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A11 effective Hamiltonians fulfilling three very general conditions are derived. It is shown that they all stem both

from a transformation operator implicitly defined by a nonlinear equation, and an arbitrary "diagonal" and

nonsingular operator. The canonical case is discussed, as well as the particular restrictions that lead to the previous

schemes of Bloch, des Cloizeaux, and Jbrgensen.

I. INTRODUCTION

No one can deny the fundamental role played
by effective Hamiltonians in the quantum theory
of matter. To name some of the more important
cases: Nuclear shell, atomic shell, Foldy-+ou-
thuysen, Born-Oppenheimer, crystal and ligand
field, Pariser-Parr-Pople, Bardeen-Cooper-
Schrieffer, Hubbard, Anderson, Heisenberg,
Ising as well as all other spin Hamiltonians used
in the theory of magnetism, are nothing but ex-
amples of suitably defined effective Hamiltonians.

Mathematical (symmetry} or physical arguments
are often used in order to reduce the number of
terms appearing in model Hamiltonians, so that
comparison with experiments may be possible.
But in the end a full understanding of the problem
requires tracing back the origin of each term in
the model Hamiltonian by assimilating it with
a well-defined effective Hamiltonian, difficult
as this last step may be.

Several reviews have been made of the subject'~'
wherein abundant references may be found, but
somehow the problem does not seem to have been
studied in its full generality. In a previous work'
it was discussed how one may derive all effective
Hamiltonians H, which satisfy three very general
conditions [see Eqs. (6)-(8) below]. It was shown
there that H~ is not uniquely determined due to
the arbitrariness in the election of a diagonal
[in the sense of Eq. (16}]and nonsingular oper-
ator P&. In what follows we discuss how to solve
in detail the different cases as well as the con-
nections with the more usual schemes and, in a
superficial way, with perturbation theory. It turns
out th'at there are two cases from which all others
may be derived: the unit-diagonal case; which
turns out to be the generalization of Bloch's
approach, ' and the canonical-symmetric case
which is the generalization of des Cloizeaux's
and Soliverez's' approach. All other effective
Hamiltonians may be related to some of these
two cases.

II. THE GENERAL EQUATIONS

We consider the discrete eigenvalue problem

ff~&&=E Io&, &n~P&=6 e ( nP=1, 2, ", }n,

of a given Hermitian Hamiltonian H, within the
vectorial space 4 spanned by a finite subset of
eigenvectors of a soluble part H, . That is, if

H=HO+ V, (2)

where the eigenvalues e and the eigenvectors

~
a&, are known, then I1 is spanned by the subset

g o'&0], where o' = 1,2, ...,n.
The spectral decomposition of H, is

H, = pep
where P, is the projector over the manifold 0,
spanned by the eigenvectors

I
o')0 =

~

e,j) (j = 1,2,
...,g, }with g, -degenerate eigenvalue e. That
ls,

(4)

P, = e,g e,g, P ~ =5,~P (5)

then

(6)

(b} There is a one-to-one correspondence be-
tween the eigenvectors of H and H~,

The advantage of using projectors is that the for-
mulation is then independent of the specific elec-
tion of the degenerate subset [~ e, j&j, thus making
the bookkeeping easier and the notation simpler.

Experience shows that a judicious choice for
the effective Hamiltonians H~ associated both
with H and Ho fulfills the following conditions.

(a) H and H~ have the same set of eigenvalues,
that is, if
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P H+ .=5,P~Hj, . (8)

As there are in the literature several examples
of non-Hermitian effective Hamiltonians, "S
is not necessarily unitary. It is sometimes con-
venient, though not required in our treatment,
to impose the adiabatic condition

Jn&=Sia&z, ia&z=S 'ia&,

where S is the nonsingular transformation oper-
ator called by some authors the wave operator.

