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Four-wave parametric interactions in a strongly driven two-level system
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%e present an analysis of four-wave parametric amplification resulting from the nonlinear response of a two-level

atomic system. The atomic dipole moment induced by weak optical fields at frequencies u, and ~ 4 in the presence of
an optical field of arbitrary intensity at frequency ro„where ~, + ~4 = 2'�„ is obtained by solving the density-

matrix equations of motion with phenomenological damping constants. The resulting nonlinear polarization can

induce loss or three-photon gain in either weak wave and can act to parametrically couple these waves. The spatial

evolution of the weak-field amplitudes is obtained by finding approximate solutions to the Helmholtz wave

equations using the nonlinear polarization for the source terms. These solutions predict large gain for either or both

of the weak waves under experimentally attainable conditions. Depending on the circumstance, this gain can be

attributed solely to the three-photon gain, solely to the parametric coupling, or to an interplay between these effects.

In addition, the solutions show an enhancement in the gain when ~co,-col) = (co4-col~ = 0', where 0' is the

generalized Rabi frequency associated with the driving of the atoms by the wave at frequency u i.

I. INTRODUCTION

This paper discusses the four-wave parametric
interactions which occur when nearly copropagat-
ing electromagnetic waves at three distinct fre-
quencies interact in a two-level atomic vapor. It
is assumed that two of the waves have weak ampli
tudes while the amplitude of the third wave is arbi-
trarily large. It is found that this four-wave mixing
process can lead to parametric amplification of the
weak waves and can thus lead to the generation of tun-
able radiation: We show that strong, previouslyun-
recognized resonances occur in the gain profile at
frequencies symmetrically displaced from that of the
driving laser by the generalized Rabi frequency,
and further that the positions of these resonances
may be tuned by changing the intensity of the
driving laser.

The process of four-wave parametric amplifica-
tion and oscillation was treated theoretically by
Chiao et a/. ' in 1966 for the case of waves inter-
acting through a real X"' susceptibility, and de-
generate four-wave yarameteric amplification was
observed in CS2 by Carman et al. ' soon thereafter.
Pellin and Yardley' have discussed the possibility
of four-wave parametric oscillation utilizing the
resonantly enhanced, nonlinear response of a
multileve1. atomic system in the limit where satu-
ration effects and ac Stark shifts can be neglected.
Parametric amplification utilizing the nonlinear
response of a two-level atomic system to an ex-
actly resonant pump field has been treated by
Mollow.

The parametric amplification process that we
discuss here is closely related to that of four-
wave mixing of two counterpropagating or nearly
counterpropagating pump waves with two counter-

propagating or nearly counterproyagating weak
waves. This process also shows gain and can be
used for the generation of phase-conjugate waves, '
but it differs from the process considered here in
that the gain is not exponential and in that inter-
ference of the pump waves leads to a spatial mod-
ulation of the pump intensity which significantly
alters the nature of the interaction. Theoretical
treatments of four-wave mixing in a two-level
system for the case of nearly counterpropagating
pump waves have been presented by Abrams and
Lind' for degenerate mixing for the case of arbi-
trarily strong pump waves, by Nilsen and Yariv'
for nondegenerate mixing in the limit where the

pump waves are sufficiently weak that the atomic
response can be calculated using third-order time-
dependent perturbation theory, and by Fu and

Sargent' and Harter and Boyd' (whose methodology
is similar to that of the present paper) for the
case of arbitrarily strong pump waves.

A qualitative understanding of the origin of the
predicted effects may be obtained by considering
Fig. 1, which. shows the energy levels ~a& and ~b&

of an idealized two-level atom, separated by the
atomic resonance frequency ~„. When a weak

pump laser with frequency (d, is tuned near the
atomic resonance, at a detuning of &=~,—&„, the
laser creates two "virtual states, " shown as bro-
ken lines in Fig. 1 (a), one at an energy h~, above
the ground state ~a & and the other at an energy
h~, below the excited state ~b& It is know. n from
theoretical' and experimental" work that yhotons
from the laser will be scattered inelastically at the
two frequencies (d, + &, and m~, as shown i.n Fig.
1 (a) by wavy arrows. Scattering of a photon at
frequency (d, + & is accompanied by the absorption
of two laser photons; this process leaves the atom
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FIG. 1. (a) In the presence of a weak optical field at
frequency co&, the two-level atom scatters light at the
frequencies (d&+A and wz, . (b) In the presence of a
strong optical field, each energy level splits into a
doublet with separation 0', and the atom then scatters
light at the frequencies m& + 0'. (c) A resonantly en-
hanced, parametric coupling can thus occur between the
strong field at frequency co& and two additional fields at
frequencies ~3 and co4, where cu3+ cd4 2cof.

is the generalized Rabi frequency. As before, the
system scatters photons inelastically, but now the
scattered frequencies are ~, +' and ~g
showing the effect of ac Stark shifting. These ef-
fects have been observed experimentally both in
a collisionless" and a collisional" environment.

