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Exact spectrum of the two-dimensional rigid rotator in external fields. I.Stark effect
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An exact solution of the two-dimensional rigid rotator in a static uniform electric field of arbitrary strength is

given. The eigenvalue spectrum is found to consist of the characteristic values of the even-index Mathieu functions

of m periodicity. At low field strengths $ the double degeneracy of the rotational states +m is broken in order 8'
The broken degeneracy persists for arbitrary field strength. Results are compared with perturbation theory.

I. INTRODUCTION

The two- and three-dimensional rigid rotators
are well-known exactly soluble quantum systems
which serve as models for interpretation of mole-
cular rotational spectra. It is of interest, there-
fore, to determine precisely the energy spectrum
of these systems in interaction with electric and

magnetic fields. For sufficiently weak fields the

energy eigenvalues of the rigid rotator can be
easily obtained by perturbation theory; these
calculations for the three-dimensional rotator
in an electric field are now routinely presented
in many quantum-mechanics textbooks. ' For
strong electric fields the determination of the

energy eigenvalues has necessitated either al-
ternative approximative techniques or computer
calculations. Peter and Strandberg have pre-
sented a perturbation theoretic method for the
three-dimensional rotator based on a harmonic
oscillator approximation which converges when

the electric energy is greater than the rotational
energy. An approximate method utilizing con-
tinued fractions has been published by Hughes'

and Schlier. ' Von Meyenn' has made a numerical
investigation of the three-dimensional rotator
for the intermediate region where neither second-
order perturbation theory nor the harmonic-
oscillator approximations are particularly appro-
priate.

In this article and the following one we consider
the problems of a two-dimensional rigid rotator
in arbitrarily strong electric and magnetic fields,
respectively. The Stark effect of the two-dimen-

sional rotator with electric dipole moment p has
previously been examined by Barriol' who used
a continued fraction approximation and more re-
cently by Flugge' who employed second-order
nondegenerate perturbation theory. FlQgge's
justification for use of nondegenerate as opposed
to degenerate perturbation theory is that the zero-
field degenerate basis states (eigenstates of the

single nonvanishing component of orbital angular
momentum) are uncoupled by the perturbation

-p ~ X, where 7 is a static uniform electric field
normal to the angular momentum. Thus, no

singular terms appear in the series expansion.
FlGgge's calculation shows that the double de-
generacy of the zero-field excited states (rota-
tional quantum number ~m

~

& 0) is unbroken to
order g . In fact, further application of nonde-

generate perturbation theory leads to an unbroken

degeneracy to all orders of $. These results
differ from those obtained by the method of con-
tinued fractions.

A simple symmetry argument would seem to
indicate that the analysis of FlQgge is not correct.
The Hamiltoniam of the field-free two-dimensional

rigid rotator is invariant under the elements of
the (non-Abelian) rotation-reflection group; the

degenerate basis g, (P) - e"~~ spans a two-dimen-
sional irreducible representation of this group. '
The Hamiltonian including the electric dipole in-

teraction, however, is invariant under a group

comprising the identity and reflection across
the electric field axis. This group is isomorphic
to the (Abelian) symmetric group S, and can have

only two one-dimensional irreducible represen-
tations. Thus, the degenerate basis should split
in some order into nondegenerate states belonging

to the symmetric and antisymmetric representa-
tions of S,.

In this article we present the exact solution to
the Stark effect of the two-dimensional rigid ro-
tator. We show that the degeneracy is indeed

broken and that the states possess the requisite
symmetries. The results are compared with

perturbation theory, and the origin of F16gge's
error is explained.

II. STARK EFFECT OF THE TWO-DIMENSIONAL
RIGID ROTATOR

The total Hamiltonian of the two-dimensional
rigid rotator with moment of inertia I and elec-
tric dipole moment p in a static uniform electric
field gx (normal to the angular momentum) can
be written as
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3C=R, +3Cs =L',/2I- p ~ 8 . (la)

In the coordinate representation use of Eq. (1a)
leads to the Schrodinger equation

(8*/ap'+ l"'+ a cosg)p(g) =0, (lb)

where we have expressed the energy eigenvalues
as

E„=I'p'/2l, (2a)

and defined the dimensionless interaction para-
meter

x =2IPS /I',
where p=~p~. By setting

a=4@.~,

q =-2X,

one can reexpress Eq. (1b) in the form

d' 8 +Is-2q cos(28)jg(8) =0,

(2b)

(3a)

(3b)

(3c)

(4)

which is recognizable as the canonical form of
Mathieu's equation. '

The requirement of continuity and single-val-
uedness of the wave function

'(~+ 2s) =C(~).

or, equivalently,

0(8+.) =C(8),

(sa)

(6b)

(P, X) =ce& (P/2, -X), m=0, 1,2...
Z„.(~) =a l"../2I=S'a, .(-~)/sl,

(P, X)=st (f/2, -X), m=1, 2, 3...
E„(~)=I p, '/2I=I g (-~)/6I.

