
[formally D(k ~~(&o), &d) = 0].

In our case the Riemann surface of the function
k(&d} has an infinity of (a priori) separated sheets;
each sheet corresponds to a value of T (the inter-
nal radial wave number} localized approximately
between two successive zeros of the function J,'(x).
In a given sheet, we explore at first, the lines of
the complex-z plane which correspond to a real
value of the normalized frequency n. Then, such
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a solution being chosen in the negative half-plane
(Imz negative), we increase the (positive) imagi

nary part of the frequency n, (for a constant real
part), until the line z(n„+i a, ) has definitely
crossed the real z axis, that is to say, remains in

the positive half-plane for a greater value of the
imaginary part of the frequency.

When the mapping remains on the same half-
plane there is no instability at alL When it crosses
the real z axis, but remains conformal (with no

branch point), we obtain a simple convective in-
stability. Another situation occurs when different
branches of the dispersion equation —here gen-
erally belonging to the same "sheet" —may col-
lapse, for some value of the complex frequency
e, at points localized in the negative k„half-plane.
A further distinction has to be made, then, be-
tween simple double roots, when two branches be-
long to the same k„half-plane as the imaginary
part of the frequency is increased infinitely, and

a real saddle point which arises in the opposite
situation. In this second case, we obtain an ab-
solutely unstable wave, as far as the propagation
along the field is concerned. At this point we have
to pay attention to the radial structure of the so-
lutions obtained with the Green's function. As
shown in Appendix A, for v and k„ localized on the
Bromwich path used to invert the Fourier-Laplace
transform, the convergence of the Green's function
is insured by a correct choice of the determination
of the argument of the Hankel function which de-
scribes its external (r- ~) structure. Neverthe-
less, in lowering the Laplace path (in the frequen-
cy complex plane) up to the real frequency axis,
in conformity to the Bers and Briggs procedure,
it may happen (and it happens effectively, in our
case} that for a certain real frequency range, the

sign of the imaginary part of the argument of the
Hankel function k~"' = k,~(&o)(et~"'/e~"')' '[or U(o, ) in
normalized variable] changes. In this case, the
solution is no more a normal mode: it has a con-
vective behavior outside the beam, as already
pointed out in Sec. IB.

2. Numerical operating scheme

To solve Eqs. (2) we use a computer program
based on an iterative Muller's method with defla-
tion. " We first choose a value for the real part
of the normalized frequency n„. As we are inter-
ested, a priori, in waves which grow along the
beam (+z direction) we look for solutions z(a„)
which have a negative imaginary part. The imagi-
nary part of the frequency is then increased, until
the solution eventually crosses the real z axis. .

The essential numerical difficulty is to remain on
the same branch of the dispersion equation when

the complex frequency e is changed. For each
value of the complex frequency a, a guessed value
of T (say T,) is assumed (for example, near the
analytical values jo „or j, „), from which the poly-
nomial which relies on z to T and a, [(2b)] is
solved. From these eight roots z,.(a, T,), we re-
tain only the root which minimizes the "distance"
of the solution to a given resonance line ( ~z —n

~

for Cherenkov modes and ~z —u+ c., ~

for cyclo-
tronic modes}, or to an already computed value

of z in the same branch. With that root the value
of the complex function

—z~a"'U Jo(TO)IIc, '(U),

is then computed. Muller's method is then used to
solve (with an a prior given precision} the equa-
tion F (T) = 0, which gives the expected value of

z(o) through the preceding procedure.

3. Numerica results

The plasma parameter a,(|d,/&o~) and the beam's
parameter (total current I and electron energy E}
are fixed at values which are relevant for an active
ionospheric experiments" [a,= 0.4; I = 1.7 A

(0.8A}; E=30 keV (15 keV)]. The dimensionless
parameter gS' [-3x 10'I/(E)'~ '] then keeps the
constant value 10 '. We look for three values of
the parameter z (8 x10 ', 8 x10 ', and 8x10 ')
which correspond, respectively, to a2/2 (Bril-
louin radius), c.,'/20, and u2/200. Such a choice
is likely to be suitable for the study of active ex-
periment, where the electron gun's characteristics
are definitively fixed. As the angle of injection,
with respect to the magnetic-field lines, in-
creases, the radius increases simultaneously,
and the beam's density decreases.