In this paper we point out that the effective four-
level system of dressed states comprises a suit-
able medium for a rescmantly enhanced four-wave
mixing process, as shown in Fig. 1(c). Consider,
in addition to the strong pump laser wave at fre-
quency ~„ two weak probe waves at frequencies
3 and (d4, where (d, + ~4 = 2~„and (it), = ~, —'. In
the absence of interaction between probe waves,
the wave at &, would experience gain by the three-
photon effect, whereas the wave at ~4 would expe-

in the excited state ~b &, from which it may spon-
taneously emit a photon at the atomic frequency

Since the ground state
~

a& is more populated
than the excited state

~

b &the scattering at &ui+ &
can show gain, while any photons present at ~„
will show loss due to absorption. The gain process
at frequency ~, + & is often referred to as the
"three-photon effect. "

At large laser intensities the atomic energy
levels will be shifted in energy by the ac Stark
effect." This shift becomes appreciable when the
Rabi frequency 0 = ~2 p„E, ~/W (where p„ is the
atomic dipole matrix element and 2E, is the amp-
litude of the laser's electric field) is comparable
to the detuning &. In this situation it is convenient
to use the language of dressed states, "which are
the eigenstates of the atom-plus-laser-field sys-
tem. Figure 1 (b) shows two pairs of the infinite
ladder of possible dressed states. The pairs are
separated by the energy S~, of one laser photon,
while the members of each pair are separated by
an energy @0', where

0' = (62+ 02)'~~

II. NONLINEAR RESPONSE OF A STRONGLY
DRIVEN TWO-LEVEL SYSTEM

Let us consider an atom with ground state ~a&
and excited state ~b&, as in Fig. 1(a), being driv-
en by an arbitrarily intense pump electric field E,
at frequency ~, and weak probe field E, at freq-
uency &„both tuned near the atomic resonance.
Atomic motion will be ignored. The fields are de-
noted as

E (r, t) =iE e ' &'+a~E*e'"i',

where

E =A,.e'"~'j

(2a)

(2b)

for i =1 or 3. Here & is the polarization vector for
the fields, and the k, are the propagation vectors.
These fields are assumed to be tuned near reso-
nance, in the sense that the detunings are small
compared to optical frequencies (~ &o, —~~

~
«ur„).

This problem was originally treated by Bloem-
bergen and Shen'4 using density-matrix techniques
and has subsequently been treated by other au-
thors. '"'" The results of these treatments are
quoted here. The time evolution of the density-
matrix elements p, &

is governed by the equation8

p„=—(i(o„+1/T, )A, +i@ 'V„(p„—p~),

p~ = pea~

pyn
—p„= (- 1IT,)fp» —p, —(p» —p, )')

+ 2N (V,~p~, —p, ~ V~,),

(3a)

(3b)

(3c)

rience loss by absorption. Under certain condi-
tions, four-wave parametric coupling of the probe
waves allows both waves to experience exponential
growth. As the probe waves are tuned close to the
resonance frequencies ~, + 0' of the dressed-state
system, an enhancement of the probe-wave gain is
expected. This enhancement of the parametric
gain by dressed-state energy levels is analagous
to the enhancement by atomic or molecular energy
levels in coherent anti-Stokes Raman scattering.

In Sec. II we review the theory of the nonlinear
response of a single atom to a strong pump field
at frequency ~, and a weak probe field at frequency
3. %e display graphically the absorptive and
dispersive responses at the probe frequency (d3,
and the response which can give rise to parametric
coupling to a wave at frequency 2~, —~,. In Sec.
III we solve the spatial propagation equations for
two probe waves coupled parametrically by the
pump laser, and thereby determine the optimum
conditions, including phase-matching conditions,
for obtaining maximum gain. In Sec. IV we dis-
cuss the results and give an estimate of the gain
under experimentally attainable conditions.
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where T, and T, are the longitudinal and trans-
verse relaxation times, respectively; (p» —p„)'
is the equilibrium population inversion in the ab-
sence of the optical fields; and V„ is the inter-
action energy in the rotating-wave approximation

with p.„being the dipole matrix element
(b ~erma) i. In steady state the off-diagonal densi-
ty-matrix element p, exhibits harmonic oscilla-
tions at an infinite number of frequencies of the
form n~, +m&, where n and m are integers. If the
strong field E, is treated correctly to all orders

(+ )
pba l(pbb paeI
h(~, —(u,.+i/T, ) ' (sa)

while the weak probe field E, is treated to only
first order, then pb, oscillates at three dominant
frequencies: ~„~„and 2~, —~,. We thus ex-
press p„ in steady state in terms of Fourier am-
plitudes, denoted by p„(~,), as

pn. = pro(~i)e ' ' +p~(~3)e ' '
p(2~~}e i(2klgkl3)t

bc

The Fourier amplitudes are given (to all orders in

E, and first order in E,) by'" "

