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From Gaussian beam to complex-source-point spherical wave
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It is shown that the paraxial Gaussian beam becomes the complex-source-point spherical wave when all-order'

corrections are made according to the method of I.ax, Louisell, and McKnight. Apparent contradictions between

previously published first-order corrections are also discussed.

I. INTRODUCTION

The paraxial wave equation' gives an accurate
description of wave beams near the axis, when
the characteristic transverse dimension, the beam
waist, is larger than the wavelength. But for the
important case of a strongly focused beam, this
condition is not satisfied, and corrections to the
paraxial beam must be made. Recently, Lax
et ul. ' developed a consistent scheme to obtain
corrections to the paraxial solution. The Gaussian
beam (GB) appears as the first term of a series
expansion of the powers of a small dimensionless
parameter. Each successive correction term is
related to the previous one through a differential
recurrence relation. These authors did not cal-
culate explicit expressions for the higher-order
corrections; Davis' ealeulated a first-order cor-
rection using this scheme, and recently Agrawal
and Pattanayak' also obtained a first-order cor-
rection by means of a completely different ap-
proach, but the corrections obtained by the two
methods are different.

In this paper, we calculate a first-order correc-
tion which yields a result that also differs from
the previous two. However, we indicate why the
three results are different, and show that for the
method of Lax et ul. to yield a unique and self-
consistent correction, a condition must be added.

All higher-order corrections are derived i6
Appendix A, and in Appendix 8 all the corrections
are added to yield a closed-form expression for
the corrected GB. %e then show that this correct-
ed wave is the so-called complex-source-point
spherical wave. ' '

II. THE CORRECTION SCHEME

V it) -2ik —=0 .8

ez

Using a cylindrical coordinate system (r, z) with
azimuthal symmetry, we defines the dimensionless
variables as

p =r/W0,

q=(i+z/z, ) ',
where S; and z, are, respectively, the character-
istic transverse and longitudinal dimensions of the
beam. The parameters W, and z, may be linked
with no loss of generality to the wave number k by
setting zo =-.,'TWO.

We also define' the parameter f as

f =Wo/2zo. (4)

Equation (2) is now written in these variables as

Lax et cI...' using a perturbation method, ' expres-
sed this field as a power series

f2ay(») (&)

and by grouping together equal powers of f, they
obtained the following differential relations:

g(y(0) ) -0

g(i(2n)) 2)(y(»-2)) (@-] 2 2 )

where g and Q are the differential operators

O' Sa . , e
g + 4 Q2

8p p Bp 8Q

Consider the scalar Helmholtz equation

v'A +O'A =0,
where A represents a Cartesian component of the
vector potential. Substituting A =q exp(-ikz) t«o
Eq. (1) yields

m= 4Q' —q'—
The differential equation (V) is the well-known

paraxial wave equation, which corresponds here
to the lowest-order solution. The paraxial Gaus-
sian beam (GB) which is to be corrected is taken
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as a solution, finite at the origin, of this differ-
ential equation. Following Siegman, s me write for
cylindrical coordinates

y(0) —q~L (gqp2) y(0)

where

(10)

and I, (z} is the Laguerre polynomial of order rn .
With this notation, )t)('") stands for the sth-order
correction to the mth-order GB. In the following
demonstration, for the highex'-ox'der GB we use
the simpler form introduced by Siegman, instead
of the.usual one involving 8'.

Assuming that )()(2" 2) has been calculatedt, he
differential recurrence relation (8) is in fact an
inhomogeneous differential equation. The solution
of this equation is therefore the sum of a particu-
lar solution $~„2"„~ and any linear combination of the
solutions $~0~ of the corx'esponding homogeneous
equation (7}.
- Nom the solution

y(mn) q(ms) + Q s y(0) (11)

can be inserted in the inhomogeneous term of Eq.
(8), defining an inhomogeneous equation for

The solution is again the sum of a particu-
lar solution [which depends on the choice of the
coefficients a in Eq. (11)] and any linear combi-
nation of the P(0) solutions, the combination possibly
being different from that of Eq. (11}. Such a de-
gree of arbitrariness for each order of correction
may lead to inconsistencies, unless a may is found

to uniquely specify the linear combination that may
be added to each order. This may be achieved by
means of a boundary condition.

