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A formalism is developed for the study of autoionizing states under the influence of strong lasers. It is cast in both
a semiclassical as well as a fully quantum-mechanical form. A set of integrodifferential equations is derived and
solutions are obtained for certain special cases. It is demonstrated that the strong field causes significant distortion
of the line profile and that new effects appear in double optical resonance when autoionizing states are involved.

I. INTRODUCTION

For our purposes in this paper, an autoionizing
resonance’ is to be understood as a bound state
involving the excitation of two electrons whose
total excitation energy is above at least the first
ionization threshold. As such it is bound only in
some approximation that neglects its interaction
with the continuum in which it is embedded. With
this interaction included, the state becomes un-
stable against ionization with one electron being
ejected. Since this is not the place for a com-
prehensive cataloguing of the literature, we sim-
ply cite some of the original experimental work
of Garton and Codling,? Madden and Codling,® and
the more recent work of Brown ef al.* 1t is the
observation of autoionizing resonances in photo-
absorption that is relevant to this paper because
our aim is the description of their behavior under
strong light. '

With the availability of strong tunable lasers,
the first generalization of this work was under-
taken by Armstrong, Wynne, and collaborators
who in a series of papers™® reported the obser-
vation of autoionizing resonances through two-
photon excitation as well as the excitation of highly
excited states through three-photon absorption
in alkaline earth atoms. The major difference
from the single-photon excitation is that the parity
of a two-photon-excited autoionizing resonance
is the same as that of the ground state owing to the
well-known selection rule for two-photon absorp-
tion. Obviously these are autoionizing resonances
that can not be reached via single-photon absorp-
tion. In a series of different experiments
Gallagher, Cooke, and collaborators™® have used
two lasers to reach autoionizing states of Sr and
Ba. Typically, they use two lasers in a two-
photon excitation of a Sr Rydberg state as, for
example, in the transition 5s®-—5snd. A third
laser is then used to cause the transition 5snd
- 5p;nd which leads to autoionization since the
state 5p;nd is above the continuum threshold.

Autoionizing resonances can also be excited by

tal

electron collision. In usual experiments of this
type, the observation was limited to the decay of
the resonance. But the intensity and resolution
offered by lasers has made feasible a new type of
experiment reported by Langendam ef al.® It is
the photoexcitation of an autoionizing resonance
from a lower one which was created by electron
attachment. In that experiment, by crossing an
electron beam with a laser in the presence of Ne
atoms, they formed a scattering resonance of Ne~
which by absorbing a laser photon was then excited
to a higher resonance of Ne~. Both of these reso-
nances are not single states but belong to two
distinct groups of states whose gross features
had been suspected from earlier experiments in
electron scattering. The higher resolution offered
by the laser made possible the separate excitation
of several pairs of transitions from one group to
the other. Even though the laser intensity was by
multiphoton standards low (about 10° W/cm?), it
was sufficient to excite by single-photon absorp-
tion a transition between two very short-lived
states of the negative ion. So far this seems to
be the only experiment in which two autoionizing
states were connected via a photon transition. It
is likely, however, that such transitions have
played a role (perhaps an important role) in recent
multiphoton ionization experiments'® on alkaline
earth atoms with lasers of much higher intensity.
Although it is not clear yet what the detailed inter--
pretation of these experiments will be, one of the
central questions is: What happens to autoionizing
resonances under strong laser fields?

From experience with bound-bound transitions,
we already know that new effects appear when the

strength of the induced transition approaches and

exceeds the strength of other decay modes. These
are usually referred to as saturation phenomena'!
and in bound-bound transitions they typically begin
manifesting themselves when the rate of induced
absorption (emission) becomes comparable to the
spontaneous decay of the upper state. The equiv-
alent situation in the case of an autoionizing state
occurs when the induced transition begins to be-
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come comparable to the autoionization rate. The
problem is, however, expected to be more com-
plicated owing to the interference effects that are
an indispensable part of autoionizing decays. The
purpose of this paper is to present the basic for-
mulation and some general results on this ques-
tion. As discussed in the following pages the
problem can be treated at various levels of com-
plexity. Our formal results are cast in fairly
general terms so that they can be adapted to par-
ticular situations. We then discuss in some detail
specific aspects that illustrate the new features
due to the strong intensity. We have avoided
presenting here complicated analytic solutions
which in some cases are possible. They are
postponed to follow-up papers which also deal
with even more general questions. A brief ex-
position of the problem and a summary of some
results has been given earlier by one of us.'? Here
we present a systematic exposition of the theory as
well as results that were not contained in the
earlier report.

There are many points of formal similarity
between the problem formulated in Sec. III and
multiphoton ionization in the version presented
by Armstrong et al.'® and further discussed by
Beers and Armstrong.'* In that work, the chan-
nel identified with autoionization is dependent
on the radiation while here it is not. Thus the
physical origin and nature of the effects analyzed
here are different. More directly related to this
work are results presented by Heller and Popov'®
which refer to the topic of Sec. V. :

Recent activity!"!® on saturation in resonant
transitions under strong fields has focused on the
effect of field correlations and bandwidth on ac
Stark splitting and related phenomena. Despite
our affection for that type of problems, we shall
ignore that issue in the present context. Auto-
ionizing states typically have widths from sev-
eral to a few hundreds cm™. As a result, they
will be much broader than most lasers that are
apt to be employed in relevant experiments. In
addition, it is the effect of the intensity that we
wish to explore here which is best done with a
field of bandwidth narrower than the autoionization
width. Of course, questions of amplitude fluctua-
tions become relevant even for narrow-bandwidth
fields.'” But the techniques for such problems
are by now known and can be easily incorporated
in the present formalism when needed. For the
moment we choose to concentrate on the new
aspect of this problem: The behavior of auto-
ionizing states under strong electromagnetic fields.

II. FORMULATION

Traditionally, autoionizing resonances have been

studied through their excitation either by single-

pd

photon absorption or by electron impact. There
is a vast literature on the subject whose theo-
retical description can be and has been formulated
in a number of ways. The formalism given by
Fano! some time ago seems to be familiar to
most, and especially to experimentalists. Thus
we begin by formulating our problem first along
lines that parallel those of Fano. Subsequently
we also show how an equivalent formulation can
be cast in terms of the resolvent operator whose
use is fairly common in the study of multiphoton
processes. Aside from matters of preference,
different formalisms are often convenient for
specific purposes such as, for example, the study
of the effect of the pulse shape!®!° of the laser or
of its coherence properties. To begin with the
simplest case, we consider the excitation of an
autoionizing state by single-photon absorption.
We want, however, to allow the radiation inten-
sity to become very strong in the sense that it
causes couplings stronger than autoionization.
This implies that the interaction can notbe treated
by simply calculating the transition matrix ele-
ment between the initial and autoionizing states.
It is necessary that we treat exactly the coupling
between these two states.

The system “atom plus field” is described by
the Hamiltonian

H=H°+V+D, (2.1)

where H° is part of the atomic Hamiltonian with
a discrete and continuum set of (single-particle)
states which are coupled through the (configuration)
interaction V. The coupling to the radiation field
is mediated by the interaction D. At this point we
have in mind a semiclassical description in which
the field is treated classically. The eigenstates
of H® are known. Let |g) be the ground state,
la) an excited state, and Ic) a set of continuum
states, all eigenstates of H°. Then we can write
H|g)=E,|g), H|a)=E,|a), H’|c)=E_|c), with
E being the respective energies. We ignore, for
the moment, other states of the atom but will
include them later when we deal with more com-
plicated interactions.

Although not necessary, it is useful to introduce
the projection operators

P=|gXg| (2.2a)
and
Q=|a)(a|+ declc)(c[ , (2.2p)
which obey the relation
- P+Q=1 2.3)

as long as other states of the atom are ignored.
Since P +Q is the unity (identity) operator, we
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have
H=(P+Q)H(P+Q)=PHP +PHQ +QHP +QHQ .
2.4)

As usual, the eigenstates of H° are assumed
orthonormal which has the consequence that PQ
=QP=0 and P?=P, Q*=Q the last two relations
being inherent in the definition of a projection -
operator. .

