
PHYSICAL REVIEW A VOLUME 24, NUMBER 1 JULY 1981

Absence of power-law behavior of the hypernetted chain equation
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(Received 23 February 1981j

The hypernetted chain equation is solved numerically near its critical point and the compressibility is found to

deviate from power-law behavior. This failure can be traced to the asymptotic form of the bridge function, an

analysis of which is given. A comparison is also made with the analytic behavior of the Percus- Yevick equation and

suggestions for improved integral equations are discussed.

I. INTRODUCTION

The thermodynamic functions of real fluids be-
come singular at the liquid-gas critical point.
These divergences have been studied in the con-
text of the integral-equation approach to the struc-
ture and thermodynamics of simple liquids. The
hypernetted chain, ' ' Percus-Yevick"', and
Yvon-Born-Green' equations all predict a. liquid-
gas instability. The Percus- Yevick (PY) equation
leads to power-law behavior but with mean-field
exponents. The Yvon-Born. -Green equation (YBG)
also leads to power-law behavior, but with non-
classical exponents, indeed exponents close to
those of real fluids.

Here we examine the isothermal compressibility
of a simple fluid as determined from its descrip-
tion in terms of the hypernetted chain (HNC) equa-
tion. From the numerical solutions we find sig-
nificant deviations from scaling behavior. As is
well known, the HNC equation can be obtained
from the diagrammatic resummation method by
neglecting the contribution of the elementary dia-
grams, or the bridge function E(r). We will
present results below for the asymptotic criti-
cal behavior of E(r}, and from its role as an ef-
fective potential in a HNC-type of equation, we

can account qualitatively for the failure of scaling.
We are also able to show that the PY equation can
also exactly describe a real system with an ap-
propriately defined effective potential which dif-
fers, however, in a crucial way from the corres-
ponding effective potential in the HNC equation.
Finally, we shall use these insights to suggest
possible modifications of the HNC equation.

II. NUMERICAL SOLUTION OF HNC

Let c(r) be the Ornstein-Zernike direct correla-
tion function and h(r)[=g(r) -1] the total correla-
tion function. If Q(r) is the pair potential then
the HNC equation is solved using a standard itera-
tive procedure4 on the equations

c(r) = exp[- pp(r) + 8(r)]- e(r) —1,

[e(r) = h(r) —c(r)]
(la)

and

~(h) =pc'(h)/[I —pc(h) l (lb)

The first equation is a statement of HNC, and the
second is the Fourier transform of the Ornstein-
Zernike equation for a homogeneous fluid with
number density p. The system of equations (la)
and (1b) is particularly advantageous because the
integrals for each transform are over the short-
est ranged function in both real and reciprocal
space. For the pair potential we choose

p(r) =(Ae/r)(e '" '& —e "" ') (2)

whose range and strength can easily be varied.
In particular the exponential damping leads to a
distinct numerical advantage in that the correla-
tion functions reach their asymptotic behavior
relatively quickly in terms of the characteristic
range of the potential. As a consequence the de-
pendence on the range of the numerical integra-
tions can be readily controlled and is much re-
duced, for example, compared with the Lennard-
Jones potential. In what follows, temperatures
are given in units of e/ke (we choose A so that
e is the magnitude of the potential minimum} and
lengths in units of cr, where &go) =0. Computa-
tional and other details are given in the Appendix.

Given solutions for c(r}, we compute the iso-
thermal compressibility at constant density' and
temperatures T & T, from the thermodynamic
relation

pheTgr ——[1 —pc(h =0)] '.
For a (reduced} temperature T = 1.42, a (reduced)

density p =0.274 maximizes ~~. This density
approximates the critical density. It is impor-
tant to note, however, that the results we report
are independent of the precise value of critical
density assumed. The values of && as a function
of T, as calculated from the iterative procedure,
are summarized in Fig. 1. They diverge strongly

1981 The American Physical Society



ABSENCE OF POWER-LAW BEHAVIOR OF THE HYPERNETTED. . .

20

s(o)

16—
I

I

I

I

I

I

l2 —
I

I

I

I

I

8 —
I

I

I

I

s(o)

IO

—————T =I 400
Tc=l 395

I

I

I

I

0 I

l.40
I

I.42
I

l.44
I

l46
I

I.48

IO

I
I I I

IO IO

FIG. 2. Log-log plot of S(0) versus reduced temper-
ature, c = (T —T,)/T ~, for three possible values of T,.
These curves demonstrate the deviations from power-
law characteristic of HNC.