Let us choose some cases which show the essen-
tial features of the dispersion equation. In the
case with the higher beam's density, Figs. 3(a),
3(b) and 3(c) show the characteristics of the (zero-
or one-} node Riemann sheet of the dispersion
equation. From the (real z or complex u) picture
of Fig. 3(a} one sees three unstable branches:
Cherenkov branch (I), cyclotronic branch (II), and

surface branch (III). Branches II and III appear
to be unstable only for n& n, (n, [1+I/(z+ a,')P ~ ').
Branches I and II are identified by continuity with
their low-frequency properties (u& o.,}. Figure
3(b) depicts the z(n) mapping into the complex-z
plane, for the same Riemannian sheet. As ana-
lytically predicted in Appendix C, a saddle point

appears through the collapse of the Cherenkov
branch with the "essential" branch (IV), at a fre-
quency which is very close to the upper hybrid
frequency (a„=1.07'I).
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FIG. 11. (a) and (b) The zero-one node sheet for e
=0. /20 (0, =0.4).

In the vicinity of a„where for the surface
branch (III), ~imT/ReT

~

-~, a complex structure
of the mapping would appear; Fig. 3(c), which is
an enlargement of the small rectangle to the right
and above Fig. 3(b), shows that the cyclotronic,
Cherenkov, and surface branches are simultan-
eously connected, at real frequencies close to a„
through double roots [not saddle points because
the Re(o.) = cte lines remain in the same half-plane
of the k„complex plane when Im(a) grows to in-
finity]. For these beam and plasma parameters
the same situation occurs when one looks at a
solution with a higher number of nodes. The value
of Re (a) where the saddle point occurs becomes
closer to the upper hybrid frequency, as predicted
by the formulas (C4} of Appendix C.

A comparison between Figs. 3(a) and 11(a),
which depict the -Rez and complex a diagram f»
the zero- or one-node Riemann sheet, shows that
the temporal growth rate of the Cherenkov branch
is not significantly affected by a decrease in the
beam's density, in agreement with the previous
formulas (13), where the imaginary part of this
solution is merely a function of the constant pa-
rameter &S'. On the contrary, the temporal
growth of the cyclotronic instability decreases
with &, as predicted by (11). Furthermore, from

Fig. 11(b) we observe that the saddle point which
connected the branches I and IV in the previous
case now disappears. In Appendix C we show that
this phenomena is due to an increase in the (nega-
tive) imaginary part of the equivalent internal ra-
dial wave number; the imaginary part of the (com-
plex} frequency where the saddle point occurs
then becomes negative. This fact may be inter-
preted as a decrease in the reflecting efficiency
of the beam's surface as the beam's density de-
creases. The feedback mechanism which gives
rise to the absolute instability becomes conse-
quently insufficient to balance the energy losses
radiated out of the beam. With the same beam
parameters, as one used for solutions with a
higher number of internal nodes, absolute insta-
bility is recovered (Figs. 4 and 5). This is con-
sistent with our analytical prediction of Appendix

C, where it is shown that the higher the number
of nodes, the smaller the critical value of beam
density at which the absolute character of the in-
stability disappears.

As g is further decreased to 8 x 10, the abso-
lute character of the (one- or two-) nodes solu-
tions disappear also. When looking at the (two-
or three-) nodes sheet one sees (Fig. 6) another
interesting phenomena. As for higher values
of e (Figs. 4 and 5) a unique saddle point is
observed, together with a simple double root,
the three branches I, II, and IV are now con-
nected by two saddle points. This phenomena
may be observed for each value of the beam's
and plasma's parameter characterized by an
enhancement of Imz ~m for real values of n
(see Table I). Such behavior which gives rise
to two simultaneous absolute instabilities has al-
ready been pointed out in a different physical sit-
uation. '4

In all the cases studied, with beam and plasma
parameters relevant to [active ionospheric exper-
iments, ' the sign of ImU which corresponds to ab-
solute instability at different saddle points is neg-
ative. Hence, as previously pointed out and fur-
ther discussed in Appendix C [inequalities —(C9)],
we are concerned about solutions which are ra-
di.ally amplified wave packets and which present a
nonconvective unstable behavior in the beam re-
gion only.