(5b)

( )
2P~, I p,~I~E~2E3(p~p —p„)~'((u~ —(u, +2i/T, )

O'D ((u, )((o, —&e„—i /T, )

where (p„—p„)~' is the steady-state saturated population inversion induced by the strong field E,

(5c)

I+(~ —ur )'T'+4k'I p, I'IE I'T T '

and where D((a,} is the cubic function

D(cu, )=(cu, —co, +i /T)(co~ —co~, +i /T)(cu s—2(u, +car~, +i/T2) —48 '/ p,,~/ /E, f'(cos —co, +i/T2). (7)

The physical consequences of the three terms in

p„ in Eg. (4) are as follows: p„(~,} and p„(to,)
give rise to absorption (or amplification} of the

pump and probe waves, respectively. Our main
interest is in the consequences of the third term
p~(2~, —&u,), which we shall call the "mixing re-
sponse, "because it gives rise to generation of an
optical wave with frequency ~4=-2+,—&,. If a wave
at ~4 is already present, it may be amplified by
the effect of this term.

Before continuing with the full development of
the problem, which requires the treatment of
spatial propagation, and therefore the cumulative
effect of many atoms, it is important to under-
stand the behavior of the single-atom response,
as given by Egs. (4)-(7). To help gain insight into
these rather complicated expressions, we have
graphically displayed them for a wide range of the
important parameters. In Figs. 2 and 3 we have
graphed the imaginary and real parts of p„(&a,) as
a function of the detuning (&o, —&u, ) of the probe
wave from the pump wave, in the case that the
pump wave is tuned directly to the atomic reso-
nance (&u, = &o~, ) and the atomic line is broadened
purely radiatively (T,/T, =2}. Figure 2 shows the
behavior of the probe-wave absorption profile as
the pump field strength (in terms of the Rabi fre-
quency 0) is increased from zero to well above
saturation. The absorption profile first begins to
saturate and then, at ~T, =2, breaks up into a
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FIG. 2. The absorptive response is shown as a func-
tion of the probe-wave detuning for a pump wave detun-
ing given by (co& —ub, )T2 = 0; and the case T2/T &

=2,
corresponding to purely radiative damping.
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three-peaked spectrum, reminiscent of that in
two-level-atom resonance fluorescence. " The
positions of these peaks correspond to the three
absorption frequencies between the two pairs of
dressed states in Fig. 1(b). As the pump field
strength increases further, broad regions of gain
appear between the absorption peaks. This type of
behavior has been observed in an atomic beam. "

Figure 3 shows the corresponding behavior of
the probe wave dispersion profile. The magnitude
of the dispersion first decreases as the pump field
strength is raised above saturation, and then the
profile breaks up and finally, for very high fields,
develops resonances at a detuning equal to the
Rabi frequency. It is interesting, and perhaps
surprising, that in the limit of large Rabi fre-
quency [Fig. 3 (c)] the dispersion profile resembles
two separated absorption profiles, while the ab-
sorption profile [Fig. 2 (c)] resembles two sepa-
rated dispersion profiles.

In Figs. 4 and 5 we have illustrated the effects of
rapid collisional dephasing on the absorption and
dispersion profiles by taking the value T,/T, = 0.02,
again for the case of zero pump detuning (&u, = &u„).
For low Rabi frequencies the behavior is seen to

-0.0005 ~

-0.0010 ~

-0.0015
-200 -100 0 100 200

Probe - Wave 0etuning ( ~p +i j ~p

FIG. 4. The absorptive response is shown for a pump
wave detuning given by (~& —co~, )T2=0; and the case
T2/Tg =0.02, corresponding to rapid collisional dephas-
jng.

be qualitatively different from the previous case of
pure radiative damping. These curves decrease as
a function of the parameter AT~ faster than those
for the pure radiative case of Figs. 2 and 3, since
the parameter OlT, T, determines the amount of
saturation. In addition to a general decrease in the
magnitude of the absorption profile in Fig. 4 (a) as
the pump field is increased, a narrow hole is
"burned" into the homogeneously broadened probe-
wave absorption profile. "As the Rabi frequency is
increased from zero to a large value [Figs. 4 (d)
and 5 (d)] the absorption and dispersion profiles
again exchange shapes.