The state [a) whose energy lies above the con-
tinuum threshold is coupled to the states |c)
through the potential V which however does not
affect |g). On the other hand, D couples |g)
with |a) as well as with |c). Diagonal matrix
elements of both V and D are, as usual, assumed
to vanish, without any essential loss of gen-
erality. The above relations can be summarized
as follows:

(a|H|a)=(a|QHQ|a)=(a|H"|a) =E,, (2.52)
(g|H|g)=(g| PHP|g) =(g|H°|) = E,, (2.5b)
(c|H|c=(c|QHQ|c"=(c|H’|c")=E o ~E,),
(2.5¢)
(c|H|a) =(c|QHQ|a)=(c|V|a)=V,,, (2.5d)
(a|H|g)=(a|QHP|g)=(a|D|g)=D,,, (2.5€)
(c|H|g)=(c|QHP|g)=(c|D|g)=D,,, (2.51)
(c|V]g)=0and (c|V]|c)=0. (2.5g)

To connect this with Fano’s treatment, we take
the part QHQ of the total Hamiltonian and consider
its eigenstates. Thus if we set

H=QHQ, (2.6)
the eigenstates
I'I|\P§)EE|\IIE') (2.7

are labeled by the continuous energy eigenvalue
E. Equation (2.7) implies that we have solved
exactly (at least formally) the coupling due to V
thus obtaining the new eigenstates. At this point
we can simply take the results of Fano' and refer
the reader to his paper for the derivation. The

eigenfunction ]\1’ 5 can be written as

|¥z)= %E—) |@5) - cosa(E)|c), 2.8)
where
|85)= |a)+P fdsc%{—EE% By (2.9)

and P denotes the principal value of the integral.
The parameter A is defined by

71 V_(E)I2

A=—arctanE—_E-“:7;(E (2.10)

and is a function of E. The matrix element
V,,(E) represents the (configuration) coupling of
|a) to the continuum and is a smooth function of
energy. We shall also use the abbreviated notation
V.(E)=Vgz The quantity F(E) represents an en-
ergy-dependent shift of E,. It can present addi-
tional complexity if it is strongly dependent on
E. If that were the case it would probably mean
that the continuum was not smooth and that addi-
tional bound states like |a> ought to be taken into
account which is contrary to the model we wish
to study here. Thus it is only a smooth depen-
dence on E that we can expect and for our pur-
poses it is sufficient to replace for the moment
F(E) by its value at £=E, and replace E, by a
shifted energy E, given by

E,=E,+F(E). (2.11)

From Egs. (2.8) and (2.9) we recognize that |¥;)
consists of a linear superposition of the bound
state |a) and the whole continuum. The energy
difference in the denominator of Eq. (2.10) suggests
the well-known dispersive character of this super-
position.

The usual weak-field photoexcitation of the
autoionizing state is calculated by means of the
transition matrix element (¥;|D|g) which is
employed in the standard expression for the tran-
sition probability per unit time. Using previous
equations we have

(¥; |D|g)=in)f/§_—sinA-—chosA, (2.12a)
E
where
Dz =(®3|D]g) - (2.12b)
The interaction D has the usual form
D=[-€8(@) 2.13)

with I =—e T being the dipole operator of the atom,
€ the polarization vector of the externally applied

electromagnetic field, and §(¢) its amplitude. We

need be concerned only with monochromatic fields
in this paper. Thus we take

E(t)=8,eit+8F e ivt, (2.14)

where &, is now the constant amplitude of the
electric field. The dipole approximation implied
in Eq. (2.13) is not necessary and can be easily
changed at any stage in the calculation. If one
were to calculate the transition probability from
Ig) to |a) as a function of w the resulting curve
would be the well-known asymmetric profile with
width T given by

r=2r|Vz|2. (2.15)

How the profile arises becomes more evident if,



382 P. LAMBROPOULOS

by combining previous equations, we write
(¥z|Dlg) as

ir
s lDl‘g'>‘_€;“‘f[E E)22+ 772

EE

(E)[(E E)+ (2.16)

r2]l/2 ’

where E is to be understood as E,+hw. Obviously,
taking |(¥; |D|g)|* we will have an asymmetric
profile as the photon energy varies around the
energy difference E, - E,. The asymmetry orig-
inates from the second term of Eq. (2.16) since
it changes” sign from one side of the resonance to
the other. It is often said that the asymmetry
results from the interference between the direct
transition to the continuum (D“) and the transi-
tion to the autoionizing state (Dz,). It must of
course be kept in mind that the continuum is also
involved in the matrix element D, [see Eqgs. -
(2.12b) and (2.9)] through the configuration inter-
action.

It will be noticed that the width I" as written
above is energy dependent. This dependence is
directly related to the energy dependence of the
matrix element V. Matrix elements such as
this, as well as D, depend on the energy E, of
the continuum state |c). As we have seen they
occur in the previous equations either evaluated
at E_=F or integrated over E,. Having in mind
the remarks made earlier in connection with
F(E), we will often assume these energy depen-
dences to be sufficiently weak—compared to the
variation implied by the resonance denominator—
to enable us to neglect this energy dependence
and take those matrix elements evaluated at E
=E,.

Another quantity that is an important parameter
in this formalism is the so-called g value defined
by '

(®z1Dlg) Dz,

mViicIDlIg)z -

q(E) = VELE) (2.17)

It is a measure of the importance of the direct
transition from [g) to the continuum compared
to the transition via the autoionizing state. High
q means weak direct transition and hence sym-
metric line shape since the interference is mini-
mized. Again g depends on E but we may some-
times want to simply take its value at £ = =E,.

There is an energy E, for which (¥ [D[g) 0.
From Egs. (2.16) and (2 9) it is evident that this
occurs when

sina, _ 1VZ(cIDIg)g,

cosd, ~ (®z |DIgz, '

(2;18)

d = d
= U,(t)|g>+f aE'Z

AND P. ZOLLER 24

where the subscript 0 indicates that the quantity
is evaluated at £=£,. If in addition one intro-
duces.

€= Ifl"(E =~cotA (2.19)
- 2
and the quantity
2 K¥z1DIg)|?
R®= [ Dgel”’ (2.20)

which is an expression for the line profile, in
terms of € and g, R? becomes

R2= ((I+€)2 —

q%-1+2q¢
1+€2 :

e @2.21)

These are equations that are often quoted in papers
dealing with studies of autoionizing states. Here
they serve as points of departure for the study

of the more general problem that is our main
concern.

III. STRONG COUPLING OF AN AUTOIONIZING
RESONANCE TO A BOUND STATE

A. General case

If the electromagnetic field that couples |g) to
[a) becomes sufficiently strong,, the transition is
not necessarily describable in terms of a transi-
tion probability per unit time. To provide a
quantitative description for that case we must
consider the evolution of the system in some
detail.

At t=0 the atom is in |g). At any later time

its wave function can be written as

¥(0=U,0)[e)+ [aBUz(0]¥5. (3.1)

The time evolution of ¥ (¢) is determined by the
Schrédinger equation

i _
3 HY¥(t), (3.2)

under the initial condition ¥(0) = |g). Substitution
of Eq. (3.1) into (3.2) gives

5 .
a—t\II(t)=_

Uz ¥z

=200l [ armvz 095 . 6.3)

From this we obtain differential equations for the
time-dependent expansion coefficients U(¢) in the
standard fashion. We take the inner product

of this equation first with (g| and then with (¥;].
In doing so, the form for H given in Eq. (2.4)

and the definition of "I’F:> must be taken into ac-
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count and Eqgs. (2.5) will determine which terms
survive. Thus it is only the term QHP that has
nonvanishing matrix elements between |¢) and
(\IIE| , and of course the term PHQ between (g]|
and |¥;). The resulting equations are

~%U,(t) == % E,U,(t) - ;—z_ f dE(g| PHQ|¥:)Us. (1) ,
(3.4a)

j—,UE(t>=-§ E‘UE(t)—%(\yElQHH QUM , (3.4b)

where an expression for (\IIEIQHP]g) is given by
Eq. (2.12a). To compress the notation, we in-
troduce w,=E,/#, ®=E/K, and Ug=h'/?Uz. The
matrix elements of D are matrix elements of

(£ - €) (8,e'“t + 8%e t@t) which involve time-
dependent factors. Because of their time-depen-
dent factors, the equations are put into a more
convenient form if we introduce new (trans-
formed) expansion coefficients v(¢) defined by

v,(t)= U, (D)e* st

and
v () =U(H)e*et . (3.5)

Substituting into Eqs. (3.4) and combining the
time-dependent exponentials we find that they
occur in the forms el?«ti (@ w 't Although @
is a continuous variable, we know that it appears
infunctions peaked at & ~w,, because we do have
a bound state embedded in the continuum. These
peaked functions are represented by sinA and
cosA [see Eqs. (2.12) and (2.16)]. This means
that the exponent [w + (@ - w,)]¢ leads to terms
antiresonant with the photon frequency, while
[0 - (@ - w,)]t leads to resonant terms. It is

- understood of course that the photon frequency is
to be tuned around the resonant transition fre-
quency (w, - w,), where w,=E, /7. We can there-
fore neglect the antiresonant terms. This ap-
proximation is nothing else but the so-called
“rotating wave approximation” and its implica-
tions have been well studied and understood in
the context of bound-bound transitions. As long
as the detunings w - (w, — w,) are small compared
to w, there is no reson to be concerned about
this approximation. The resulting equations for
the v’s are

%—v:(t) =— zf dd My 8.et @ et ety (1), (3.6a)

dit vy (0 =—iM; 8% gl Bty (1), (3.6b)

M:,,E<‘I’E' ulg)ﬁ“/z:h‘”z (%E; sinA — u“cosA) s
(3.7a)

and

Ppe=(Pzlulg . (3.7b)

By u we shall, from here on, understand I €,
the projection of -;I on the polarization vector of
the radiation. The relation between U; and Uz
is such that [d@|U;|?=[dE|Uz|?. The quantity
Mag is a dipole matrix element between the ground
state and the state |¥'z) which contains |a) as
well as the continuum |¢). But K, is the usual
bound-free dipole matrix element that appears

in photoionization. If the continuum were
“switched off”, Mg, would simply reduce to the
matrix element u, between two bound states;

a point to which we return later on. Since in Eq.
(3.6a) an integration over all @ is involved, the
reader may become concerned about the validity
of the rotating wave approximation. Its validity
remains unaffected because of the peaked nature
of M, as a function of ¢. Incidentally, the ro-
tating wave approximation should have also been
mentioned in the discussion of Sec. II as it is
inevitably implicit in any formulation of photo-
absorption in terms of a transition probability
per unit time. We postponed its discussion on
purpose, however, so that it could be seen more
clearly emerging from the formalism.

