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Diabatic-state treatment of negative-meson moderation and capture. I.The hydrogen atom
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A new formulation of the moderation and capture of negative mesons by atoms has been developed. The scattering

is described by a complex potential with a real part given by a diabatic interaction potential and an imaginary part

given by the ionization width of the diabatic state embedded in the electronic continuum. Results are presented for

collisions ofp, ~,E, and p with the hydrogen atom. The differential energy-loss cross sections and stopping

powers obtained are large. The energy spectrum of stopped mesons is determined and most captures are found to

occur at collision energies below or near the ionization potential. The principal-quantum-number distributions of

the initially formed mesic atoms peak close to the orbital giving optimal overlap with the displaced electronic

orbital. The angular-momentum distributions are not too different from statistical, except that they tend to cut off at

l significantly smaller than n-1 in the case of large n. Comparison to a very recent experiment is made in a note

added.

I. INTRODUCTION

The capture of negative mesons leading to mesic
atom formation, has been found experimentally to
depend strikingly on the electronic structure of the

stopping medium. ' In this paper we describe a,

new theoretical formulation for the slowing down

and capture of negative mesons at low velocities
(v & 1 a.u. = uc, the velocity of an electron in the
lowest Bohr orbit of the hydrogen atom). Most
prior theoretical treatments have been carried
out quasiclassically by approximating the stopping
medium as an electron gas (e.g. , the Fermi-Teller
model), ' ' or quantum mechanically in the Born
approximation. ' " Although electron- gas models
have made impressive progress, they cannot ade-
quately describe few-electron atoms or electronic
shell structure, and hence do not provide a real-
istic basis for understanding the observed chemi-
cal dependence. The Born approximation has been
applied to capture though not to slowing down. Its
validity at low collision velocities is questionable.
Recently, Baird" has performed a quantum-me-
chanical perturbed-stationary-state (PSS) calcu-
lation for negative- meson-hydrogen- atom colli-
sions using a Born-Oppenheimer description of
the meson motion. His calculation is probably
the best treatment of negative-meson scattering
by the hydrogen atom to date, even though elec-
tronically excited bound states were neglected.
A much utilized early PSS calculation by Rosen-
berg" is not as reliable because of his use of
free-particle continuum wave functions and his
assumption of straight-line trajectories. Unfor-
tunately, it would be quite difficult to directly ap-
ply the PSS method to other atoms or to mole-
cules. However, Baird's results, which elucidate
the role of adiabatic ionization" for hydrogen, ""
suggest a highly physical model which could be
more easily applied to many-electron systems.

In the present context, the old qualitative con-

cept of adiabatic ionization simply states that when

the meson approaches the hydrogen nucleus closer
than the critical dipole distance (R, = 0.64a, ) the

electron becomes free and escapes. The meson

energy loss is just the ionization potential plus the

unspecified kinetic energy of the free electron.
Baird's calculations showed that the electron ki-
netic energies are almost always low (correspond-
ing to v, & I a.u.). However, he also found that the

total ionization cross sections significantly exceed
gR', . Moreover, the concept of adiabatic ionization

has limited applicability. Consider, for example,
the collision of a negative meson with the He atom.
As can easily be discerned from the 'united-atom"

limit, adiabatic ionization does not occur in this
case, since H is bound. At this point one might

well question the efficacy of describing the colli-
sion complex in terms of the adiabatic state. If
instead one chooses some nonadiabatic, or dia-
batic", state, then a potential curve is obtained
which may actually cross into the electronic ion-
ization continuum. A nonadiabatic description is
further suggested by the fact that the negative
meson is accelerated as it approaches the positive
nucleus. Of course, if complete sets of states are
considered and all potential and nuclear-motion
couplings are retained, the two representations
are equivalent. " One finds, however, that an ap-
propriately chosen nonadiabatic basis can be trun-
cated and that the important couplings assume a
more benign form.

Our diabatic state is such that the electronic
wave function retains its initial form except pos-
sibly for polarization. The state is discrete at
all internuclear distances R (Sec. II). At dis-
tances where this diabatic state is embedded in
the electronic continuum, the transition rate to
the continuum, given by the golden-rule" formula,
is evaluated using the Stieltjes moment-theory
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technique (Sec. III)." Combining this ionization
width" with the real potential energy yields a

local complex-potential description of the meson-
atom collision in a Born-Oppenheimer frame-
work. " The kinetic energy of an electron ejected
at a given value of R is distributed about the ener-
gy difference between the diabatic and ionic poten-
tial curves. Scattering is then calculated quasi-
classically (Sec. IV) and the differential energy-
loss cross section is determined as a function of
initial energy, energy loss, and angular momen-
tum. Very importantly, capture and slowing down
are treated on an equal theoretical basis. Using
these cross sections we determine the energy
spectrum of the stopped mesons as well as the
distribution of initial quantum numbers n and l
for the newly formed mesic atoms. Results for
stopping p, , z, K, and p by H atoms are pre-
sented in Sec. V and compared with prior calcu-
lations in Sec. VI.