The origin of the "hole burning" dip in Fig. 4 (a)
is in the so-called "coherent population oscilla-
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tions"" which are induced by the pump and probe
waves beating together at the difference frequency

A simple analytical expression can be de-
rived for the shape of the dip as follows. When the
dephasing width T,' is large compared to the Rabi
frequency and the beat frequency (T,'» 0,

~
~,

—~, ~), Eq. 3 (a) can be solved approximately to
give the steady-state result

ba 1 2

This shows the familiar fact that the polarization
in the medium is proportional to the product of the
driving field strength and the population inversion.
When this result for p„(t) is used in Eq. (3c), a
rate equation is obtained for the population inver-
sion:

I
2

P» —P„=(-1/T,)[P»—P„(P-»—P„)']—,
[ (' &,T,i(Ex+EB+2,E, cos t}(p„—p„), (9)

where & = +3 —, is the probe-wave detuning and

where, for simplicity, we have taken E, and E3 to
be real. Assuming also that (p» —p„)'=-1, the

0.6

t
- 8-8(t-t ')8- (r/6)(sia6t-sin6t')dt I

~W —~ac- Tl

where

(10)

rate equation (9) can be solved in steady state to
give
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The parameter P may be interpreted as the rate of
population-inversion decay induced by both spon-
taneous emission and laser pumping. In the case
of interest here, the probe wave is much weaker
than the pump wave (E,«E,) and therefore y «P,
which allows Eq. (10) to be evaluated as
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where (p» —p„)~ is the dc component of the popu-
lation inversion given in Eq. (6) and (p» —p )""
are the amplitudes of the components oscillating at
the beat frequency ~, and are given by (see Appen-
dix}

(„) y 1+i&/P
(P» P„} —=

2T gm Pa ~

From Eq. (13) we see that coherent population os-
cillations are significant when & ~P, that is, when
the beat frequency & is less than the rate of popu-
lation-inversion decay.

To see how this oscillating population affects the
absorption of the probe wave E„we substitute Eq.
(12) into Eq. (8) and collect those terms in the off-
diagonal density-matrix element p„(t) which oscil-
late at the probe-wave frequency &3. This gives
for the Fourier amplitude

Probe - Wave De tuning ( ~3 elf]) T~

FIG. 5. The dispersive response is shown for a pump
wave detuning given by ((d& —cd&, )T2 =0; and the case
T2/Tg =0.02, corresponding to rapid collisional dephas-
ing.

1
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damping, corresponding to T,/T, =2. As the pump
Rabi frequency increases, the absorption profile
in Fig. 6 saturates, and positive and negative ab-
sorption peaks appear at frequencies symmetrical-
ly displaced from the pump frequency by the gen-
eralized Rabi frequency 0', again as expected
from the discussion of the three-photon effect in
Fig. 1. Figure 7 shows the complementary be-
havior of the dispersion profile. Figures 8 and 9
show the absorptive and dispersive responses for
the case of rapid dephasing, corresponding to Tj'
T, =0.02. Figure 8(a) shows the behavior of the
hole burning in the homogeneous profile when the
pump laser is detuned from the atomic resonance.
The dip in the probe absorption profile, which
again is caused by the coherent population oscilla-
tions, is seen to occur at the position of the pump
laser frequency. The positions and shapes of the
dips in Fig. 8(a} are properly accounted for by Eq.
(15). When QT, =8, in Fig. 8(b), the absorption
profile is seen to be qualitatively similar to that
in Fig. 6 for purely radiative damping. The dis-
persion profiles corresponding to the absorption
profiles in Fig. 8 are shown in Fig. 9. Again,
complementary behavior between dispersive-look-
ing and absorptive-looking features, as required
by the Kramers-Kronig relations, is evident.

In Fig. 10 we have graphed the absolute value of
the mixing response

I p„(2+, —&u, ) I
which, as men-

tioned above, gives rise to generation or amplifi-
cation of a wave at frequency 4-——2&, —, . This
term provides the coupling for four-wave para-
metric mixing, which will be discussed in detail in
the following section. Figure 10(a}, which is plot-
ted for pure radiative damping (Tj'T, = 2), shows
that for zero pump detuning (~, = &u~ ) and at small
pump fields (QT, =0.4) the mixing response is
maximum when the probe frequency &3 is very
close to the pump frequency &,. The peak of this
resonance corresponds to degenerate four-wave
mixing. At high pump Rabi frequencies, however,
the profile breaks up into a three-peaked spec-
trum, with peaks displaced from the pump fre-
quency by the generalized Rabi frequency O'. This
result is as expected from the simple discussion
of the dressed states in Fig. 1(c), and is the basis
for the qualitatively new effects predicted in this
paper. Figure 10(b) illustrates the effects of rapid
collisional dephasing (T/T, =0.02) on the zero-de-
tuning (&o, =~„)profile. It is seen that again at
small fields (QT, =0.01, 0.03) the mixing response
shows a resonance at the pump frequency (~, =&a,).
The origin of this narrow resonance, whose half-
width is T, , is the same coherent population os-
cillations which gave rise to the dip in the probe-
wave absorption profile in Fig. 4(a). By substitut-
ing Eq. (12) into Eq. (8), and this time collecting