We have now a set of two integrodifferential
equations in the variables f and @. From their
solution we must determine the amplitudes U(f)
in terms of which the probability of ionization
is written as

p(r)=1-1u/(D]*-1U,(D]?, (3.82)

where T is the total time of interaction between
atom and field. Depending on the particular ex-
periment, 7 may be determined either by the
duration of the laser pulse or the time it takes
the atoms to traverse the light beam, whichever
is smaller. Because we are dealing with strong
field phenomena and/or short pulses, we must
in general calculate a time-dependent probability
which only in limiting cases may be expressible
in terms of a transition probability per unit time
that is time independent. The weak field limit
is such a case. As expressed by Eq. (3.8a), the
ionization probability is simply calculated as the
number of atoms (or probability per atom) that
are neither in state ’g) nor in state |a) and are
therefore in the continuum. An equivalent ex-
pression for P(7T) is

P(T):dec!Uc(T)lz , (3.8b)

where the integration is over the whole continuum.
Although we have not so far written an expression
for Uu(t), because we are working with the states
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I'I’§> which contain | @), it is easy to show that

U,<t)=fdé‘ﬂ’%=nmf g Yalt)sina

b
B Vg

(3.9)

which is evident if one refers to the definition of
states |® # and the expansion of ¥(¢).

As expressed by Eqs. (3.8a) and (3.8b), P(T)
represents ionization at the end of the laser
pulse. At that time, however, we have a popula-
tion |U,(T)|? in state |a). This population will in
most cases decay into the continuum via the inter-
action V with a decay rate I'. Only if radiative
emission were significant, would it return to l&);
a possibility that we may safely neglect in general.
Therefore at a time ¢> T, the ionization probabil-
ity P(¢) is given by

P()=1- [UAT)|? - |U(T) |77, (3.10a)

Depending now on how the ionization signal is
collected, the last term in Eq. (3.102) may or may
not make a significant contribution. Perhaps for
most realistic situations, we must take I'(t - T)>1
because all ions (or electrons) are collected.
Thus we may calculate ionization as

P=1-|U/(T)[%.

This may also seem to be more compatible with
the standard understanding of autoionization where
the state |a) is somewhat arbitrary in that it de-
pends on what part of the atomic Hamiltonian is
diagonalized exactly. The atom has no true bound
states in that energy range, one could argue. Even
with this arbitrariness, however, the fact is that
we can have a “semibound” part of the state which,
of course, decays eventually. Its decay rate de-
pends on how the atomic Hamiltonian has been
separated in the parts H° and V but it nonetheless
represents a state. Needless to say, |U,|? also
depends on that separation. For {- =, the ioniza-
tion signal should not and does not depend on |a).
It is, however, possible at least in principle, to
determine ionization at finite ¢ after the laser is
off. Then |U,(t)]? enters in the calculation. Re-
call that the choice of |a@) also influences the Rabi
frequency and hence U/(T). It is not strange
therefore, that | U,(#)|? appears in the equation for
P(t) for finite time £. Again, the actually observed
signal does not depend on the choice of |a)—if
the problem is solved exactly—but it appears in
the equation in much the same way that the par-
ticular representation affects the appearance of
an equation. The salient point is that the inter-
action of autoionizing states with strong lasers
affords the possibility of probing these time-
dependent aspects. In fact, sometimes it is

(3.' 10b)

£

necessary to do so in order to understand the
details of the interaction.

Returning now to Eqgs. (3.6), we integrate (3.6b)
formally, obtaining

t . , R
v;,(t)=—ij dt' Mg 83e v arwdt'y (t7) , (3.11)
0

and then substitute this expression in (3.6a) with
the result
d - | TP 2
Ev‘(t) =—fd“’lM;,,l2| So‘zfdt'e 1w &+ w)t" t)?'(t:)‘
' (3.12)
This can be solved by Laplace transform. De-
fining

fﬂ dte*ty,(t)=u,p) , (3.13)

and noting the initial condition ,(0)=1, we obtain

1 1

p-ilw-0+w,)
where we have defined
_ . Mg 12 8,13
So)= [ ai T L 8a s (3.15)

In order to have a more direct correspondence
with the resolvent operator formalism, which

will be discussed later on, we introduce the trans-
formation

p=—iz (3.16)
and by direct substitution express S(p) and »,(p)
as functions of z. To obtain v,(t) we calculate

the Laplace inversion integral on the complex z
plane. It is known?® that if we let z =x +iy, the
inversion integral for ¢ >0 can be obtained from

=1 4+
v, (=5 f dx e *tu} (x) , (3.17a)
where
uy (x) =lim u,(x +in). (3.17b)

n—0+

The above inversion integral is identical to that
obtained with the resolvent operator and the steps
leading to it can be found in many references.?’
An expression must be obtained now for u, ().
This involves a considerable amount of tedious
algebra the main steps of which are shown in
Appendix A. Here it will suffice to present the
final expressions and discuss their physical
significance. The expression for u;(x) is
i

x —s(x) +iy(x)’ (3.18)

uy(x) =
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where s(x) and y(x) are the real and imaginary
parts of —iS(x) and are given by the equation

L4 An + By X +Cn§f T
- -— +
s(x) —iv(x)= T in K(B" + CoX+ CykN),
(3.19)
where the various parameters appearing above
have emerged in the algebraic manipulation of
S(x) and are given by

=72 8,12 g2 V]2, (3.20a)
-
B,=12| 8|22 Re FEetee |y. |2 (3.20b)
(1] o —VET— E '
Co=1" 81| 1,12, (3.20c)
k=1T/ (3.20d)

and N is a pure number defined in Appendix A.

Its magnitude depends on how fast (or slowly)

L., decreases as a function of the energy E,. For
the discussion here, we may consider it of order
unity. In general, however, it will depend on the
particular atom. - Also, the parameters A, B, C
are functions of E= %#®. The subscript 0 indicates
that they are evaluated at ¥ =w, +w. Again this

is acceptable because the structure in the con-
tinuum comes from the peaked functions discussed
earlier, while the matrix elements themselves are
slowly varying. This is not a necessary approxi-
mation in this formalism, but we adopt it since

it facilitates greatly the discussion of the physical
effects without any crucial loss of generality. If
it ever were necessary, that slow energy depen-
dence could be taken into account. The expression
of Eq. (3.19) has been obtained by performing the
integration over @ and X is an abbreviation de-
fined by

(3.21)

It is the fact that V; and the matrix elements of
u are slowly varying functions of E {compared to
the Lorentzian [(E - E,)? +4T?"*} that enables us
to perform the integrations over @ at this early
stage, thus obtaining results that are independent
of the particulars of the atom and reflect general
properties of the process.

The time dependence of v,(t) is now obtained
from the inversion 1ntegra1

X=x+w-(w,-w,) .

+ o e'ixt

Ve (1) = 2m dxx—s(x)+iy(x) ’

(3.22)
where it must be noted that s and y are not the
standard shift and width because they depend on

x in a way that is not negligible and contains in

fact much of the physics of the problem. With
a little more algebraic manipulation, Eq. (3.22)
is put in a form that makes its meaning and con-
nection with the weak-field case more evident.
To this end, we introduce the quantity
TA, -

G2=—2=r26,|2| uz,l %5, (3.23)
which is identical to l-)g‘
detuning

of Eq. (2.12b), and the

(3.24)

of the photon frequency w from the exact center
frequency w, - w, = w,, of the autoionizing reson-
ance. The inversion integral is now written as

b=w = (0, ~w,)

v (t)——f dx ("”AU;‘) ity (3.25a)
where
A)=x(x+6+ik) = & (1 + x;f)
+é%(2+ﬁ%ﬁﬁ)u+c+ix).' (3.25b)

Everything is now expressed in terms of the
field-independent parameters ¢ and k=3T/i of
the autoionizing resonance, and the field-
dependent quantity €. From its definition in
Eq. (3.23), Q will be recongnized as some gener-
alized Rabi frequency. It would have been a usual
Rabi frequency if the matrix element bz, coupled
|g) with a bound state, in which case  would
represent the frequency of induced transitions
between ! 2 and the other bound state. Now,
however, [i;, couples | g) with the state ® con-
taining the bound state !a) as well as the con-
tinuum. Thus  does not represent simply trans-
itions from |g) to |a) but also to |¢) and in the
calculation of | [LE~§|2 there is an interference
between the two. This interference is of course
mediated by the configuration interaction. As a
result, when the field excites lg) to either [a)

r Ic), there are virtual transitions between |a)
and ‘c) . § is not the only quantity in which such
interference is manifested. It is also to be found
in the other terms of A(x). But, that the inter-
ference is already present in the Rabi frequency
points to a significant difference between the
strong-field excitation of an autoionizing state
from that of a bound state. With a little more
algebra, Eq. (3.25b) can be put in the more com-
pact form

A(x)z(x+%z— (NK+iK)) (x+6 +1ik) -ﬁz(l —%)2 s
(3.26)
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which makes easier the exploration of certain
special cases for which analytic expressions can
be obtained.