FIG. 1. $(0) versus temperature in units of e/k& (see
text). The dashed line indicates the position of the
singularity.

at a, temperature T =1.4045. Now, for real fluids
this divergence can be summarized by the power
law'

bridge function, E(r) =0. It is well known that
the bridge function can be defined within the
framework of functional Taylor expansions for
inhomogeneous fluids, ' for which a hierarchy of
direct correlation functions can also be defined, '
namely,

K ET (4)

where e =(T —T,)/T„and y= 1.2-1.24.
In order to attempt to force our results to con-

form to such a law, we first adjust the choice of

T, to produce linear behavior in a plot of logK~
against loge over a significant range of loge. We
then examine logK~ over the remainder of the
range of loge: in no case is linear behavior ob-
served to continue to the lowest values of c cal-
culated. Typical results are presented in Fig. 2.
They clearly show that K~ as obtained from the
HNC equation via (3) deviates from a power law
form, though the presence of a rapid divergence
at ~ -0 clearly suggests the persistence of a sin-
gular point. The data is also plotted logarithmi-
cally in Fig. 3 and the fit to a power law is seen
to be equally poor. Note that it is not feasible to
compute K~ near T, from the virial equation for
the pressure. Indeed IQein and Green' have shown
that the virial singular point for HNC occurs well
inside the spinodal curve computed from the com-
pressibility equation: the algorithm used here
fails in that region.

III. FAILUREOF POWER LAWS: ANALYSIS
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A deeper analysis of the HNC equation shows
that the failure of power-law behavior is not un-
expected. As noted above, HNC can be charac-
terized by the approximation it makes for the

FIG. 3. S(0) versus -loggp(T -T~) for two possible
values of T~ demonstrating the deviation from logarithmic
behavior. For -log~p(T -T~) &2.0 the points for the
two different T~'s are not distinguishable on this scale,
and are combined as shown (circles).
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where 8',„ is the excess Helmholtz free energy. It
follows that

c'"(1, 2) = 5[pV(1) + inp(1)]/5p(2), (6)

where V is an external one-body potential. The
definition of h(1, 2) and the Ornstein-Zernike e&lua-

tion give, respectively,

d3d49 1, 3 9 1,4I 59-'(3, 2)

d3d4 5p(3) 5p(4) 5'u(2)
5u(1) 5p, (1) 5p(3)5p(4)

and

p (1)p(2)h(1, 2) =p'" (1, 2) -p(1)p(2)

h(1, 2) —c(1, 2)= fd3p(3)h(1, 3)c(3, 2). (8)

5'p(2)
5u(1)5u(l)

(16}

lf we now substitute (12) and (14) into (15) and (16)
we obtain

To obtain the familiar result for a homogeneous
Quid d3d4 p 3 h 1, 3 p 4 h 1, 4 c'" 2, 3, 4

g(r) = exp[- p P(r)+ h(r) —c(r)+E(r)], (9) = c& '(1, 1, 2) —h'(1, 2) .

we first expand ln[p(1)es"'"] in terms of the den-
sity variation induced by an external potential
that arises from the addition of an extra particle
placed at 2 [i.e., V =- p(1.2)]. Applying (8) and

exponentiating the expansion gives the inhomo-
geneous generalization of (9) with

d(1,2)= —', Od3d4 c c(1,3, 4)p(3)h(2, 3)p(4)h(2, 4)

+ p d3d4d5c'" 1, 3, 4, 5 p 3 h 2, 3

xp(4)h(2, 4)p(5)h(2, 5) + ~ (10)~~ where

= in(1+ h) —h+&.(r), (18)

Note that in arriving at these results some care
has to be exercised to avoid spurious delta func-
tions that can arise from two-site coincidences.
It is important to work directly with the averages
of the density operators. Applying similar argu-
ments to the higher order terms in the series for
E(l, 2) and then taking the homogeneous limit
[where c'"(1,2) = c(r)] we find

E(r) = )h (r)+ ,—h'(r) —~ ~—~+& (r)

This series expansion for E can be rewritten in
a more useful form as follows: Recall that the
density-density correlation function is defined by

9(1, 2) = p '5p(1) &5u (2),

&.'(r) = &(1,2) = ac'"(121,2)

—-' c&d)(1, 1, 1, 2)+

Finally, substituting (18) into (9) gives

c(r) = PP(r)—+ &3(r)

(19)

(20)

9(1, 2) = p(1)p(2) h(1, 2) + p(1)5(1, 2} (12)

9 (1, 2) = 5(l, 2)p 2(1) —c'2 (1, 2) .
A further functional differentiation of (13) now

gives

59 '(1, 2) -5(1, 2)5(1, 3) &,)( )
5p(3) p'(1)

(13)

(14)

which involves the third-order direct correlation
function. Some elementary manipulations now
lead to the foll.owing:

where u(2) = y. -pV(2), y, being the chemical po-
tential. It is related to the other correlation func-
tions by

which shows that &3(r), as defined by (19), is the
correction to the familiar long-range approxima-
tion for c(r).

The definition of &.'(r) in terms of third- and

higher-order functional derivatives suggests that
it should be small and short ranged. [Observe
that the PY and HNC equations can be obtained by
ignoring terms of the same order as &.'(y). ] Now,
near the critical point c(r) becomes long ranged.
Since 4)(r} is short ranged, we conclude that near
the critical point e(y) = c(r) for large r. But at
the critical point' for d & 2 (and q( 2) we have

h(y) -r-&'-"»

and an argument due to Green' shows that

r 1 3
59-'(3, 2) „5o(3) 5'u(2)

5p(4) 5u(l) 5p(3) 5p(4)

5'u(2)
5p(4) 5u (1)

(15)

where d is the dimensionality. From this be-
havior we note that for d & 6 the dominant term in

the asymptotic expansion for E(r} [see (18)] must
be ——,'h'(y). From this we can conclude that E(y)
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is 'negative and both its magnitude and its range
increase as h'(r) as the critical point is ap-
proached.