A physically reasonable condition is that the sol-
ution $~0 be the pm.gxig$ solution of the problem.
This means that the eorreetion terms g~'"~ must be
zero along the axis (p =0) for all s different from
zero. It is easy to see that no linear combination
of the g ~ can be zero along the axis, so they must
be eliminated from all orders of correction.

The elimination of all the GB's also means that
in the correction terms of a given GB, for instance

, no other order GB $~, m =1, 2, . . . , should
be present; these terms should only be present
when correcting the mth-order beam. Obviously,
/~0+ itself should not be added to any order of cor-
rection, because it is already present in the cor-
rection series as the zero-order term.

IH. FIRSTARDER CORRECTION

As an example consider the first-order correc-
tion to the lowest-order GB g(,'). By inserting ex-
pression (10) for g(0') in the differential relation

(8) with s equal to unity, it can be shown that a
particular solution of the resulting inhomogeneous
differential. equation is

By inspecting the arrangement of the variables
Q and (ig()'), it is easy to verify that this particu-
lar solution does not contain any GB g

0 of any
order. For the same problem, Davis' obtained for
the first-order correction to the lomest-order GB
the expression

(~(2) ) f,(2) 2(g~(o) +y(o) ) (15)

This result is again a solution of Eq. (8), be-
cause the tmo GB's of orders 1 and 2 in the paren-
theses are sotutions of the homogeneous equation.
The difference between their result and ours may
come either from the different approximations
made in their analysis, or from the fact that their
method of correction, mith their boundary condi-

Note that this correction is not zero along the
axis. Using our notation, it may be written

(q(2) ) -y(2) + y(0)

where p(,') is our correction term of Eq. (12).
Thus Davis's correction is equal to our correction
plus the first-order GB (1)(,0). Of course this is
still a mathematical solution of Eq. (8}, because
g(, ') is a solution of the homogeneous equation.

Davis was led to this particular solution by im-
posing, as it is always the case when assuming
sources of a finite extent, that the corrected wave
behaves paraxially like a spherical wave for large
z, and by making the judicious change of the var-
iable s to the complex one found in the paraxial
GB, namely, s+ig, . However, in the expansion of
the spherical wave, he took into account only the
phase of the spherical wave. Folloming the same
reasoning as Davis, but taking into account in
addition the photometric term 1/R of the spherical
wave, we were able to obtain the result given in
Eq. (12). The validity of this process and its abil-
ity to generate the correct first-order, as mell as
any higher-order correction, mill become obvious
when considering our final result ['Eq. (21)].

On the other hand, Agrawal e& al. ' (Ag) develop-
ed a very different method to obtain corrections to
the GB: they specified a different boundary condi-
tion, that the field be equal to the GB in the plane
s =0, and they used the angular spectrum repre-
sentation to calculate the field distribution at an
arbitrary plane z. The result mas then expanded
in powers of the parameter f', which were con-
sidered as higher-order corrections to the GB.
Vhth our notation, their first-order correction is
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tion, cannot avoid mixing together contributions
from different GB's in addition to the one being

corrected.