If we call x, the roots of A(x), then A(x)=(x-x,)
(x — x.) and a formal expression for the inversion
integral is

v, (t)= [(x, + 6 +ix)e i+

x, —x.

- (x. + 6 +in)e 1] . (3.27)
If we were to substitute in this equation the ex-
pressions for x, , the resulting expression would
be too complicated to be of inspectional useful-
ness. Subsequently, we will examine some of its
special cases which lend themselves to easier
analytic exploration.

B. Special cases

Before proceeding with the exploration of the
general result represented by Eq. (3.26), it is
useful to consider certain special cases corres-
ponding to limiting values of the parameters. The
intention here is to show how our general equation
reduces to two known results: The weak-field
excitation of an autoionizing resonance and the
strong-field coupling of two bound states.

The weak-field limit here corresponds to £ < k.
In exploring this case, we neglect the term 92N/
¢k from Eq. (3.26) because it represents a rad-
iation-induced ac Stark shift. And this shift is
absent from the usual treatment! of the photo-
excitation of an autoionizing resonance since it
is not important in that case. Then we need the
roots of the equation

2+[6+i(1 +B)klx - [x® —if2k(6 +ik)]=0, (3.28a)

where we have introduced the abbreviations

QZ
2 __
b=
and
~ i \2
a2=Qz(1—§) ) (3.28b)

The roots are

Xy

==21[6+i(1 +P)k]

x[1¥(1+4%>”2] . (3.29)

Because of the weak-field assumption, we have
B2<«1 and also a?<<k?, As a result, we can take
6+i(1 +B2)k=6+ixk and also expand the square
root in a Taylor series keeping only the term lin-
ear in the small quantity. Then the roots become
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a? 2
x*=6+iK_Z'B K (3.30a)
and '
a
= +iK) — +iBR%k .
x. (6 +ik) v iB%k (3.30b)
The inversion integral leads to
o= [, +o + i
- (v. + 6 +ik)et*t] (3.31)

Because of the weak-field situation, we have

lx‘ | ASS 'x-l . In that limit, therefore, only the
exponential e”**+ matters because the other de-
cays very fast. It is then a simple algebraic
matter to show that the rate of decay of |v,(¢)|*

is equal to 2Imx, . This is shown most directly
by calculating [(d/dt)l,(t) P];-,. From Eq. (3.20a)
we obtain

_ Pk  klg®-1)+2g0
-Im,_qz(Kz+—————62+K2 ) (3.32)

and upon using the notation 6 =€k of Sec. II we
rewrite this as
2Imy, 1 2< q2-1+2qe)
[ o Sl R S . A
o =5 lelplalP(1+477"F ),
(3.33)

which is the quantity (1/%) | ¥z | D | g) |? as obtained
by Fano and shown in Eq. (2.20).

The strong-field limit of the coupling between
two bound states is obtained by letting g — < in
Eq. (3.26) which then reduces to

x(x+6+ik) - B =0. (3.34)
Its roots are
x,=—4(6+ik)+3[(6 +ik)? +4Q?]*/2 ,  (3.35a)

and in the strong-field limit (that is when fé +iK|
<« §?) they become

%, =—50+i)x8Q . (3.35Db)

The time development of v,(t) is then of the form
v,(t) = ;—Q[[Jz-(a +ik) + ] exp —i (Q —-g)t

-[2 6 +ix) - Q] expi(ﬁ +§>t] R (3.36)
which exhibits the typical oscillatory behavior of
the the amplitude of a state |g) strongly coupled
to another bound state |a). As usual':!7 the
oscillation occurs at two different frequencies
separated by 2, the Rabi frequency. That v,(¢)
is in addition found to decay with half-width /2
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is, strictly speaking, inconsistent with having
taken the limit g —~. Because we should then
have set the coupling to the continuum equal to
zero everywhere. Not having done so, Eq. (3.36)
represents the solution for a ground state | g)
strongly coupled to another bound state |a) which
decays to other states via a coupling independent
of the field. Moreover, these channels of decay
should not interfere with the channel |g—|a) if
this equation is to be applicable.

We have thus seen that Eq. (3.26) is a gener-
alization of two well-known types of interaction
of atomic states with radiation. It is perhaps
worth recalling at this point that autoionization
does more than just cause the decay of |@) into
the continuum. If that was all, the equation for
the roots would look like Eq. (3.34). As we have
seen, however, the interference aspects of
autoionization affect not only the Rabi frequency
but also introduce an additional width-shift term,
namely, (©2/¢%k?)(Nk +ix), which as we shall see
subsequently causes significant changes from
what one would have expected on the basis of the
two limiting cases.

IV. FORMULATION IN TERMS OF THE
RESOLVENT OPERATOR

This section is devoted to a somewhat different
formulation of the problem employing the resol-
vent operator?® and treating the field quantum
mechanically, The total Hamiltonian is again
written as

H=H°+V+D, (4.1a)
where
H°=HA+HR | (4.1v)

which now contains two parts: The atomic part
H* whose eigenstates are the previously defined
|g), |a), and {| 0}, and the radiation part HF
with eigenstates the usual photon-number states
'n) . Only one mode of the field is assumed to
be occupied, its frequency being w. The initial
state of the system is ! g; ny. The states con-
nected to it via the absorption or emission of a
photon are |a; n-1) and {| c;n-1)}. For sim-
plicity, we will use the labels g, a, and ¢ for
these states. This is equivalent to the rotating
wave approximation of Sec. III B. The atomic
states |a) and {| )} are as before coupled to each
other through configuration interaction.

In contrast to Sec. III A, H is time independent
because it contains the Hamiltonian of the radia-
tion as well. As a consequence, the time evolu-
tion of the wave function is given by

T(t) = exp(— i ;—1:)\1/ (0)=U(£)¥(0)
=U@)|gm) , (4.2)

thus defining the time-evolution operator U(t)
which can be expressed in terms of the resolvent
operator

1 1

€@ H " Z-m-v-D (4-3)

through the inversion integral
U)=-+- | dxe™™G ), (4.4)

whose meaning is identical to that of Egs. (3.17).
Taking into account the states of interest in this
problem, ¥(f) is written in terms of the matrix
elements of U(t)

\IJ(t):Uulg;n) +U“la;n— 1) +decU“ic;n- 1),
(4.5)

and the matrix elements of U(¢) are obtained from
the corresponding matrix elements of G through
Eq. (4.4). The problem is thus reduced, as usual,
to the calculation of matrix elements of G(x).
From Eq. (4.3) we have (z - H)G =1, which leads
to

(- H)(P+Q)GP=P, (4.6)

where P and @ are the projection operators de-
fined in Sec. II. Multiplying this equation from the
left by P or by @, and making use of the proper-
ties of P and @, we obtain the equations

(z = PHP)(PGP) - (PHQ)(QGP)=P, (4.7a)
(z- QHQ)(QGP) - (QHP)(PGP)=0. (4.7b)

The desired matrix element G,, is now obtained
from {(g|PGP|g) while G, and G, from (a|QGP|g)
and (c|QGP|g), respectively. For the first matrix
element, we use Eq. (4.7a) and for the other two,

B Eq. (4.7b). In the process, we use Egs. (2.5).

The resulting equations are

(2= E})G e = DG oo - f dE.D,G,=1,  (4.82)
=D 4G+ (2= EL)G o - f dE.V .G, =0,  (4.8b)
~D,Gye= VoiG ot (2 = EDG,,=0. (4.8¢)

Since H° is here somewhat different than in Secs.
IIIA and III B the energy E; contains the energy
nfiw of n photons while E/ and E contain the energy
(n-1)#. The end result as usual involves only en-
ergy differences. Thus we can take, without any
further approximation,
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E,=E +hw, E,=E
and

E'=E . (4.9)

(4 (4

The matrix element G, can be eliminated by solv-
ing Eq. (4.8c), obtaining
G

ce ce &g ca~ a

= (DGt Vo) (4.10)

and substituting into Eqs. (4.8a) and (4.8b) with
the result

2
(z—E -hw - de ;C>G“
D,V
—(D“+jdEc —MZ—E )Gu=1,

(4.11a)
[+
V.D
_<D“+dec —ULz—Ec)G"
+ E de —V“i G, =0
Z2-E,- ¢ 7=57)Cu0- (4.11b)

-Expressions for G, (z) and G ,(z) are obtained by
solving the system of these two algebraic equa-
tions. The resulting equations are

G,=1/A'(2) (4.12a)
and
Do+ [ aB, J= e
G,= < , (4.12b)
1V 12\,
(z—Ea- dec -Z—_“-‘E-C—>A (2)
where

I 2

-E,

(D .+ J dE, QLLVM-)(D +dec%'%"—)
- 1V I?
_Ec

A(z)=z-E - h’w-de

z-E,- [ dE,
(4.13)

Under the assumption that the matrix elements un-
der the integrals over E, are slowly varying func-
tions of E_ over the range of the resonance—an
assumption that has also been employed in Sec.