0.25
I

0.20

0. I 5

O. IO

0.05-

rf)
ILI

O

~N

3
I

3
CU

C)

0
-16

0.05

0.04

0.03

0.02-

0.0 I

0
-I6

0. I 2

-8

-8

(b)0 T2 - 0.03

8

8

Cl

C"

O
CL

lD

0.09

0.06

0,03

0
C

0.05

0.04

6 -8

(d)

0.03-

0.02-

0.0 I

O. I

0
-I6 -8

Probe - Wa~e De tuning ( cu3
)

) T~
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shown as a function of the probe-wave detuning for the
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terms which oscillate at the frequency 2&$ 3
= &a, —&, the Fourier amplitude p„(2~, —~,) can
be found, yielding

&s E3 &2
IPba 1 3)l AT [I+ ((g (g )2T2]l/2 (82+p2)1/2

(17)

This simple expression accounts for the height and
width of the narrow resonances seen for OT, = 0.01,
0.03. At higher Rabi frequency (QT, =8) the mixing
profile again breaks up into peaks at the general-
ized Rabi frequency.

Figures 10(c) and 10(d) show the mixing re-
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sponse obtained when the pump laser is detuned
from resonance by three line widths, +~ —~,

3T-e'. While Fig. 10(d) shows a narrow reso-
nance again appearing at the pump laser frequency
~, when rapid collisions are present, Fig. 10(c)
shows no such resonance in the absence of colli-
sions. It is notable that in all four plots the reso-
nances occurring at the generalized Habi frequency
0' are the dominant features in the case of high
laser intensity (AT, = 8).

IH. SPATIAL PROPAGATION AND
PARAMETRIC GAIN

In this section we study spatial propagation ef-
fects by using the nonlinear polarization, which is
proportional to the off-diagonal elements of the
density matrix, as a source term in the Helmholtz
wave equation. This treatment will show that four-
wave parametric amplification is achievable under
certain conditions. The three interacting fields
are defined as before by Eq. (2), where now i =1,
3, or 4. We assume that the pump wave at ~, is
not depleted by its interaction with the atomic sys-
tem and we thus take its amplitude A, to be con-
stant. The probe-field amplitudes &,(r) and A, ( r)
are not constant, however, since they are coupled
by a nonlinear polarization of the form

P, (r, f) = eP,e '"&'+i*I'fe'"~' (18)

The amplitudes P, of the polarization are propor-
tional to the off-diagonal density-matrix elements
calculated in the previous section. The form of the

I

coupling between the weak fields is clearly dis-
played if the polarization amplitudes are expressed
in terms of the susceptibility as

&,=x"'("s IEil)E, +x"'(&,=» —~4, IE.I
}EIE:

(loa)

&,=x"'(~4 IEil)E.+x'"(~ =» -~~. IEil}EiE~

(19b)

where the elements of the susceptibility are re-
lated to the elements of the density matrix [given
in Eq. (5)] by

x&'&(&. IEil ) = wP. ,P-,.(~,)/E„ (20a)

x"'(~. IEil }= -».sPs, (~PE„ (20b)

x "(,=2, „IE, I)
= ~P., p~((d =2(o —a&,)/E,'Ef, (20c)

x& ~(~, =2~, ~„IE,I)
+p yp-g, (~g=2&g —&g)IEgEg, (20d)

where N is the number density of atoms. Defined
in this manner, the elements of the nonlinear sus-
ceptibility are independent of position and of the
weak-field amplitudes, but do depend on the pump-
field amplitude IE, I. This nonlinear susceptibility
is thus a generalization of the usual susceptibility
in that it properly accounts for atomic saturation.
8lnce the real part of x"' (~„ IE, I} contributes to
the refractive index for the wave at frequency „
the Helmholtz equation for the wave at frequency
+, can be written in the form

7T (dv'E, +kQ, =,'[i Imx"'(to„ IE, I)E,+x"'(ru, =2~, —~„ IE, I)E,'E*] (21)

and the Helmholtz equation for the wave at (d, can
be written in the same form under the interchange
of the subscripts 3 and 4. Here the propagation
constant 0, is given by

k, =n, ~,/c

with

ing envelope, or adiabatic, approximation
28 A, 8Ag . 48z' ' 8z '

the Helmholtz equations become

8A, h
8z

=-o~ +x~1'e' ~ (22a}

n~ =no+ 2& IteX"'(~&~ IE. I
) ~

no denoting the refractive index of the vacuum, or
of any buffer gas present. It is convenient to de-
fine the propagation direction of the pump wave to
be the positive z direction, which is taken to be
perpendicular to the input face of the nonlinear
medium, and to consider the three waves to be
nearly copropagating in the sense that the sine of
the angle between the propagation directions of any
two of the three interacting waves is much less
than unity. By further introducing the slowly vary-