CONCLUSION

Our Green's-function formalism allows a simple
interpretation of the different electrostatic insta- .

bilities produced by a finite, cold, electron beam
flowing into a uniform infinite magnetized plasma.
These conditions are realistic for active iono-
spheric electron-beam experiments, such as the
ARAKS experiment. Let us summarize our main
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results for the different domains of frequencies.
In the higher-frequency range (&o- &u~, &os) we have
shown that the most unstable waves occur at a
frequency which lies just below the upper hybrid
frequency. They may become absolute, v'hen the
reQeeting efficiency of the beam's boundary is suf-
ficient to limit power losses by outward radiation
and consequently to allom a feedback mechanism
to take place in the active region. We have ana-
lytically determined and numerically verified the
beam's density threshold corresponding to that
energy balance. This effect, which is quite sen-
sitive to the internal structure of the electric po-
tential (highly radial oscillating solutions remain-
ing absolutely unstable even at very lom beam den-
sity), has to be added to temperature or dissipa-
tive effects which also tend to destroy the absolute
character of the instabilities. This effect may be-
come predominant, (even in laboratory experi-
ments, ) when the instabilities are sufficiently
strong to prevent outer plasma boundaries from
playing a significant role in the determination of
the mode structure (creation of a radial standing-
weves pattern}. In determining the outer radial
structure of the solutions we have also shown that
they look like absot. utely unstable modes in the
beam's active region only. Outside the beam, the
instability is convective, but, due to its backward
group velocity (with respect to the beam's direc-
tion) it appears to be radially divergent. In the
nonpropagative range (Id, «u«o~) the instabilities
are weaker but the corresponding electrostatic
energy is confined to the beam's region and they
mill play an important role in the nonlinear de-
velopment of the electrostatic turbulence and the
beam's spreading in energy. In the lover-fre-
quency range (~& ~,) we find convective instabili-
ties with smaller gromths, associated with both
the Cherenkov and cyclotronic resonance lines.

Our numerical analysis is performed for the pa-
rameters of the AHAKS experiment. ~s2 The thresh-
old conditions for obtaining very strong high-fre-
quency turbulence are fullfilled. Many solutions,
with the spatio-temporal structure of high-fre-
quency (&o- ~„), backward-propagating wave pack-
ets are then absolutely unstable in the beam's re-
gion. They may explain the nontransient part of
the high-frequency waves observed during AHAKS
flight, ' which is mainly restricted to the v~ & ~
& u~ propagative range. Qn the other hand, the
strong high-frequency turbulence (&u, «u «o~)
confined to the beam's region may sufficiently
spread the beam energy range. &ence, a direct
linear mechanism may not explain all the lom-
frequency whistler waves observed during the
AHAKS flight. ' The observation of these emis-
sions for both backward and upward injections

(with respect to the electric receiving antenna} is
also an indication of another origin (at least the
backward injection). A forthcoming paper will
propose a nonlinear antenna's mechanism for the
generation of these electrostatic waves [see, in

short, Ref. 7(d)].
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APPENDIX A' THE GREEN'S FUNCTION
OF THE WAVE POTENTIAL

Starting from the fluid equations, we set a=a,
+g,+, V = V&, + V&, , + ~ ~, and 4 = 4, +4, +

and obtain

ding, y + v gn, 0~, , +nt, V, ,) —0,

de, g
+V~,o '&77~, +V~~, 'vV~~O= —(a@i -V~~i Bo}~

8 ~
&4~ =—~n] ~ ~

j takes different values for the cold-plasma and
beam-electron populations. We limit our investi-
gation to a neutralized beam plasma (@,-=0). The
plasma is homogeneous (n, =n, ) and at rest (V~,
=—0). The beam is axial (V, ,= V~e,) and has a con-
stant density (n, ,=n, ) for r ~a.

We take the Fourier transform of the Euler-
Poisson equations with respect to the axial coor-
dinate z and the Laplace transform with respect
to time t. After elimination of the density and

velocity components we obtain the following equa-
tion for the wave potential @,:

-d r~,(r}—„e, u,', ~„(r) -,C= (Ir)
d

(A2}

As usual in Laplace transforms, I is a cumber-
some expression related to the initial conditions

V&, (r, t = 0) and n&, (r, t = 0). z„(r) and e„(r) have
already been given in Eq. (la).

To solve the radial nonhomogeneous equation
for the wave potential 4, we introduce the Green's
function G(r, r„k„,&u) which is solution of

1 d d -
2ZG =-- —„r~,(r) „—G -n, ', ~„(r)G =A&(r -r, ) .