(c) H~ has no matrix elements connecting eigen-
vectors belonging to different eigenvalues of 0„

as it is easily seen from Eqs. (6}, (14), and (3).
It is now convenient to define the diagonal part

()4& of an operator A with respect to H0 by"'

(4)= Qp~, . (16)

Then A is said to be diagonal if A = ()4&. It follows
from Eqs. (4), (8), and (14) that H„Hz, and W~

are diagonal:

H, = (Ha&, H~= (H~&, W~= (W~&. (11)

Upon multiplication with S by the left, and taking
due account of Eqs. (14) and (2), Eq. (10) becomes

linHs =.H .
p'» o

(9) [H„S]=SW,-VS. (18)

Hs=S '+S (10)

There is an infinite number of effective Hamil-
tonians that satisfy Eqs. (6}and (7). Assume that

where A and 8 are nonsingular operators. From
Eqs. (6), (7), (10), and (ll) it then follows that

H„=A-~HA=HH~-~, a( ),=~ &„, (12)

It should be noticed that, because of condition

(c), each (a&~ belongs to a single manifold 0,.
Therefore the eigenvalue problem of Hs can be
solved separately within each manifold 0,. The
eigenvectors

~

c'&~ are the effective eigenvectors
or good zeroth-order eigenvectors, and are not
necessarily orthogonal unless Hs is Hermitian.
The remainder Via Eq. (2) is not required to be
small except when one takes a perturbative ap-
proach. The latter is not always the case because
sometimes either one can find an exact solution,
or one wishes to generate effective Hamiltonians
with disposable parameters to be adjusted from
experiment. The latter is, for instance, the case
of the spin Hamiltonians used in the theory of
magnetism, the former being unfortunately a
very rare event.

From Eqs. (6) and (7} it follows that if (
~
ct&~J

is a complete set of basis vectors, then

We now have to solve Eq. (1S) for 8 and Wz.
It should first be noticed that no information is
contained there about P&. This comes about, be-
cause for an arbitrary operator A, it always
happens that

[H„g&]=0. (19)

On the other hand, it may be easily verified that
the nondiagonal part A —(4& is fully determined
from [H„A], being given by'

A= Q&+ h, ([H„A]),

where h, is the superoperator

h, (A)= gg (21)

Equation (20) is the generalization to operators
of the weB-known vector identity

a=h(h ~ a,}—hx (hx a),
where h is an arbitrary unit vector. The oper-
ator H, plays the role of h, and the superoper-
ators (), [~H, ] and ho play the roie of the dyadic
operators hh, hx, hx. From this analogy it seem~

reasonable to call h, ([H„A]) the normal part of
A (with respect to Ho). From Eqs. (1S) and (20)
it follows that

8= (8)+ ho(SW~ —VS) .

H„[ &„=E
( )„, [ ) A~ (13)

thus showing that Hz is as good an effective Ham-
iltonian as Hs. One of our goals is to fully charac-
terime the family of transformation operators that
fulfill the given conditions.

It turns out that it is convenient to write

Taking the diagonal part in Eq. (18) we obtain
for the level-shift operator the condition

(8&Wg= (VS),

where use has been made of Eq. (19) and of the
properties,

(23)

s=&o+ @'s (14) (A(B»= (A&(B&, H, (A)= (A)H, .
The operator S's is often called the level-shift
operator because

W, (~&,=(H. -s.)[a&,=~.~a&„ (16)

Equations (22) and (23) implicitly define 8 as a
function of H„V, and (S&. The indetermination
in the election of S discussed in connection with
Eqs. (11)-(13)is now seen to reduce to the in-
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determination in the election of (S). From Eq.
(23) it is evident that Ws is not fully defined if
(S) is singular. Therefore it is necessary that
(S) ' exists, and Eq. (23) then gives

Wq = (S) (VS) ~ (25)

~. ia&= (S&ia&, . (26)

From its nonsingular character it is thus seen
that (S) connects in a one-to-one correspondence
the eigenvectors of H~ with the projections of the
eigenvectors of H.