I B— z can be replaced by E, + hw+ie (with

€ -~ 0+) under the integrals. Thus using a well-

known identity we take
1 1

= lim ——————
z-E e_l,{ﬁ E +hw-E +ie

dE
=pf —9E,
E,+hw - E,

c

- im8(E,+Ew-E,),

(4.14)
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often referred to as the “pole approximation.” P
denotes the principal value. Substitution into the
integrals leads to shifts and widths. Thus we have

de prdEcE +hw E,
—in]Dc,(E‘+7iw)]2

ES'—Z'%')/‘, (415)

Vit
decE +h’w E, Pde"E +iw-E,

—iT |V (B, + 1w)|?

=F,-i3T,, (4.16)
V,.D j‘ VD,
Zacce P
D“+decz-Ec D, + dE, E,+hw- E,

-in(V,,D,,) E'wsf);;,u -i/q).
(4.17)

The quantities S, and 7, introduced in Eq. (4.15),
are, respectively, the shift and the ionization
width of the state ]g) due to direct transitions
(virtual or real) into the continuum. In the for-
mulation of Sec. III B, these quantities appeared
in the form of the terms proportional to C,. The
other quantities appearing above, as for example,
F, T, q, and D, are identical to those defined
inSecs. IIIA and III B. We will as before take these
quantities as evaluated at E=E’. Note that the
previous variable is the same as E, +/iw. Using
the above expressions it is now a matter of simple
algebra to show that A’(z) is identical to A(x). All
we need for this is to take

2-E,-hw=x, (4.18)

which simply is a redefinition of z so as to be iden-
tical to the Laplace transform variable of Sec.
IIB. The translation defined by Eq. (4.18) is
equivalent to the transformation of Eq. (3.5).

V. STRONG COUPLING OF TWO AUTOIONIZING
RESONANCES

The next problem we want to formulate contains
one additional autoionizing state but is considerably
more complicated. It does, however, lead to a
number of interesting new effects. Let |b) be a
second bound state embedded in a continuum ]cQ

and coupled to it through V. In general, |a) and
|b> are assumed to be coupled to different con-
tinua. We will then label by |c,) the continuum
of |@). A second radiation field withn, photons and of
frequency w,, near resonant with the transition fa)

- | b) couplesthesetwoautoionizing resonances. Itis
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againassumed thata field of frequency w, couples | )
to |a) Atoms cantherefore be excited from [g) to
a)and from |g) to | by which is assumed to lie above
ay. Other excitations from the bound statesto the
various continua are alsotaking place asindicated in
Fig.1. Inprinciple, one should keep all these coup-
lings in the formalism since our purpose is totreat
the problem for large field intensities. It may be pos-
sible in particular cases to neglect some of these
channels. We begin, however, by considering the
complete problem. Again, it can be done in either
of the two formalisms discussed in the previous
sections. We choose here the resolvent operator.
As in Sec. II, we take

= |gXg], (5.1a)

but @ is now somewhat different given by
2
Q=|aal+ |b)BY+ 2 de;jlc)(cjl (5.1b)
j=1

as it contains two bound states and two continua.
The couplings between |g), |@), and the continuum
|c) are determined by Egs. (2.5). For the re-
maining couplings we have the equations

(b|H|by=(b|QHQ|b)=(b|H"|b) =E}, (5.2a)
(c;|H[0) =(c, |QBQ|®) =(c,|V [0} =V, ,, (5.2b)
(c.|H|a) =(c,|QHQ|a) =(c,|D|a) =D, ,, (5.2¢)
(b|H|a) =(b|QHQ|a) =(b|D|a) = D,,, (5.2d)
(c,|H|b) =(c,|QHQ0) =(c,|D|b) =D, ,, (5.2¢)
(cz|H|ey =(c;|QHQ|c)) =(c,|D|c) =D, ,
(5.2f)
(ca|H|cg) =(c, |QHQ |c)=(c, | H®|cp
=E, 0(E{-E}). (5-2¢)

V() =U,,(t)

\
bc2
P — _— - ~
-7 D,
b & z Ce
= - %
| T~ \)\/ D
D, | o7 T = gb |D°z°
bd| 7 ~
4 Vac
[ 1
~Z
a C1
Dag 5
c,9
]

FIG. 1. Schematic representation of autoionizing
states coupled to electromagnetic fields. D and V denote
electromagnetic and configuration interactions, respect-
ively. The shaded areas represent the continua to which
the bound states ¢ and b are coupled.

Since we are working with the resolvent operator,
in the notation of Sec. IV, we must consider the
states |g;n,,ny, |a;n,-1,n), |byn,-1,n,-1),
ci3m—1,n), |cy3m—1,n,- 1), with respective
energies E;=E +fm,w, +in,w,, E,=E_+kn, - 1)w,
+Wn,w,, E}=E +h(n1— Do, +h(n2- l)wz, E; ZE.,
+Hn, — 1)w1+ Hn,wy, E(,=E, +h(n, —1)w,
+ 7iny —1)w,, where as before the unprimed E
denote atomic energies. Again, without further
approximations we can take E,=E,+ hw, + Aw,,
E,=E,* hw,, E. (=E; T iw,, E E » and Eg
—Ecz, because ultlmately only dlfferences be-
tween these energies will matter.
. The total wave function now is of the form

[g;nlnz) +Uu(t)|a;n1— 1;n,) +U,,(t) !b',n1 -1;n,-1)

+jdEé1Ucl,(t)|cl;nl— l;nz)+deézUczg(t)|cz;n1— 1,m,-1). (5.3)

As in Sec. IV, we obtain equations for the matrix elements of G corresponding to the above matrix ele-
ments of U(t). This is accomplished by using Egs. (4.7) in combination with Egs. (5.2). The resulting

equations are

(2~ E)Gye= Dy = J dEL Dy G\ =1,

(5.4a)

Dal "+(Z—E'a)G jdE’ a\':1 1€ Dabif de' Duczcczl 0’ (54b)

ba ar+(z— bc de, bcl cg de Vbcz (Y4 0’ (5-40)
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-D, Gre= V. G

e {4 c,a

D, G o= VepGoet (2 = EL)G, , - f dE; D, , G

cpc) e e

This system of equations, although similar to that
of Egs. (4.8), contains an essential complication.
The matrix elements G, , and G.,, corresponding
to the two continua are coupled through the laser
fields. The coupling is represented by the last
term in each of the last two equations. Its
strength is characterized by the continuum-con-
tinuum (cc) matrix element D, cs which, in prin-
ciple, will be proportional to tﬁle sum of both
fields. If that coupling is very strong—in the
sense that higher cc transitions must be included—
the equations cannot be decoupled. In that regime
of intensities (perhaps above 10** W/cm?) the
whole model which is based on a finite number of
bound states may become unreliable. There is,
however, a range of intensities in which one can
obtain solutions. We will postpone the discussion
of more general solutions to another paper. Here
we confine ourselves to the discussion of certain
particular cases which illustrate the type of new
effects to be expected from the coupling of auto-
ionizing resonances with strong fields.

Depending on the particulars of the problem at
hand, one may choose from a hierarchy of ap-
prox1mat10ns that lead to a decoupling of G and

G, to various levels of accuracy. To be more
specific, let us first note that by setting D, =0in
Eqgs. (5.4d) and (5.4e) the two continua are decoupled.
This, however, ismoredrastic than necessary as
canbe demonstrated by solving Eq. (5.4e) for Geper
substituting into Eq. (5.4d) and then solving it for G,,
thus obtaining

1

‘2’=2-E2 (D ¢ +V°”th)

Cﬂd{

1
+ T Eéz de;chzchq‘, (5.5)
1
Cew™ =g (Do (Cep* Vo 8ot Do iGoy)
1
1 clcz
+ Z—Eé dEcz Z - E’ (Dcza u(+chbi()

f-‘l c2 ,
dE{ D, .G,

+ z_lE, I dE;2

(5.6)

D, Gy * (2~ EL)G, - de D,
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Gee=0, (5.4d)
(5.4e)

r -

Now, as far as decoupling G_ , and G, is con-

cerned, all we need to do is neglect the last term
in Eq. (5.6). The result is not equivalent to having
set D, —0 in Egs. (5.4) because D_ . still appears
in the second term of Eq. (5.6). Obv1ously, how
important these various contributions are will in
each case vary, depending on the strength of the
c,c, matrix elements as compared to the other
channels. Part of the interest in the processes
discussed in this paper stems from the possibility
they afford of exploring these questions.