(A3)

G must be continuous and convergent for all values
of r on the inversion path of the Laplace trans-
form: kii cP and v lies above all the singularities
of G' in the complex (d plane. Q is continuous at
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the beam boundary

G(a„ro)k)( (()) G(a, ro kn M), (A4)

( fh 1/2 out 1/ 2

I ggh II& L
potful

II '

where a, = lim (a + g).
The radial derivative of G is discontinuous; the

matching conditions are obtained by integration of
E(l. (A3) upon r:

~

~

0 if gtro

A if a=ro. (A5)

To fulfill the boundary conditions we solve Eq.
(A3), respectively, inside the beam (G has to be
convergent for r= 0} and outside the beam (G has
to be convergent for y-~). Inside the beam the
general solution of E(l. (A3} is given by

G-A ~ ~

hg

„,5(r' —ro)yn(r')
hg (A6)

where y, (r), yn(r) are two linearly independent so-
lutions of the homogeneous equation 4G = 0 and p
is the Wronskian of these solutions. Let us now
introduce equivalent radial wave numbers inside
and outside the beam:

For gy p2 we use standard notations for the
Bessel functions:

y,(r}= Z,(k;r},
y,(r) =&JQ(k, r)+ YQ(k,"r},
n=2/v(k, r).

From (A5) and (A6) we obtain

X"ZQ(k~"r)[XZQ(k~"ro) + YQ(k,"ro)] for r & ro
G=

X"&Q(k„"ro)[&J~(k~"r) + YQ(k~"r)] for r & ro

with X"=Av(k,"ro)/2e,". Outside the beam

G Xoon pHu )(koun~}

(A7)

G= [1-Y(ro —a}]G„&,

+ Y(ro -a)G„~+5(„)G.,
with

(A10)

with X'"' =Av(k;"'ro}/2en"'. Using the connecting
conditions (A4) and (A5) to fit the undetermined
constant X and p one obtains, after straightforward
algebra, the expression of the Green's function
G(r, r„k„„(d):

=—
I I( —Y(r, —r, )lrP(r, r, ) +[Ytr —r,) —Ytr, —a))U(r, re a) Y(r — )((r, )),H() k g

goUt j (k[ny)
O,~= ' '„[)—Y(a —r)l((r„a) ~ [Y(r —a) —Y(r —r,)]((r„r)+Ytr —r,)(tr, r,)),

G, =—gl —Y(r —a)]He (k~ a)J (k'na) + Y(r —a)Hu'(k'" r)ZQ(k'na)),

with

P(r, ro) = J(k,"r)[[Crz+ iC „r]ZQ(k,"ro) —[C zz+ iC z„]YQ(k,"ro}),
$(r, ro}= H Q '(kn"'„}[4«YQ(k,'"'ro) —C r~ JQ(k;"'ro)].

We have introduced the following quantities:

foot(knots) Y' (kine) J (knots) e[n(kin(r) Y (ktne)p (kout&)

(and straightforward permutation of J and Y for
the (luantities C», C~r, and C«}. Y(x) is the
Heavisides's step function. D= 4«+i 4~~ is the
dispersion function of the system. The dispersion
equation D= 0, may consequently be written as in
formula (2a) of the text.

An essential point for a correct inversion of the
Fourier-Laplace transform is to start with a
Green's function converging for r-~ along the
Bromwich path. This radial convergence implies

a "good choice" for the determination of k,'"'. To
make this choice more explicit let us study the
function

eu ( (() —(dn}( (d —(()o}

t (() ((d (d )

It is convenient to introduce the variable x
= ((dn —(dn„/2}n. Then,
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3'( ~) =- F(x) =-x-((o )'

w ith

&gJ = [((g2 (g2)/2]&/2 |d —
o/ /~2

In the x-plane (see Fig. 12) the loci of constant
values of arg[F(x)] are pieces of circle passing
through the points A(&o', 0) and B(&u'„0). It is not
difficult to map the Laplace-inversion path Z from
the o/ plane in the x plane (Figs. 13 and 14). The
variations of the argument of F(x) (Fig. 15) when
(d follows this Laplace-inversion path show that it
is possible to insure convergence for all these
paths by choosing the segment AB to be the branch
cut of the function W0(~). This is equivalent to as-
suming the external Green's function (r& sup[r„a])
to be proportional to H,"'[ikg (f q

/~;" )' '] with the
usual branch cutting of the square root on the neg-
ative real axis.