The next step in the argument is to return to
the exact statement (9) and observe that the corre-
lation functions for potential (Ij) can be obtained, in
principle without approximation, by solving a
HNC equation for a potential pp = pQ E. I-f we in-
vert this line of reasoning, the solution of the
HNC equation appropriate to potential p gives the
exact correlation functions for the system with
potential pp = pp+E. It then follows that the HNC

result for potential p at each temperature T cor-
responds to a system with potential p and its as-
sociated critical temperature T;"(T). Near this
point the potential p has the asymptotic form

PA=PA--h +". (21)

IV. EFFECTIVE POTENTIALS IN THE PERCUS-
YEVICK APPROXIMATION

and as it is approached p acquires an increasingly
stronger and increasingly long-ranged attractive
tail by virtue of the fact that h(r) itself has this
behavior. Because of the overall increasing
strength of p, T,'a(T) increases as T decreases
toward the true critical point. It is this unavoid-
able variation of the effective critical tempera-
ture which leads to the absence of the usual power-
law behavior. Furthermore, the sense of the
variation of 1', implies the existence of a tem-
perature T, being simply the solution to T =T;ff (T}.
Thus the HNC equation should indeed lead to a
spinodal line. Note, however, that for any given

p(r) the existence of a corresponding p(r} is not

rigorously guaranteed. The qualitative conclu-
sions should still hold, however, even if the cor-
respondence is not exact.

From this it follows that F(r) = 6(r). The potential

p will therefore have a smaller shorter-ranged
state-dependent contribution than the h'(r) term
in the corresponding HNC case. Consequently the
PY equation should lead to critical behavior that
is somewhat closer to.that found in real fluids
since its effective critical temperature will vary
less. This is verified by the work of Henderson
and Murphy' who showed that the Percus- Yevick
equation does lead to power-law behavior, though
with mean-field exponents. The lack of an addi-
tional long-ranged attractive tail in the PY effec-
tive potential also implies lower effective critical
temperatures than in the corresponding HNC case.
This was shown to be so by Watts. '

V. POSSIBLE IMPROVED INTEGRAL EQUATIONS

As shown by Rosenfeld and Ashcroft, "provided
thermodynamic conditions remote from the critical
point are chosen, the HNC equation can be sub-
stantially improved by including an approximation
for E(r) in the choice of effective potential. Near
the critical point we have seen that E- ——,'h'(r) at
large r. If this is taken as the approximation to

E, thea an argument similar to that given by
Green" shows that the resulting integral equation
leads to a critical exponent g = —,'. This is an im-
provement over the simple HNC (q = 1) but still far
from the expected g= 0.04. The equation leads to
a critical dimensionality of 4, in agreement with

behavior expected of real fluids (note that HNC

has a critical dimensionality" of 6). The approxi-
mation

E (r) = ln(1+6) —h

for large r should lead to Ornstein-Zernike be-
havior since at large r we then have

F(r) = E(r) —1 —lny(r) + y(r},
where

y(r) =g(r)es+ ~ ~ =—g(r)esca(~)

(22)

In (22), E(r) is the bridge function for the poten-
tial p(r). We now substitute this in the exact re-
lation (7) and obtain

c(r) =g(r)(1 —e' '"') (23)

We note that (23) is the standard P Y approxima-
tion for a system with pair potential p. If p(r)
is short ranged, then for large r, y(r) = g(r).

We next remark that the solution of the PY
equation for a potential p(r) can also be regarded
as an exact solution for a system described by a
certain potential p(r) Let F(r) be .defined by

Evidently the development of an integral equation
leading to correct critical behavior will require
an independent determination of the function C(r).
The statement embodied in (19) above may be use-
ful in this respect.
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APPENDIX: COMPUTATIONAL DETAILS

'The parameters chosen for p were A = 2.03g,
a =14.7o ', and g =2.69' '. These lead to a poten-
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tial which very well approximates the Lennard-
Jones 6-12 form. The calculations were carried
out on grids in real and reciprocal space with
~y=0.02g and ~g=0.050 . The use of smaller
steps was found to make no significant difference
in the results. Real and reciprocal-space inte-
grations were normally terminated at 20m and

500 ', respectively; for the most singular points,
the calculations were repeated with real-space
termination at 30o and 40o. Again, there were no

significant changes in the results.
In all of the calculations carried out the corre-

lation length remained relatively small (=So).
Because of this it was not possible to make a
meaningful determination of q directly from the
behavior of h(r). In Ornstein-Zernike theory

(g =0}, S(0) is proportional to $'. Our results for
S(0) show, however, that the variation with $ is
somewhat weaker than this, indicating that g is
large. This is expected for HNC. To obtain a
rough idea of the shape of the spinodal curve, we
note S(0}diverges for densities of 32p, =0.183 and
-', p, =0.366 at temperatures of 1.360 and 1.349,
respectively.
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