8A4 = -N4A4 + K4A38 (22b)

where 4k is the z component of the propagation
vector mismatch

&k = 2k( —k3 —k4, (23)

which is constrained by phase-matching consider-
ations to be perpendicular to the input face, as
shown in Fig. 11, and where the coupling constants
are defined by
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the lowest-order contributions to the nonlinear
susceptibilities in Eq. (20) need be considered.
Furthermore, the absorption coefficients n3 and
n4 are then negligible compared to the mixing co-
efficients a3 and rc4 as long as the pump intensity
is not too small, and in this case the gain coeffic-
ients take the simple form

PIG. 11. The phase matching conditions are shown
for (a) colinear and (b) noncolinear propagation. Note
that the scalar mismatch ak =if.z is greater in (b)
than in (a).

g, = ++4z3s4 —&k')'~', (2V)

where z, and z4 are given by Eqs. (24c) and (24d),
and where the susceptibilities are now real quan-
tities and are given by the expression

+3 2&
~~ ™x(~3

I
Et I)

n3C

u, =-2;, "'lmx"'( „IE, I),
84C

(24a)

(24b)

(+3=»~ —~4
I ~l) =x"'(~4=2"

~
—~»

I ~ I)

2A 'Ntp&, I

(&o& —~„)(~,—&u~, )(&u4 - ~~,)

(26)

K3 = -2Ãi x (433 =2
g
—(04p IEg I)Ag,

. 473 (3) 2

n3C
(24c) .

. (d4 (3)«4= 2si -X "(~4=2~~ ~» IE~ I)A~ .
n4C

(24d)

The coupled amplitude Eqs. (22) can be solved
for arbitrary initial values A3 and A4 of the field
amplitudes A3(z) and A4(z) at the boundary z =0 of
the nonlinear medium to give

A3(z) =(g, -g ) 'gz3A4 -(g + @3+ink/2)A)]ez '
—[z,A4 —(g. + n3+ i&k/2)A', ]e™j

g ae/2
(25a)

A4(z) =(g, —g ) ([z4A3 —(g + @4 —i&k/2)A4 ]ez~'

-[a,A', —(g, + o —i&k/2)A', ]e™]
-&&ac/2xe (25b)

where the gain coefficients g, are given by

g, =~-,'[(a3 —a4+i&k)'+4 , 4z]s'
' —go., + n4) . (26)

The amplitudes A3 and A4 thus consist of linear
combinations of two solutions with exponential z
dependence. From the definition of g, it is seen
that the real part of g, is always greater than the
real part of g . Under appropriate circumstances
the real part of g, can be positive and the medium
will thus show gain. The amplitudes A3 and A4 are
also functions of the phase mismatch per unit
length &k.

While Eqs. (25) and (26) constitute a complete
solution to the propagation problem, their form is
rather complicated, and thus some intuition into
their nature is afforded by considering the case
where all three waves are detuned many line-
breadths Tz' from the line center and where the
pump intensity IA, I

is sufficiently small that only

This form for the susceptibility can be derived
using third-order, time-dependent perturbation
theory, and is the form used in an earlier treat-
ment' of four-wave mixing with two counter-prop-
agating pump waves. Since e3 ——tc4 for this choice
of the susceptibilities, the product ~3e4 is real,
and thus the gain coefficient obtains its maximum
real value g = g-=

I "3I =
I "41 for &k=0. For

this case of perfect phase matching 4k=0, the
wave amplitudes A3(z) and A4s(z) of Eqs. (25) are
given by the simple expression

A3(z) = 2A3(ez+'+ ez )+~2'A4 (e~' —ez-*), (29a)

A4 (z) = YA4~(e +'+ e™)+~A3(ez+' —ez~) (29b)

where the upper or lower sign is to be taken de-
pending on whether x' '(~4 ——2&v, —&u„ IE, I) has a
positive or negative value, respectively. It can be
shown analytically that the choice &k= 0 maxi-
mizes the intensities of both output waves for arbi-
trary initial conditions, as long as there is no tem-
poral coherence between the input waves. The so-
lutions (29) show that an incident wave at either
frequency &u3 or (u4 can create and/or amplify.
waves at both frequencies (d, and (d4. The two
waves grow purely as a result of their parametric
coupling via four-wave mixing, in contrast to the
more general case where the three-photon effect
[Fig. 1(b)] constitutes a mechanism for nonpara-
metric gain.

The solutions given in equations (29) are for &k
= 0. If all three waves are tuned to the low-fre-
quency side of resonance, the phase mismatch 4k
will be negative for colinear propagation and thus
the optimum phase-matching condition 4k =0 can
be achieved for some relative orientation of the
probe beams. Conversely, if the waves are tuned
to the high frequency side, perfect phase matching
4k=0 will not be possible.
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FIG. 12. The probe-wave gain is shown as a function
of the probe wave detuning for the case (~& —(d~, ) T2=8;
O'T2=25, T2/Tg =0.02, upL =2500, and4k =0.