As experience with multiphoton processes has
shown, cc transitions even under strong lasers
become important only above certain intensities.

It is reasonable to expect therefore that in various
intensity regimes one will be able to study effects
that do or do not depend on D, . in a significant
way. In this paper we show results that do not
depend on D, . Wwhile in a follow-up paper we show
how to incorporate its influence when necessary.
For the moment we simply point out that the struc-
ture introduced in the continuum by the autoioniz-
ing resonances makes the solution of the general
integral equation (5.6) easier (at least formally)
than in the general case. In the remainder of this
section we confine attention to the case of D, , - 0.
Thus from both Eq. (5.5) and (5.6) we retain on’ly
the first group of terms in their right-hand sides.
We substitute then into Eqgs. (5.4a)-(5.4c) and

after some rearrangement and grouping of terms
we arrive at the equations

( zy,)G -D,,Gu -DP G,, =1, (5.7a)

z i
—DuGu*'é*'Gl"' E.Ya"' E Pa)Gu _Dabi:=0}

7 (5.b)
~ DR Gur DG * (£ 40,405+ 3 1+ L) =0,
(5.7¢)
where we have introduced the abbreviations
+Pf dE; E—,_L—J— —in(D,, VCIG)E; , (5.8a)
, D,. D, ,
D(Z)—Pf dE; E-T“—E,:- -inr(D tchclb)E} ’ (5.8b)

1
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— Ve, Dep .
D,,=D,+P f dE,, E_x EC,.I. = i(Voo, Deyp)sy

c b

+P f d Ec2 ——Z—Z—E I
To obtain D,, from D,,, we simply transpose the
indices in all matrix elements but do not take the
complex conjugate of the whole expression. In
an analogous way we obtain D,, and D{?’. The
widths appearing in the above equations are defined
by

- (Da‘cchzb)Eé . (5.80)

|2
&
71D, 13, = 47, pdeglﬁEs,, (5.9)
11D, 413 =47 [dE;ZFL=sa, (5.10)

D,
1D, 43 =27s, Pfd ;IET”"— s,, (5.11)
1

7|V, alF; =2T. ,Pf dE! —°”’—,-F (5.12)

c ’ a’
1 E "1

7| Vels; = 3T, Pf dE, E—i;sl— =F,, (5.13)
where the ¢’s and S’s represent widths and shifts
of the respective states induced by the field via
coupling to one of the continua while the I'’s and
F’s are autoionization widths and shifts (see also
Sec. II). The shifts do not appear explicitly in
the equations (5.7) because they have been incor-
porated in the detunings which are defined by

6,=fiw, =[(E, +F, +S,) = (E, +S,)], (5.14a)
6,=hw, —[(E, +F, +S,) — (B, +F,+S,)].  (5.14b)

Since they contain the intensity-dependent shifts
(which are proportional to the light intensity) these
detunings must be understood as dynamic and not
static detunings. They will change with changing
intensity. As we shall see subsequently, some

of the most interesting effects are associated with
these shifts. In arriving at these equations, we
have used the procedure of Sec. V with the same
type of approximations. As in that section, the
widths and shifts have been calculated at the en-
ergy E; a convenient but not necessary approxi-
mation.

The general solution of the system of Egs. (5.7)
leads to a third degree algebraic equation with
respect to z. Thus analytic solutions for the
general case, although possible, do not give much
insight. They are, however, useful in special cases
when, for example, some of the couplings (chan-
nels) are stronger than others. In all cases, the
total ionization for an interaction time T is given

by the equation
P(T) =1 = U (T)]? = [Uge (T)? = | Uy (T)?,

(5.15a)
while for times ¢>T, it is given by
P(t)=1= |Ug(T) [* = |U(T)|2€" T T
— | Upe(T) |2~ To D) (5.15b)

Again, in the limit of T',(f= T)> 1 and ', (t- T)>1
the expression reduces to

P=1-|U (7). (5.15¢)

If, of course, either |a) or |b) are not autoioniz-
ing, the corresponding I' must be set equal to
zero and the corresponding population will appear
in Eq. (5.15¢). An equivalent expression—a direct
generalization of Eq. (3.9)—involving only the
amplitudes of the continuum is given by

P(T)= ﬁjdecjl U, (T)I% (5.16)

To explore a case in which analytical expres-
sions are feasible and useful, and also to show
how these general equations reduce to more famil-
iar results, we consider next the limit in which
|a)y is a bound state (or an extremely narrow auto-
ionizing resonance) while |b) remains an autoion-
izing resonance. Under these conditions, we ne-
glect the continuum ¢, completely. As a conse-
quence D3’ =0 and also y,=0, s,=0, F,=0, and
I,=0andy,=0. The set of Egs. (5.7) then be-
comes

2Gp = 1G4 =1, (5.17a)

- Q.G + (z +6,+ %'ya>G“ - 522(1 - L>Gbg=0’
')
(5.17b)

- fz2( _L)Gag"' (’Z + 61"’52"'i rb)Gbg =0,
‘D) 2
(5.17c)

where in accordance with the notation of previous
sections we have defined

(5.18a)
— Ve, De
D,,u=D,,a+P[ dE,, ii—i ZW(V,,C )Elv

(5.18b)

and
(5.18c)

Now §, is a conventional Rabi frequency between
two bound states while §, is an effective Rabi

EB'a =Q,.
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frequency like the § of Sec. IIl. The ¢, in Eq.
(5.18b) is the g of autoionizing resonance b with

a definition analogous to that of Eq. (2.17). The
system of Eqs. (5.17) also leads to an algebraic
equation of third degree but of a somewhat simpler
form.

An even more restricted case of this system,
for which analytic solutions can be obtained, cor-
responds to the so-called weak-probe approxima-
tion. This means that one of the fields is weak
while the other is strong. If the weak field is
tuned around the exact resonant frequency of its
transition, the total ionization signal reflects
(probes) the effect of the strong field on the tran-
sition it couples. We take here the first field
as weak. It follows then that the first Rabi fre-
quency , is small in the sense @, < v,, Ty, Q.
This approximation allows us to obtain an analytic
solution for the rate of total ionization given by

dp (6,+6,+3T; q,)°

i R T T TER (5.19a)
where
= i 1 —-02 _i' 2
o2 () (st )05
(5.19b)

1t is because of the weak-probe approximation
that a constant (time-independent) transition rate
can be obtained for long times; in the sense that
v.T, Ty T, Q,T>1 and the transients have died
out. Physically, the weak-probe situation corre-
sponds to the excitation of very few atoms (per
unit time) from |g) to |a). But once an atom is
excited to |a) it is very quickly snatched away by
the second (strong) field and its further develop-
ment is determined by the particulars of the tran-
sition |a >~ |b) and the continuum |c,). The rate
is determined by the weak (bottleneck) transition.
One can investigate even more specialized cases
corresponding to specific relations between the
parameters of Egs. (5.19). Such examples are
discussed in Sec. VL

VL. NUMERICAL RESULTS

Having established a formal framework for the
coupling of autoionizing states to strong fields
and explored some of its general predictions we
turn now to the examination of certain quantitative
predictions which provide illustrations of the ef-
fects to be expected. We begin by showing the
effect of the time of interaction on the line profile
of an autoionizing resonance. This is never dis-
cussed in standard treatments of autoionization
because it does not matter. As long as the field
is sufficiently weak, we have a time-independent

IR

transition probability per unit time and it is al-
ways assumed that the interaction time is suffici-
ently long for this transition probability to be
meaningful; a condition always satisfied in tradi-
tional spectroscopy of photoionization. If, how-
ever, the light intensity is large or its duration
short, the effect is important, as illustrated in
Fig. 2. We have plotted total ionization as a func-
tion of detuning from resonance for a constant
light intensity but different times of interaction.
For this example, we have chosen a value g =5
for the resonance and an intensity such that =T
i.e., the Rabi frequency §) is equal to the autoion-
ization width I". This certainly is not a weak but
not a very strong intensity either. The five curves
of the figure correspond to interaction times T
ranging from I'T =1 to 20. These curves show
that as long as T s 5I"™, the typical autoionization
profile has developed with its distinct minimum
and asymmetric shape. For small T, such as

T =T, the curve does not resemble at all the
well known profile; it is flat. The detuning A

is the dynamic detuning which includes the shift,
This ac Stark shift also is something that is un-
important in weak fields but plays a significant
role when the field becomes strong.