+2 7..
"3 5

Re(m)

by parts upon y we obtain

+ g yydy

FIG. 13. Inversion path 2 for Laplace transform of the
Green's function 4], is real and 2 is above all the singu-
larities of G(r, k]~, co).

APPENDIX B: DEMONSTRATION OF WAVE
STABILITY IN THE HIGHER-FREQUENCY

WINDOW (m) w~)

For this demonstration we remove the condition
of axis symmetry and the wave potential is taken
as 4(r}expi(k„z —/df+m8). We look for unstable
Fourier modes (if any) which follow the radial
homogeneous differential equation

1 d d m2——ra, (r) —4/(r) ——,a,(r}4(r)—k,', e„(r)4(r) = 0.

(B1)

For Re[~] chosen in the nonpropagative frequency
range Reer& ~„and k„real, we have shown in Ap-
pendix A that 4 and d4/dr are vanishing when r

Multiplying Eq. (Bl) by 4 ~ and integrating

+k2 q y @2 ydy=0
0

introducing the positive definite quadratic form
(for k„real):

m2]@ (2
A+ =

2 + — ydy,
0 y dy

0

(d (o2A
(B2}

A, = k, 4 ydy,
0

a

0

Equation (Bl) may be written in a more convenient
form.

pf g(&P) ~

4g
21 3Re(x)

A( a ~j B R~)
+K( )r

FIG. 12. Loci in x plane where arg [p(x)) is constant:
A(cu4, 0); B(u~+, 0), for ~x[—~argS r~. FIG. 14. Mapping of g into the x plane.
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EIi

saddle point is produced by the merging of two
branches of the dispersion relation which for Imk,
= 0 corresponds both to Im(d & 0.

Solving the Euler-Poisson equations in plane
geometry, as already done in Appendix A for the
cylindrical case, we easily obtain the following
set of equations:

FIG. 15. Variations of arg[p((d)] for co on@.

$2g2~in + T2~in p
II 4

$2@ ~OUt + U 2~OUt —p
II 4

gOUt

TtgT=-iU ',-,
4

with

(Cla)

(C lb)

(C1c)

with

We look for unstable Cherenkov modes and set
~ = &o, + II&u with &o, = k„V, (the demonstration is sim-
ilar for the cyclotronic modes). We expand Eq.
(B2) in powers of 3&@ and obtain

f(&u,)S~' —(~,'f(~,)+&a~(A, +A,)]+A,&o~2&o2=0. (B3)

For &o, & &u„ f(ru, ) is positive; the discriminant,
the product, and the sum of the two roots of the
biquadratic equation (B3) are all positive and defi-
nite. The four roots of Eq. (B3) are real and the
waves are stable.

APPENDIX C: ANALYTICAL CRITERION
FOR ABSOLUTE INSTABILITY

IN THE HIGH-FREQUENCY WINDOW

(m&(u &w~)

In a similar previous work" the analytical cri-
terion for an absolute Cherenkov instability was
obtained by expansion in powers of & (& is the ra-
tio between the beam and plasma densities). This
expansion is a priori possible when the beam-
plasma system is confined by a waveguide with a
finite radiu~=b: in this case a set of radial
plasma modes exists without beam. Nevertheless,
we have already pointed out in part I of this work
that this expansion is only justified when the beam
plasma is not confined by a waveguide, the radial
normal modes are determined by the beam and
one has to find a different procedure.

To simplify the algebra we limit our investiga-
tion to solutions which have a large number of
radial nodes inside the beam. This simplification
allows a plane-sheet beam model. In our analyti-
cal treatment we apply directly the Bers-Briggs
criterion for absolute instability". We establish
the analytical condition for the occurrence of a
saddle point in the complex k~~ plane (with
Im&o& 0 and Imk„&0). We also verify that such a

z = k, V,/(u~, S = &@~a/ V„a= up/&o~ .
The dispersion relation would follow by elimina-
tion of U and T as given by (Cla} and (Clb) into
(Clc}. Equation (Clc) shows that a set of branches
of Cherenkov modes may be associated one by one
to the sheets of the Riemann surface of the multi-
valued function tanT. To each sheet corresponds
an interval of w for the real T values [ReT between
kw and (k+ l}w, k being the number of nodes of the
corresponding solution inside the beam radius].