For the more general case in which we cannot
assume large detunings and weak fields, the gen-
eral form of the wave equation solution (25), (26)
must be used, and for this case we again take the
approach of graphically displaying the solutions for
some typical cases. In Fig. 12 the probe-wave
gain IA, (L)/A3I is plotted as a function of u&3 (of
under the assumption of equal input amplitudes
A,'=A4, and using the conditions T2/T~ ——0.02,
corresponding to a collision-dominated medium, '

(&u, —&u„)T2 ——8; O'T2 ——25; bk =0, corresponding
to the condition of perfect phase matching, ' and
n, L = 2500, L being the length of the medium and
no being the weak-field, line center, absorption
coefficient given by

(80)

The form of the gain curve illustrates resonant en-
hancement for probe fields detuned from the pump
field by approximately the generalized Rabi fre-
quency 0'.

In order to illustrate the origin of the dips in the
gain curve exactly at the generalized Rabi fre-
quency, we have plotted in Fig. 13 the output in-
tensity of the waves at frequencies ~3 —~f +~ as a
function of the phase mismatch 4k. These curves
show a sharp decrease in output power at perfect
phase matching, 4k =0. This occurs. because the
wave at ~, + 0' shows gain by the three-photon ef-
fect, while the other wave at ~, —0' shows loss by
absorption. Thus, the wave at co, + 0' is suppres-
sed by strong coupling (&k =0) to the one at to,- 0', and shows maximum gain for increasingly
weak coupling (&k large), while the wave at v,
—0' shows maximum gain when the coupling is
strong enough to allow it to be dragged along by
the wave at co, + 0', but not strong enough to pre-
vent the growth of both waves. This effect is

I8

I2

O

o
O

I

O

o 0
—O. I

Phase mismatch b,k/a

O. I

FIG. 13. The probe-wave gain is shown as a function
of the phase mismatch at the frequencies: (a) (ds =co~
+ 0' and (b) cu3 = co& —P.' for the same choice of param-
eters used in Fig. 12.

analogous to the suppressed production of Stokes
and anti-Stokes radiation in the phase-matched di-
rection for the case of stimulated Raman scatter-
ing. "

To illustrate the behavior discussed above we
show in Fig. 14(a) a gain curve obtained using
the same parameters as in Fig. 12, except that
instead of taking 4k =0 we have, at each value of
w„selected numerically that value of 4k, shown
in Fig. 14(b), which maximizes the output intensity
IA, (L) I'. In performing this optimization we have
assumed that 4k can be varied only by changing
the propagation directions of the probe beams,
and thus 4k is constrained to be greater than or
equal to the value of 4k obtained for colinear
propagation, as shown in Fig. 11. For the peak
at ~, = ~, +O', Fig. 14(b) shows that optimum
generation requires a very large phase mismatch.
This large mismatch has the effect of decoupling
the probe waves, so that the wave at ~, grows
almost entirely by the three-photon effect and the
wave at (d4 =w, -Q' thus shows no gain. For the
peak at (o, =re, -O', Fig. 14(b} shows that optimum
generation requires a large but finite phase mis-
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match, which allows the waves to couple, but
only weakly. The wave at 4 =, +Q' can then
grow by the three-photon effect, and the wave at
(J/3 is dragged along by the par ametr ic coup ling
and shows net gain.

In Fig. 15 we show the gain curve which is
analogous to that of Fig. 14 but for the case
T,/T, =2, indicating pure radiative damping, and

~oL =100, chosen because of the larger gain for
this case. The parameters (~, —&o~)T, =8 and
O'T, =25 are again used, and 4k is chosen to
optimize the output intensity. In addition to the
gain being larger in this case, the gain curve is
broader in terms of the dimensionless frequency
(~. —~i)T..

The curves shown in Figs. 12-15 assume the
boundary conditions A, =A4, corresponding to
equal input intensities. The results are found to
be qualitatively similar if boundary conditions
of the formA,'0, A4=0 are taken, which shows
that an input at either ~3 or ~, is sufficient to
generate output waves at both ~, and ~~.

FIG. 14. (a) The probe-wave gain is shown for the
same parameters as in Fig. 12, except that, at each
value of co3, dk is numerically selected to maximize
the intensity of the output wave. (b) The resulting opti-
mum phase mismatch Qk /no is shown.

IV. DISCUSSION

The treatment of propagation effects given in
the last section indicates that under certain
conditions large gain is achievable by four-wave
parametric amplification. We wish to point out
here that these conditions may be met in typical
experimental situations. Consider a vapor of
atoms having a resonance transition with oscillator

0
strength equal to unity, at a wavelength of 6000 A.
The two relevant levels will then be connected by
a dipole transition moment with magnitude p =6.5
x 10 "esu, leading to a full width at half maxi-
mum (FWHM) natural line breadth 6v =(2pT, )

'
=10 MHz.