In the next example (Fig. 3) we take a long (in
the above sense) time of interaction 7' =5I"" and
the same g =5. Again we have plotted total ioni-
zation as a function of detuning from exact reso-
nance for various values of intensity. The first
curve (Q=0.25T") corresponds to weak intensity
while the last one ( =10T) to rather strong inten-
sity for which the modified Rabi frequency is ten

o
“
[ R}

20

25

%

0 T=1
-20 ) 20
Ar

FIG. 2. Line shape of an autoionizing resonance as a
function of the time of interaction between light and
atom. I is the autoionization width, € the Rabi frequen-
cy, and A the dynamic detuning, as defined in the text.
The arrow indicates the position of the field-free mini-
mum.
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FIG. 3. Line shape of an autoionizing resonance as a
function of field intensity. A is the dynamic detuning and

the arrow indicates the position of the field-free mini-
mum. The interaction time is T=5I"1.

times larger than the autoionization width. Here
we see the first effect of the intensity. For @ =T
the line shape has the typical form, for & =2.5T

it still has a minimum and a maximum which how-
ever is now much less peaked, while for © =5T
the maximum no longer exists and the minimum
is much shallower. And this trend continues for
higher values of . This means that the probabili-
ty of ionization tends to one, no matter what the’
detuning is. There is a region, however, where
the probability increases much more slowly;
namely, around the minimum. But the minimum
does not remain in its weak-field position. It
shifts by about TI" as @ changes from 0.25T to
10r; that is as the field strength increases by a
factor of 40. The existence of the minimum in
the first place is the result of interference be-
tween the direct ionization and the indirect (via
the configuration interaction) channels. The in-
tensity modifies this interference because it af-
fects some of the transitions but not the configura-
tion interaction. Thus it changes the relative
strengths. This shifting of the minimum will oc-
cur whether there is significant ac Stark shift

of the resonance or not and must be viewed as a
separate effect although both are present simul-
taneously.

Having seen how the intensity affects the line
shape, we return once more to the effect of the
time of interaction but this time combined with
relatively strong field. In Fig. 4 we present the
ionization profile for intensity such that Q=5T
and as in Fig. 2 for times ranging from I'T = 0.25
to 20. None of these curves now exhibits the
typical profile. Even a moderately strong inten-
sity has a profound effect on the line shape. The
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-20 "0 20
Asr
FIG. 4. Line shape of an autoiohizing resonance as a
function of interaction time for relatively strong field,

i.e., 2=5T. Arrow indicates the position of the field-
free minimum.

contrast is glaring when we compare one by one
the curves of this figure with those of Fig. 2. The
undulations evident especially in the curve for

T =1 are due to Rabi oscillations of the atom be-
tween states |g) and |a). Such undulations tend to
be smoothed by the decay mechanisms (in this
case ionization) of the process. It is only when a
particular combination of interaction time and
intensity conspire that they become evident on
such curves. In other words, it is a particular
relation between § and T that leads to these un-
dulations. Typically, they will appear when T

is equal to a few I'"!. But this should be viewed
as a rough rule and not as an exact relation.

For weak fields, autoionization is proportional
to the laser intensity. The process is then des-
cribed by a transition probability per unit time
linear in the light intensity. Thus the slope of
the curve logP = f(I) (with P being the total ioni-
zation and I the photon flux) is one. The situation
changes considerably when the field becomes
strong. First of all, the process is not necessari-
ly proportional to intensity. In addition, the reso-
nant states |g) and |a) undergo ac Stark shifts
which are proportional to the light intensity. The
magnitudes of the shifts depend on the particular
atom. But in any case, they increase linearly
with light intensity and eventually become larger
than I'. It must also be kept in mind that the
shift increases faster than $ which is proportional
to I'/2, One of the many consequences of the
shifts is that they alter the dependence of the total
ionization on light intensity. We have already
seen how the shifts enter in the detuning which
thus becomes intensity dependent. If the laser
frequency is at a certain detuning for weak inten-
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sity, this detuning will change as the intensity
rises. The atom may then shift either closer to
or farther from resonance with the laser frequen-
cy. Mathematically, this means that the intensity
appears in a complicated manner in the denomi-
nator which spoils the simple intensity dependence
known from the weak-field situation. As we have
already seen in previous sections, it is the differ-
ence between the shifts of |g) and |a) that matters
and not the shifts of the individual states. Be-
cause this difference is what determines how much
the frequency of the transition | g)-|a) changes.
Obviously it is for detunings around A= 0 that the
influence of the shifts on the intensity dependence
will be the greatest because even small changes
are then significant. These effects are shown

in Fig. 5 where we have plotted 81gP/d1gl as a
function of detuning for four different situations,
all however corresponding to an intensity such
that Q=T and T=5/I". For large detunings, the
slope approaches one, but around A=0 it undergoes
significant changes and depending on the particular
combination of parameters its value is seen to
range from 2 to —2. It must be stressed here
that these slopes correspond to this particular
intensity. In general they will change with inten-
sity since the function P(I) is not necessarily rep-
resented by a simple power of /. Comparing Fig.
5(a) with Fig. 5(b) we see how the ¢ value of the
resonance affects the slope, while comparing 5(b)
we see how the sign of the total shift affects the
slopes. But even these comparisons give only

a very small part of the whole picture. We have

a multiparameter problem and a change of one

of these parameters may significantly affect the
relative effect of the others. For example, the
change between 5(a) and 5(c) is less pronounced

2 (a) (c)
0
s
a
S
v | b (d)
(o]
-10 A/ 10 -10 AT 10

FIG. 5. The index of nonlinearity of ionization through
an autoionizing resonance for a field such that 2=T. The
interaction time is T=5I"!. The figure illustrates the
effects of the shift. (a) S=T, ¢=10% () S=T, ¢=5;

(e) §=-T, ¢=10% (d) §=-T, ¢=5.

than the change between 5(b) and 5(d).

A plot that gives a pictorial sense of how ioniza-
tion proceeds in time is given in Fig. 6. The
total probability of ionization as a function of the
time of interaction is plotted together with the oc-
cupation probability of states lg) and |a). These
three probabilities add up to one [see Eq. (3.8)]
and the oscillations in these curves reflect the
(Rabi) oscillation of the atom between the reso-
nantly coupled states ] g) and Ia). These oscilla-
tions are damped by ionization in a few I'T’s.
This behavior is well known from the study of
bound states coupled by an intense field.

Our final figure (7) has to do with the coupling
of two autoionizing resonances by a strong field.
We consider the case discussed in Sec. V and
depicted in Fig. 1. Here we choose the first
autoionizing resonance |a) very narrow and equiv-
alent to a bound state. It is assumed coupled to
the ground state |g) by a weak field while a second
field, whose intensity we vary from weak to quite
strong, couples ]a) with a higher autoionizing
resonance |b) which is characterized by ¢ =5 and
an autoionization width I'. The second field is
assumed to be exactly resonant with the frequency
of the transition | @)~ |b). We then scan the fre-
quency of the first (weak probe) field and plot
total ionization as a function of its frequency w,
expressed in terms of its detuning A’ from the
resonance |g)—|a). When both fields are weak—
as in the first curve of Fig. 7 where the Rabi fre-
quency of the coupling |a>- |b) is =0.5T—we
have one peak at A’=0. This simply means that
the atom can ionize only as long as the first photon
has the energy to raise it from |g) to |a) from
where it is then excited to lb) and to the continuum
by the second resonant photon. .The curve has

E-]tel)
wnon

0
0 rT 10

FIG. 6. Evolution in time of the populations of states
g and a and of the photoionization signal for a resonant
field (A=0) of strength such that 2=2.5T.
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FIG. 7. ac Stark splitting of an autoionizing resonance in double optical resonance. The strong field is exactly on
resonance (A=0) and its strength is varied from € =0.5T to 9.5I'. The detuning A’ of the weak (probe) field is measured
in units of autoionization width I'. The calculation has been performed in the limit of a steady state. Stark shifts have

been neglected.

width T because state |b) is broadened by auto-
ionization. If the reader is concerned about the
curve not being asymmetric, we note that it is A’
and not A that is varied. By having fixed A at ex-
act resonance with the |a)=—|b) transition, we
are at the center of the asymmetric profile which,
for weak fields, would become apparent only if
we scanned A and kept A’ at resonance. The dy-
namics of the process is there nevertheless and
is manifested even for A fixed at zero when the
second field becomes strong. This is clearly seen
in the third curve which is calculated for £
=2.5T. The transition from a single peak to a
two-peak curve was to be expected since it re-
flects the ac Stark splitting of the transition
|@)=—|b) due to the strong field. We have a situa-
tion quite similar to ac Stark splitting in double
optical resonance in a system with three bound
states. As in that situation, the two peaks are
separated by @ the Rabi frequency. But the shape
is now completely different; the two peaks are of
unequal heights and widths. If state |b) simply
decayed out of the space of the three coupled
states with a rate I', the two peaks would have
equal heights and widths I'/2 as long as A=0.
Further increase of the intensity and hence of &
would simply move them farther and farther
apart but would not cause the asymmetry seeing
in Fig. 7. Asymmetric peaks in that case!!"!
would occur only if A#0. The novel features we
see here are due to the interference inherent in
autoionization; the interference between direct

ionization of |a) and ionization via |b) and its
configuration interaction. How unusual this be-
havior is becomes more contrastingly evident in
the fourth curve where for £ =5T one of the peaks
is absent, to reappear at higher intensities.
From this sequence of curves we can piece to-
gether the underlying effect. Interference causes
the two peaks to have unequal widths and as the
intensity increases one of the peaks continues to
narrow while the other continues to broaden.
From a different viewpoint, this means that of
the two dressed states created by the strong cou-
pling one acquires a short and the other a long
lifetime against ionization. At some critical in-
tensity, the interference is just right for the width
of the narrow state to become zero which means
that it becomes stable against ionization. Thus
we have the rather unexpected result of an auto-
ionizing system becoming stabler with increasing
laser intensity. Physically, this means that as
the atom is brought to [b) by the second field, in-
stead of autoionizing from there, because of the
configuration coupling, it is brought back to |a)
by the field thus lengthening its lifetime. The
bound character of |b) is thus enhanced by the
field. This of course is related to the fact that
the strong field couples |b) to a bound state |a)
whose autoionization rate we have assumed negli-
gible. Without going into further detail in this
paper, we simply point out that if we had kept the
autoionization width of |a) and it was much smaller
than that of \b) we would again have found one of
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the components becoming narrower up to a certain
intensity but the width would not go to zero. The
last two graphs of Fig. 7 show both peaks becom-
ing broader and broader as the intensity increases
beyond the critical intensity 2 =5I". At the same
time the centers of the peaks move farther apart
as they are expected to do in any case of ac Stark
splitting.