IV. HIGHERWRDER CORRECTIONS

$(all ) —[(iQp2)N L lt (iQp2)] (iQ)tip( 0) (16)

where I,"„(x) is the associated Laguerre polynom-
ial

L"„(x)= (2n)! , m! (s -m)!(s+m)I (17)

Furthermore, the higher-order correction (n c 0)
satisfies the boundary condition along the axis.
When all the corrections are added according to
Eq. (6), the total corrected field is

t!,=q', 'I g (-1)"(Qpf)'"L, „"(iQp') . (18)
n =0

In Appendix B, a generating function for the
spherical Hankel function is used to show that P,
can be written in the closed form

C
2f2, P 2Qf2~

exp ((- i/2Qf )[ 1 + (2Qpf )~]~ ~2)
l~

(-i/2Qf')[1+(2Qpf)'] "'
which, written in terms of the real coordinates of
the problem, is

e -i&Rq

go =Cs
C

where

R, =[r'+(z+iz, )']'~',
and where c is a constant. Thus the final expres-
sion for the vector potential is

(20)

We may now calculate the next order of correc-
tion $0' by means of the method described above,
and so on. In Appendix A the reduced variables

Q and (iQp') are used. The differential relation
(8) may then be separated to obtain a second-order
differential relation for the variable igp2. From
this differential relation we also obtain a power-
series solution whose zero-order term is the low-
est-order GB. The nth term reads

V. CORRECTIONS TO HIGHERARDER
GAUSSIAN BEAMS

A „=h!2~ (hR, )P"(cos8, )e""~, (22)

where the complex polar angle 9, is defined by

cosO (23)
C

Preliminary studies have shown that, at least for
the azimuthally symmetrical Siegman-type Gaus-
sian beams, the sum of all corrections may be
expressed as simple linear combinations of com-
plex- source-point spherical waves. It is probable
that for nonsymmetrical higher-order beams,
such a correspondence can also be made. This is
also suggested by a result obtained by Shin and

Felsen. ' These authors showed that multipole
fields generated by the complex-source-point
spherical wave behave, near the axis, like the
Hermite-Gaussian beams introduced by Siegman.

VI. CONCLUSION

By means of the perturbation method used by
Lax et al. , with the additional condition that the
corrections be zero along the axis, it is possible
to calculate in a consistent manner all the cor-
rections to the lowest-order paraxial Gaussian
beam. We have shown that the sum of all the cor-
rections transforms the GB into the complex-
source-point spherical wave. Because the com-
plex-source-point spherical wave has a very
simple mathematical form, it should be used
more widely to deal with very strong focusing of
laser beams.

APPENDIX A: SOLUTION OF THE RECURRENCE
' RELATION FOR 0

The method of separation of variables may be
used to solve the following recurrence relation
(6):

The same analysis can be applied to calculate
corrections to higher-order GB's. It appears
reasonable to suppose that those corrections could

be summed, and the result expressed in terms of
higher-order complex-source-point spherical
waves

e-)RR
Ao

C

(21)
g2~(2n) j 8 y(2n) g q(2n)

+ +4iq'
ep' p ap a@

Clearly, Eq. (21) is a solution of the Helmholtz

equation (1). It was first observed by Deschamps'
that such a complex-source-point spherical wave

could be expanded near the z axis in a power ser-
ies whose first term was the GB. This wave has
been extensively analyzed by Felsen.

(A1}

As stated in the text, solutions for g( are
obtained by setting the right-hand side of this
recurrence relation to zero. The solution of the
resulting differential equation is then obtained by
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a separation of the variables Q and iQp'. Here
we seek a solution for Eq. (Al) with the limiting
form g( when n goes to zero. Let

u =iQp' ~ (A2)

The recurrence relation for the variables Q and

Q becomes

B 2q(2n) (&y(Is) ()y(Is)u, +(1+u} +Q
BQ BQ BQ

(&y(Is-I) & (&Iy(20 -I)
=IQ,—l u',

l
+SuQ

( (& i,(Is -2)
+,QI,

Q'
(&Q

(AS)

which is the product of a function of Q multiplied
by a power of Q. The integerm is associated
with higher-order GB's and will be set equal to
zero here, in order to find corrections for the
lowest-order GB. This result for n equal to zero
suggests a separation of the same form, namely,
a function of Q multiplied by a power of Q for
other values of u. A close examination of Eq. (AS)
shows that a separation of the variables is
achieved for

y(Is) [ U(Is) (u)](iQ)s+1

where U™a)(u)is a solution of the differential re-
lation

(A5)

d'U('") yU(2n )u, + (1+u} + (u +1}U(2"&

gQ dQ

d2U(2n -2) dU(2n -2)=u', + 2(u +I)u
dQ

+ s(u+I)U(2" I& . -
(A6)