UR is the particular transformation operator
such that

The operator (S) has a very simple physical
meaning that we now discuss. If ~a&s is an effec-
tive eigenvector belonging to 0„ from Eqs. (7}
and (16) it may be shown that

is used. In the last case one makes successive re-
placements of the second member Eq. (31) into
the argument of ho, and collects terms of the
same degree in an order parameter X. It is then
seen that writing H„ to order & is equivalent
to eliminating to that order the nondiagonal part
of V in Eq. (10). It was from such a point of view
that Van Vleck' "first introduced the idea of an
effective Hamiltonian.

The problem of the class of remainders V such
that Eq. (31) defines a nonsingular operator R
(or a linearly independent set of eigenvectors

~

a&s} is to our knowledge still unsolved. In what
follows we shall always assume the existence
ofR i.

From Eq. (32) it is easily seen that Ws is not
Hermitian. Therefore its eigenvectors

~
n&„,

w (33)
(R&= 1,

it is seen from Eq. (26} that

(27)

()=&.
) &, (28)

From Eqs. (7), (13), (28), and (11)we obtain

are not orthogonal and, as may be seen from
Eq. (28), not even normalized. It then follows
that, in general,

s( I&&a= @~)... (34)

S=R(S),
while from Eqs. (12), (14), and (24)

Wq = (S) 'Ws (S) .

(29)

(30)

The problem is thus reduced to the study of the,
unit-diagonal operator R, and its corresponding
level-shift operator W„. From them one may
obtain all the operators S and S'~ through the
use of Eqs. (29) and (30}, by making an up to
now arbitrary choice of the nonsingular operator
(S). Equation (29) shows that all transformation
operators have the remarkable property that
S(S) ' is independent of S (see the discussion
below).

R = 1+ho(R (VR) —VR },
W„= (VR).

(31)

(32)

Equation (31) determines R as an implicit func-
tion of Ho and V. The projected version of this
equation was first found by Bloch' using an ap-
proach completely different from our own. His
operators '4 and A correspond to our RP, and
W„'P„respectively.

In a few cases, it is possible to solve R ex-
plicitly, ' but more often a perturbative approach

III. THE UNIT-DIAGONAL CASE

We will now discuss the determination of R and
Ws. From Eqs. (22), (27), and (23) one easily
obtains

where g~ is the metric matrix of the basis set
(~ a&s}. The eigenvalue equation (33) determines

) n&s up to an as yet indeterminate coefficient
c . In order to fix its value we have to use the
orthonormality of the eigenvectors

~
a&, that

ls,

This indirect method can be made explicit in the
following fashion. From the eigenvalue equation
for Ws we first determine a set (~ o'&,}of initial
eigenvectors where we make some arbitrary but
explicit choice of normalization, the metric ma-
trix g, being given by

(36}(c(}N=((&~&);.

The eigenvector
~

&&s is then related to
~
&&; by

~ —C Qg, (37}

(38)

and also to define the matrix C with elements

C z= 5 zc, C~=C. (39)

As may be easily verified, the unit operator can
be written as

&L&:;&.' ~;(&&' (40)

where all c, may be taken to be real and positive.
In order to make use of Eq. (35) it is convenient
to use the matrix representation of R in the basis
(( & },

(R,},~=, (& ~R ~P&, ,



GENERAL THEORY OF EFFECTIVE HAMILTONIANS

Inserting (40) into Eq. (35) and using Eqs. (37)
and (39) we obtain

(41)

(42)

where it is now seen that the argument is also
a positive definite matrix as long as R is non-
singular. Therefore, it is now known how to
normalize the

i

o'&s's which are thus completely
determined.

Once the
i
&&s's are known, the metric matrix

g~ can be written in terms of R~ using Eq. (41)
with C=1,

R~.g~&. R~ =1,

(g~t x g )a/2

The square root of matrixR~ g~ R, always ex-
ists as long as

i
n&, (that is,

i
+&„}is a complete

set of linearly independent vectors. In that case
g,. is an Hermitian positive definite matrix, and

gP/' exists. Then Eq. (41) may be rewritten as

[( -x/2 R )i g-1/2R ] 1/2

R 1+ ho(R V (RtV}Rt) (48)

and Eq. (46).
Next we consider the equation defining R '.