The calculations of this section have been per-
formed under the assumption of a square pulse
(suddenly switched on). As is well known from
work in related contexts,'®'!® certain details will
change if the pulse is switched on gradually, as
in fact is the case in real experimental situations.
We shall present an elaboration of this point in a
follow-up paper.

VII. CONCLUDING REMARKS

Our main objective in this paper has been the
study of the general features of autoionizing states
coupled to strong laser fields. We have presented
a fairly detailed description of the formalism be-
cause in subsequent papers we shall have to rely
on it in order to discuss many new aspects of the
problem. From the results presented in the pre-
vious sections, it is evident that the line shape
undergoes severe distortion. When more than one
autoionizing state is involved, the resulting phe-
nomenon of ac Stark splitting exhibits behavior
which is very different from the corresponding
behavior of bound states. In fact, the novel fea-
tures of this effect have many more unusual as-
pects as we shall show in our next paper.

Aside from questions pertaining to laser spec-
troscopy of autoionizing states, the problems
formulated and solved in this paper are also rele-
vant in other contexts. Most likely, they will
eventually become of interest in the multiphoton
ionization of alkaline earth atoms!’ when more
detailed experimental information is obtained. -

The participation of autoionizing states in harmonic
J

e

on% Mg, |7 =[ | Bg, | vs[*+ |

=y(E)(E-E)2+n| Vs |'],

which defines y(E). With this expression for
|M 5,| % the quantity s(x) - iv(x) appearing in Eq.
(3.18) is written as

) ° o V(@)
s(x) = iv(x) =P [madw (x - @)[(@ f @)+ «?]
g — V) (A2)

(x=a)* +*’

generation,?! or more generally in wave mixing,
is a problem that also will require further theo-
reticl understanding on a systematic basis.
Equally important will be the investigation of the
dynamics of lasing transitions via autoionizing
resonances based on the phenomenon of radiative
autoionization.?”?* A scheme for generating co-
herent radiation through this process has recently
been proposed.?? If a laser is to operate via an
autoionizing state the details of line-shape distor-
tion because of saturation are very important in
determining its characteristics. Finally, proces-
ses such as those depicted in Fig. 1 are related,
albeit somewhat indirectly, to continuum-continu-
um transitions under strong fields.?*"?" This point
is discussed in more detail in Ref. 12.

During the last five years or so, we have seen
intense activity on phenomena resulting from the
strong coupling of bound states with laser fields.
Significant advances have been made in the theo-
retical understanding of the related effects!!+ 1%
and experiments of increasing refinement are
still underway. The analogous situation in rela-
tion to autoionizing states contains even larger
variety and promises to prove even richer in new
and interesting phenomena.
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APPENDIX A
In this Appendix, we give a brief account of the
calculations that lead to Eq. (3.19). Beginning

with Eq. (3.7a) and the definitions of sinA and
cosA we write |[M;, | as

w

Dg.D

YE-E,)!+|Vz|®2Re (——ﬂ)(i‘— E,,)] (E-E) +7|vg|']"

Vi

(A1)

I

where @=E/A. If the matrix elements of D and
V are assumed to be slowly varying (compared

to the variation of the Lorentzian), y(®) becomes
a polynomial of (&~ ®,). Then the integral with
the principal value can be calculated exactly using
known expressions for definite integrals of this
type. It is nevertheless important for the coeffi-
cient of (® — @,)? to go to zero sufficiently fast as
@-w. The term |Dg,|?|Vz|* also has similar
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behavior for @~ «. Thus we write y(®) in the
abbreviated form

(@) = A(@) + B(@)(@ - @)+ C(@)@ - @0, (A3)

where the definitions of A and B become obvious
by comparing Eq. (A3) with Eq. (Al). In com-
puting the integrals, the lower limit can be set
equal to —« in all of them except one which can
be put in the dimensionless form

° Ab(A)
""a/" A }tz +1

=N (A4)

’

where N is a pure number, b()) is defined by
B(®)/B,, By by By=B(w=w,+w), and X by A
=®/k. The meaning of the subscript 0 is the
same as in Sec. III. The number N depends on
how fast the bound-free matrix element p. goes
to zero as E_ -~ « and determines the magnitude
of the laser-induced ac Stark shift of the state |g)
due to its direct coupling with the continuum.

For the rest of the integrals, it suffices to replace
A(w) and B(@) by their values at ® =w, + w thus
obtaining the results shown in Egs. (3.19) and
(3.20).

*On leave from the Physics Department, University of
Southern California, Los Angeles, California 90007.
1y. Fano, Phys. Rev. 124, 1866 (1961).

W, R. S. Garton and K. C Codling, Proc. Phys. Soc. Lon-
don 75, 87 (1960).

SR. P. Madden and K. Codling, Phys. Rev. Lett 10, 516
(1963).
4C. M. Brown and M. L. Cinter, J. Opt. Soc. Am. 68, 817
(1978).

55. 7. Wynne and J. P. Hermann, Opt. Lett. 4, 106
(1979).
€J. A. Armstrong, J. J. Wynne and P. Esherick, J. Opt.
Soc. Am. 62, 211 (1979).

'W. E. Cooke, T. F. Gallagher, S. A. Edelstein, and
R. M. Hill, Phys. Rev. Lett. 40, 178 (1978).

8W. E. Cooke and T. F. Ga.llagher, Phys. Rev. Lett. 41,
1648 (1978).

9p. Langendam, M. Gavrila, H. Kaandorp, and M. van
der Wiel, J. Phys. B 9, 1453 (1976).

101, 5, Aleksakhin, N. B. Delone, I. P. Zapesochnyi, and
V. V. Suran, Zh. Eksp. Teor. Fiz. 76, 887 (1979) Sov.
[Phys.—JETP 49, 447 (1979)].

Ua. T, Georges, P. Lambropoulos, and P. Zoller, in
Laser Spectroscopy IV, edited by H. Walther and
K. W. Rothe (Springer, Berlin, 1979); also A. T.
Georges and P. Lambropoulos, Adv. Electron. Electron
Phys. 54, 191 (1980).
12p_ Lambropoulos, Appl. Opt. 19, 3926 (1980).

1"’L Armstrong, B. L. Beers, andS Feneuille, Phys.

Rev. A 12, 1903 (1975); also L. Armstrong, C. E.
Theodos1ou, and M. J. Wall, ibid. 18, 2538 (1978).
Up. 1. Beers and L. Armstrong, Phys. Rev. A 12, 2447
(1975).

15yy. 1. Heller and A. K. Popov, Opt. Commun. 18, 449

- (1976).

185, H. Eberly, in Laser Spectroscopy IV, edited by
H. Walther and K. W. Rothe (Springer, Berlin, 1979).

1A, T. Georges, P. Lambropoulos, and P. Zoller,
Phys. Rev. Lett. 42, 1609 (1979).

18M. Crance and M. Feneuille, J. Phys. (Paris) Lett. 37,
L333 (1976).

19, Theodosiou, L. Armstrong, M. Crance, and
S. Feneuille, Phys. Rev. A 19, 766 (1979).

M. L. Goldberger and K. M. Watson Collision Theory
(Wiley, New York, 1964).

23, C. Wallace and G. Zdasiuk, Appl. Phys. Lett. 28,
449 (1976).

22C. A. Nicolaides and D. R. Beck, Phys. Rev. A 17,
2116 (1978).

2, A. Nicolaides (private communication); C. A. Nico-
laldes and Y. Komninos, Chem. Phys. Lett. (in press).
%5, E. Harris, Opt. Lett. 5, 1(1980).

%E. Karule, J. Phys. B 11, 441 (1978).

%3, Klarsfeld and A. Maquet, J. Phys. B 12, L553
(1979)

Ty, Gontier, M. Poirier, and M. Trahin, J. Phys. B 13,
1381 (1980)