A solution which is finite at the origin may be
obtained by means of the power-series method.
We have found that the form

U(2s) (u) Q B(s)u~+ s (A7)

leads to a simple recurrence relation for S("):
(m+ }2(B+(m+222)B~s,=(m+2s)(m+2n —1)B "

(A8)

for m =0, 1, 2, . . . , and B y
-=0. We were able to

show that the coefficient B "

(„) C(-1) r(m+Sn+I)
m!22! r(m+22 +I) (A9)

When n is equal to zero, that is, when the right-
hand side of the recurrence relation is equal to
zero, the result is

P
' =[e "L (u)](iQ) '' (m=0, 1, 2, . . . ) (A4)

where, E, is a confluent hypergeometric function.
It can be shown by means of a Kummer transfor-
mation of this function' that

U(Is) (u) Ce-susLs (u) (A11)

where L„"(u}is the associated Laguerre polynom-
ial.

Finally, our solution for p(0" is
Is ) C ( QIpI)s Ls (iQp2)g( 0) (A12)

where $,0 is the lowest-order GB

(I&t" =(iQ)exp(-iQp') . (A12)

A second solution to the recurrence relation for
U '" of Eq. (A6) may readily be obtained by in-
spection:

U(2" & =C,u!,
where C, is a constant. This solution is linearly
independent of the previous one. The correspond-
ing form for po'" is

y(2s) C u! (IQ)s+ 1

which differs from the expression for the paraxial
Gaussian beam when n =0. This solution is there-
fore rejected as unrelated to our problem.

APPENDIX B SUMMATION OF THE!It((2n)

In this appendix the p(02" & found in Appendix A
are added according:to Eq. (6),

f2sy(Is)
n-0

(B1)

taking for f,2" its power-series expansion obtained
in Appendix A, Eqs. (A7) and (A9). Equation (Bl)
may then be expressed as the double summation

(-QIpsyI)" (-iQp')"r (m+2u+1)
I(!m! I'(m+22+1}

(B2)

Changing the order of summation permits us to
write

(.Q)
g(-iQp') g r( +u+I)

( iQf, )„m! „,n !r( m 22+)I-
(BS)

where C is a constant, satisfying the recurrence
relation (A8).

Using the hypergeometric notation, U('"& (u)
may be written

C(222)!
(»+I

U
I" (u) = I u",F, -u, (A10)(n!)' ' '~ 22+1
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The last summation represents a polynomial of
order m which may be related to the spherical
Hankel function h ', "yielding

exp[ i(Z'+2Zt)' '] Q ( t-)"h„'(Z)
—i(Z'+2Zt )"',=o n!

(B6}

~0 2ym P l(2qj2 I ~ ~! m 2qf2

(B4)
Using the generating functions for the spherical

Bessel functions y„and j„(Ref.10), it can be
shown that a generating function for h„' is

—
~

x [ —'(Z'+2Zt)]'~'-Q
Z] a=0

(B5)
where 2lt I &IZI ~

By differentiating this generating function rela-
tive to t, one obtains

This last generating function leads to a closed-
form expression for!()„

C i
40 2y2 P 2qy2

e P((—'/)()y')[) ~ ()()Pf)'} '})'
(- j/2qf ') [ 1 + (2qpf )'] '" (BV}

The convergence condition 2( t (
& (Z ) now reads

~!Qpf ~

&1. By analytical continuation this condition
can be relaxed, ensuring the validity of Eq. (Bv)
for all the possible values of the arguments, ex-
cept at the two points of discontinuity: Qpf =+i
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