The theory presented in this paper does not
treat transitions whose breadth is due predomi-
nately to inhomogeneous broadening. In an atomic
vapor, Doppler broadening will lead typically to
an inhomogeneous line breadth of 1 GHz. Colli-
sions can increase the homogeneous line breadth
well beyond the radiative breadth, however, and
if the collisional line breadth is much greater than
the Doppler line breadth, the theory presented
here is expected to be valid. The case where the
collisional line breadth (wT, )

' is just equal to
the Doppler breadth comprises a limiting case
to the general applicability of this theory and cor-
responds to the condition T,/T, =0.02 used in
many of our numerical examples. Collisional
broadening may result from broadening by a
foreign buffer gas or may result from self-
broadening. The latter mechanism limits the
number density of atoms of the active species
that can be present, without exceeding the 1 GHz
line breadth assumed above, to be less than 10"
cm '.

We shall consider for illustration the experi-



422 BOYD, RAY MER, N ARUM, AND HARTER

mental conditions for which the gain predicted
by Fig. 14(a) would be measurable. Using the
value T, =0.32 nsec implicity assumed above,
the parameters used to generate Fig. 14(a) cor-
respond to a pump laser detuned 4.0 GHz to the
blue side of line center, and the peaks in the gain
curve occur at detunings of +12 GHz from the laser
frequency. All three waves are thus detuned from
line center by many Doppler breadths, further
reducing the effects of any residual inhomogeneous
broadening. The number density of the active
species is chosen as 5 x10" cm ', and the number
density of the buffer gas is chosen to give a col-
lisional line breadth of 1 GHz, and is thus ap-
proximately 10" cm '. An interaction length of
L =1.0 cm therefore corresponds to the value
o,Q =2500 assumed in the figure. For the value
of the matrix element p assumed above, the
Rabi frequency Q =2v (11.8 GHz) assumed in Fig.
14 requires a laser intensity of 1V kW/cm'. As-
suming the beam is focused such that its confocal
parameter is equal to L, this intensity can be
obtained with a laser power of 200 mW.

Tam" has recently reported the amplification
of a weak probe wave, derived from his pump
laser, in the presence of a cw laser beam focused
into sodium vapor, and Skinner and Kleiber"
have recently reported the generation of radiation
at new frequencies, emitted in conical rings, by
focussing a pulsed laser into barium vapor. We
have verified experimentally that rings of the
type observed by Skinner and Kleiber are also
produced in sodium vapor, and we are attempting
to explain their origin in terms of the four-wave
parametric process described here. Other com-
plicating effects, such as self-focusing, will
have to be taken into account.

Finally, the large gain predicted by our calcula-
tion suggests that by enclosing the nonlinear
medium in an optical cavity resonant at frequencies
(f73 or (d4, or both, it should be possible to con-
struct a four-wave parametric oscillator based
on resonantly enhanced mixing near a two-level
resonance. Such a device might be useful for
converting the output of a fixed-frequency laser
into radiation tunable over a modest spectral
range.
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APPENDEX

-g~ -(2/d)&siadt siadt gd1+++dt slnd&3$~
bb aap -p =-— e e

y 40

(AS)

where T =t -t', and by noting that in the region
of principal contribution to the integral (i.e. ,
7' &1/p) we have 5r &5/p «1 and yr & y/p «1.
This allows us to replace cos5w by unity and
sin@ by 6& and evaluate the resulting integral:

1
p -p .———J| e e" ~edr

bb aa'
1 0

1
e '(1 yr cos5t—)dr

Tl 0
(A4)

+ y e'~t+ y —e "'1 1 1
T,P 2T, IP 2T, P

which agrees with Eq. (A2) in the present limit
Q «P.

The final step in showing that Eq. (A2) is, in

fact, valid for all values of 5 is to realize that
the two limiting regions of 5 assumed above
(5»y and 5 «p) are actually overlapping regions.

In this Appendix we shall describe the approxi-
mation method which, under the provision y «p,
leads from Eq. (10) to Eqs. (12) and (13). Starting
from Eq. (10), which is reproduced here

t
e-N(t- t') e-(v A)(simdt- sisd t')dg~

~bb ~aa

(Al)

we consider two limiting cases, 5»y and 5 «P,
in turn.

First, the case 5»y is treated simply by ex-
panding the integrand in Eq. (Al) to give

t
p -p„=-— e ~" "'[1-(y/5xsin5t-sin5t')]dt'

] «Cl

1-t5/P, „y 1+f5/P

(A2)

which is seen to be identical to Eqs. (12) and (13)
when -1/T, P is recognized as the dc component
(p»-p„)~' of the inversion.

Second, the case 5 «p is treated by rewriting
Eq. (Al) in the form
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