Upon multiplication of Eq. (10) by the right with

S ', and making use of Eqs. (14) and (2) it follows

for S=R,

[/f, R ~]=R -'V —W„R -'

From Eq. (20) we obtain

R &= (R i&yh (R iV W~ &)

and taking the diagonal part in Eq. (49),

(49)

(5o)

(51)W„(R '&= (R 'V) .
Notice that, in general, (R '&0 (R) '= 1. Writing

R '= (R ')T, (52)

where, for the time being, we assume the exis-
tence of (R ') ', replacing into Eqs. (50) and (51),
T is found to satisfy the equation

that is,

g~ =R~ ~ R~. (43)

T= 1+ho(TV —(TV&T),

while

(53)

W„= &VR&i= (RiV&

i
a&= (Ri) 'i a&„.

(46)

(47)

In order to do so we have to find first the connec-
tions between R~, R ', and R.

We start discussing the equation defining R .
Taking the Hermitian adjoint of Eqs. (31) and (32)
we find

It is now explicitly seen how the completeness
and linear independence of the basis (i o'. &s} are
equivalent to the non singular nature of R.

In order to fully establish the connections be-
tween our approach and that of Kato" ~' and Bloch'
one should work in terms of biorthonormal bases.
For that purpose we introduce the new basis

(i &&sj defined by.& iP&. =.&-le&, =5., (44)

For the benefit of the readers not familiar with

the concept of biorthonormal bases, we should

mention that they are very often found in the

physics literature disguised under names such
as reciprocal bases (crystallography), bras and

kets (quantum mechanics), or covariant and con-
travariant bases vectors (electromagnetism}.
They are the natural concepts whenever one is
dealing with a nonorthogonal basis.

We will now prove that the
i

&&„'s are nothing

but the properly normalized eigenvectors of W~,

(45)

where

W„= (R ')(TV&(R ') '. (54)

Comparing Eqs. (53) and (48) we see that T and
Ri satisfy the same equation. It therefore follows
that T Rt and

R '= (R '}R~, (R i&= (R "R) i,

Ws = (RtR) i&RiV&(RtR),

(55)

(56)

R'R (58)

thus proving

i

a&„=R'R
i
a&„ (59)

to be the vector biorthornormal to
i n&s Equation.

(35) leads immediately to Eq. (47) thus proving
all our previous equations.

Equation (59) may be used to transform any
expression written in terms of biorthonormal
bases so that it contains only ) n&„and R. Thus
Bloch's operators' A, 13, 6', and P may be written
as

A= W„(RtR) 'P„B=P,(RtR) 'P, ,

O'=RP (R R) P„P=RP~(R R) PP (60)

where it is seen that &R ') is a positive definite
operator whenever R is nonsingular. From Eqs.
(33), (46), and (56) we obtain

(57)

thus showing (R R
i
&&s] to be the eigenvectors of

Ws. Finally, taking into account Eqs. (35) and

(1) it is easily seen that
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Kato's" "approach is based upon a perturbative
expansion of P, which obviously turns out to be
more cumbersome than that of R. 'The importance
of his work is that he gives criteria for the con-
vergence of the perturbation series.

At. first sight it might seem curious that a non-
Hermitian operator like W„should have real
eigenvalues. A little reflection shows that this
is nothing but a trivial consequence of Eqs. (33),
(45), and (44).

IV. THE CANONICAL FORMULATION

fied to be Hermitian,

as= ~s.
The transformation operator

S=R(S)=R(R R) ' (U)

where

&U) '= &U&',

then turns out to be unitary,

(68)

(69)

(70)

(
a&~ = U(RiR }'i'(n&

where

U'= U-'

(61)

(62)

v& (I3) = &&(R'R(&& =5.&. (63)

According to Eq. (28) the (a&v's are permissible
effective eigenvectors if

&S&= (R'R P'e-'.