To find a saddle point eventually associated to
an absolute instability, we look for a solution of
the dispersion relation such that Sa/Bz =0. It is
convenient to take the derivative of (Cl) with re-
spect to z. sT/sz gives a negligible correction
for U and T large. As a result we obtain

z~ 1 ——,+, + =0. (C2)
S' 1 a& e(z —a}

z —a 2
(z —a)2 —a2 2

C

In the following, we assume a tenuous beam, with
g«e2 and a2«1, which corresponds to ionospher-
ic conditions.

To solve Eqs. (Cl) and (C2) we assume at first
~T ~/S» 1 (k"» &o&/V~), which implies solutions

with a large number of internal nodes. Then ac-
cording to values of the small parameter z/a, '(q},
(C2) may be easily solved. For qT'/S'& I we ob-
tain

T2 ~/3
z —a=g' ' 1+—,$ e"""'"' n=o, 1 2 C3a

where g-0 if 0'~'& a, and t'- I if 1&
~

T'/S 0 ~'~'
& a,. In the opposite case, for @TED/S'&1,

z —a = (qT'/S')'~ e ~~""'~ ——' (m = 0, 1 2 3) .
(C3b)

We proceed with the solution of (Cla) and get
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g 1+MfT S
2 (I, + $T~/S2}2/&

T 1 1 S 'l"
~2 4 gl/4

(C5a)

(C5b)

In (C5a) [(C5b)) we have assumed Re(U) and Re(T}
positive, which is necessary for an outgoing wave.
To achieve the solution of Eqs. (Cl), we eliminate
U between (C5a) (C5b), and (Clc) and compute T:

T=(l+-') v2+ln (-,' q'~'), (if q'~'& o.,), (C6a)

T=(l —')w+- ln [' p'&'(1+ T'/S')'&']
2

1 S2
O'= QH 2T2 c

2(+ ~( T"
I+ 3 ~&~ e& ii+»«&3 (C4s}

1+$—,

for cases covered by formula (C3), and

1/2
( 1)iii frll/2 I + e-(2m+1)fs/4T, vs~4 T

(C4b)

when (C3b) applies. In all these cases, the fre-
quency at which a double root occurs lies close
to the upper hybrid frequency. The necessary con-
ditions for sn absolute instability (Imz &0} imply
n=2 and m=3 (T being essentially real). From
(Clb} we then compute a relation between the inner
and outer radial wave numbers

& a, /4, and f=(8/S)', if A«a, /4, and T, is the
real part of T. Moreover, by substitution of T in

(C5a) [(C5b)] we may deduce the sign of the imag
inary part of U. We see that Im(U) is positive for

$(B)B &—
~

~ (T„/25)', (C8)

where B=ln2v3T„/2W3T. In this parameter
range the solution corresponds to a radially con-
vergent normal mode which is absolutely unstable

(if all the Bere-Briggs conditions are fulfilled).
As condition (CV) is less restrictive than (C8}we

may also obtain a solution which is divergent
(ImU&0) outside the beam, and corresponds to a
radially amplified wave packet. The instability is
then absolute inside the beam, but not outside. In

this second region the apparent radial amplifica-
tion is due to the negative axial group velocity in

the background plasma, as explained in the first
part of the paper.

To fulfill the last Bers-Briggs condition we look

at the solution of the dispersion equation (C1}for
Ima growing to +~ and obtain three branches,
two Cherenkov branches

g S20f2

T =(I+-)v2+- ln (-,'),
(Ce}

and a plasma branch determined by the connecting
conditions at the beam surface:

T = U=iSz
[if 1& (AT'/S')'" & o.,), (C6b)

T= tl ——')w+ — in if il —,& 1) . (C6c)i v2 —1 . T
2 ~2+ 1 S ' S 2S 2llm2LImnj'~

(C10)

—
2

& f(A)A (C7)

where A=in6v 3 T„/6v 3T, and f=(8/T„)', if A

At this stage, by substitution of the values of T
into (C4a) [(C4b}]we obtain the necessary condi-
tion for instability (1mo. & 0), which reads simply

This branch together with one of the beam's
branches forms a saddle point, hence, giving rise
to an absolute instability. This nonconvective in-
stability disappears for z«', the threshold value
for. the beams density which can be computed from
(C I).
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