The states are labeled by the eigenvalues+ of the
reflection operator IT„and by the eigenvalues m
of L, where P-m' as X-O.

Because the Mathieu equation leads to an irre-
ducible three-term recursion relation, the char-

(6a)

(6b}

(6c}

(6d)

restricts the admissable solutions of Eq. (4) to
the Mathieu functions with m periodicity. These
Mathieu functions and their characteristic values
are traditionally designated as follows (where m

=0, 1,2...).
(1) ce& (8, q)—even solutions of period v which

reduce tocos(2m8) as q-0; characteristic values
are a=a

(2) see~,a(8, q)—odd solutions of period v which
reduce tosu((2m+2)8j as q 0; characteristic
values are a=b&

The exact Stark solutions (to within a normaliza-
tion constant) are therefore

acteristic values cmmot be explicitly expressed in
closed form. For small q they can be developed in an

infinite series by various methods as, for ex.-
ample, solution of a continued fraction or of
Hill's determinant. Using the series given by
McLachlan, "we summarize in Table I the eigen-
values p ~, for the ground state and first six ex-
cited states. The eigenvalues for each m are
truncated at the lowest order in g which splits
the field-free degeneracy. The unusual broken
degeneracy pattern (which extends to all excited
levels} is clearly evident: Each degenerate pair
of statesof fixed ~m~ issplitinorder 8'. Thus,
the first excited level ~m ~

=1 is split by a quad-
ratic Stark effect, contrary to the results of
Flbgge.

The results of Table I can also be obtained by
use of degenerate perturbation theory. This re-
quires construction of the unique linear combi-
nations of degenerate states which are analytically
continuous with the Stark states at E =0. From
Eqs. (6a) and (6b) it is seen that these linear
combinations arecos(m@) and sin(mP), respec-
tively. It is generally the case that proper appli-
cation of perturbation theory to degenerate states
requires that one start with the appropriate analyt-
ically continuous basis as long as the perturbation
lifts the degeneracy in some order. That this
occurs may often be inferred by a group theoreti-
cal analysis. Application of nondegenerate per-
turbation theory to any other basis is incorrect,
even if that basis is uncoupled by the perturbation
and the resulting series is free of singularities.

For very large S the energy eigenvalues are
derivable in closed form from the asymptotic
properties of the Mathieu functions

p, ',=-x+(m+ 1/2)(2X)'~' (7a}

or

TABLE I. Series expansion of the Stark eigenvalues
p2

Po
2 1

i+ Q

„~-=2 -m"2 2 & 2

42~ & g2, 433~~
~2+ eo 216E03

4+ ~ 2 -317
216E03

2 62+ $2+ 187'+ 6743617 6

1096E03 58084992K 05
187~2 5861633~6

1096E03 58084992E05

~ Adapted from Ref. 9 (E0x



EXACT SPECTRUM OF THE TWO-DIMENSIONAL RIGID. ..

(7b)E„=-ph+(m+1/2)h(ph/I)' '.
The first term represents the alignment of a
classical dipole along the field direction. The
second term represents an harmonic oscillator
spectrum with equidistant level separations of
S(pg/I)' '. This can be understood by expanding
the Hamiltonian in Eq. (1b) about the equilibrium
point $ =0 to obtain an harmonic-oscillator Ham-
iltonian. The rotator behavior in a strong elec-
tric field can be classically interpreted as a
small amplitude oscillation of the dipole at fre-
quency (ph /I)' ' about the field direction.

Finally, it is seen that the solutions of Eqs.
(6a) and (6c) span the symmetric and antisym-

metric representations of S„respectively, where
the symmetry and antisymmetry is taken with
respect to reflection across the x axis.

A more detailed description of the properties
of the eigenvalues and ejgenfunctions of the two-
dimensional rigid rotator in an electric field will
be published elsewhere. "
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