One may raise at least two objections to the
use of non-Hermitian effective Hamiltonians. The
first is mainly of a practical nature: non-Hermi-
tian operators are clumsy because of the nonortho-
gonality of its eigenvectors. The second is a more
fundamental one: While in an exact formulation
the eigenvalues of W~ are always real, this does
not necessarily hold for the approximate effective
Hamiltonians obtained from perturbation theory.
Therefore, if a not too high price is to be paid,
one should always prefer to deal with Hermitian
effective Hamiltonians.

For this purpose it is best to start discussing
the orthonormalization of set ((c'&„]. There is an
infinite number of transformations yielding an
orthonormal set of basis vectors {(a&vj, all of
which are obtained when varying the unitary oper-
ator U in the following equation:

Equations (66) and (69) therefore define the more
general canonical transformations leading to
Hermitian effective Hamiltonians.

An evident choice is

(U&= 1 (71)

which corresponds to L'owdin's symmetric ortho-
normalization" of the (a)s 's. This was the im-
plicit election made by des Cloizeaux' and the
present author' in order to obtain Hermitian ef-
fective Hamiltonians. From Eq. (65) this choice
is equivalent to the condition

(S)= (S) (72)

Other possible unitary schemes have been dis-
cussed by Klein' and JSrgensen' but we will not
deal with them here. For all nonperturbative
schemes it is easy to establish the connections
with our general approach. This is not so for
those schemes which are essentially perturbative
in nature, as that of Van Vleck, ' "because then
the choice for (S) is not explicitly made and it
is not easy to unravel it. Nevertheless, JPrgen-
sen' has discussed how to transform both Van
Vleck's and Prima's" methods so that they both
satisfy Eq. (72). We give below the relationship
between some of Jf(rgensen's operators and our
own, thus showing them to be redundant:

G =P,W~„u =SP„p=P, &S&P, ,
As Eq. (55} shows that RtR is a diagonal operator,
therefore U should also be diagonal,

t=P,S ', 7'=PQ '. (73}

U= (U),
thus giving

&S&= (R~R)-112&U& i

where

(64)

(65)

It is remarkable that Jg(rgensen was able to find
most of our results in spite of the complications
introduced by his constraining to a projected for-
mulation.

V. CONCLUSIONS

(U) '= (U) . (66)

The corresponding effective Hamiltonians [Eq.
(30)] are

(67)W =(U)(RR) W (RR) (U)

which from Eqs. (56) and (46) may be easily veri-

It has been shown that under the very general
conditions [Eqs. (6)-(8}]there are an infinity of
effective Hamiltonians equivalent to the original
one. All of them are obtained from the transfor-
mation operator R defined by Eq. (31) and an ar-
bitrary nonsingular diagonal operator (S). All
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operators appearing in the effective Hamiltonian
schemes devised by different authors may be
written as functions of R, (S), and the projection
operators P, . All canonical formulations reduce
to some specific choice of the unitary diagonal
operator (U) in Eq. (69). Perturbation theory
follows from an iterative solution of Eq. (31},and
the corresponding expansions for the related oper-
ators. No study was made of the class of remain-
ders V, Eq. (2}, such that Eq. (31) defines a non-
singular operator R, which remains an open prob-
lem. There does not seem to be much room for
relaxing the conditions [Egs. (6}-(6)],so it is
expected that the effective Hamiltonians here
defined are the most general ones.

In referring to the relative merits of the different
choices for (S), 1 do not feel that any general pre-
scription can be given. Numerical considerations
might make preferable the unit-diagonal scheme

(S)= 1, where the number of operations involved
in any calculation are reduced to a minimum. If
Hermitian effective Hamiltonians are required,
in certain cases an Hermitian (S) may be con-
venient, corresponding to a symmetric ortho-
normalization of the

~

+)„'s, but in other cases
a canonical orthonormalization" might be more
suitable. This can be so because, while the
symmetric basis is highly localized being of the
Wannier type, the canonical basis is strongly
delocalized, being of the Bloch type. "

No detailed discussion has been made of the
different perturbative schemes. 'This is a field
where there seems to be ample room for improve-
ment, particularly in what refers to the partial
summation of terms in many-body systems. This
field might perhaps profit from the more explicit
expressions here given for the freedom in the
choice of effective Hamiltonians.
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