II. MESON-ATOM POTENTIAL ENERGY

There are two quite different theoretical points
of view for a negative-meson-atom (or molecule)
collision: (1) The motion of the meson may be
treated self-consistently with the electrons, or
(2) the meson may be fixed' at a point, as are the
nuclei, and the electronic motion in the resulting
stationary field calculated. The latter description
(Born-Oppenheimer treatment) is adopted in the
pr esent work. Within the Born-Oppenheimer
framework it is most usual to employ adiabatic
states which are eigenstetes of the electronic
Hamiltonian H„neglecting the nuclear and meson
kinetic energy terms. The electronic wave func-
tion corresponding to the adiabatic description of
H(ls) +p is displayed in Fig. 1 for six p —p dis-
tances. As the negative meson approaches from
a large distance, the electronic wave function
gradually polarizes toward the opposite side of
the nucleus. As the meson comes still closer
(&2a,) the adiabatic electronic wave function also
becomes significantly more diffuse, culminating
in a continuum electronic wave function at the dis-
tance 0.64 a . This calculation was done with an
even-tempered Gaussian basis set' of 20-s, 20-p,
and 20-d functions on hydrogen. The Gaussian ex-
ponents are given by aP" where a =1907, P=0.4,
and n= 0, 1, .. . , 19. The corresponding adiabatic
energies are shown in Fig. 2. The energies ob-
tained with basis functions only on the hydrogen
atom agree with the exact values" to three deci-
mal places; by adding three 8 functions and three
p functions on the negative meson, another accu-
rate decimal place could be obtained. The energy
shown is the electronic energy

E,(R)=(+g(r, R) ~&, I ~,(r, R)&,

with Cb ——4;, the adiabatic wave function. The
total potential energy is then

V(R) =E,(R) —Z/R, (2)

III. COUPLING TO THE ELECTRONIC CONTINUUM

At distances smaller than the crossing into the
continuum, the frozen-orbital diabatic or polar-
ized-orbital diabatic states 4, are localized wave
functions embedded in the ionization continuum.
The ionization width from these discrete states
(equal to the transition rate in atomic units) is

where Z = 1 for the hydrogen atom.
Within the fixed-meson description it is also

possible to define nonadiabatic states which
take into account the fact that, in a real collision,
the electronic wave function does not really have
unlimited time to relax. This effect is well known
in atom-atom inelastic scattering" and may be
especially important for negative muon scattering
because of the acceleration of the relatively light
meson by the oppositely charged nucleus. The ex-
treme choice of a diabitic state is simply a 'fro-
zen-orbital" wave function C~ which is not allowed
to adjust at all to the presence of the perturbing
charge. The potential energy curve resulting
from this choice for H+ p, is also shown in Fig.
2. This diabatic energy crosses into the continu-
um at a distance of R, = 1.86 a,. This distance
may be compared to R, = 0.64 ao at which the elec-
tron becomes free adiabatically; however, it m3y
be noted that the adiabatic binding energy becomes
less than 0.001 a.u. at R & 1.0 a,.

More accurately, the wave function should show
the effect of polarization, which occurs gradually
from long-range, but not short-range adiabatic
effects which require abrupt changes in the orbital
character. In the present work, polarization has
been allowed for by introducing a single polarizing
configuration. The polarization orbital has been
chosen for H+ p in two ways: (1) by considering
the perturbation of the isolated H atom by a weak uni-
form electric field, and (2) by choosing the orbital of
p character which minimizes the electronic energy
at some finite distance R~. In the latter case, the
result was found to be relatively insensitive to the
choice of R~; a reasonable choice is R~=R„. This
procedure of choosing the polarization orbital is
in the spirit of the polarized-orbital method in
electron-atom scattering. " The results of both
procedures are shown in Fig. 2; the two energies
differ noticeably only at R & 1 a,. At large R the
energies with polarization are nearly adiabatic as
expected; at smaller R they lie closer to the fro-
zen-orbital diabatic energies.
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FIG. 1. Contours of the normalized adiabatic electronic wave function for various separations R be@veen the negative

meson and hydrogen nucleus. Contour values are C, 2C, 3C, ... .

given by the golden-rule formula"

f'~» ~=2 p, l«~.y;IH. -~ll~l)l'.
where p, is the density of states per unit energy
associated with the continuum functions Q;, 4, is
the wave function of the system with one electron
removed, and 8 is the antisymmetrization oper-
ator.

The difficulties encountered in evaluating accu-
rate ionization widths are generally not associated
with determining accurate bound-state wave func-

tions —quantum chemistry techniques" can provide
quite good wave functions even for complex poly-
atomic systems; the problem lies in providing an

equally acceptable continuum wave function Q;.
To zero-order, P; can be approximated by a plane
wave, but since Baird's work' suggests that most
ionization events yield a slow electron, this is not
an acceptable approximation. For the specific
case of a meson ionizing the hydrogen atom, the
exact solution of the Schrodinger equation is possi-
ble; i.e., the continuum solution for an electron
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g q
=Nqx'y a"e "~" (4)
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where N, is a normalization factor, and the angu-
lar dependence is governed by l, m, and n. For
instance, an s -type CGO has l = m =n =0, a p„-
type CGO has l =1, m=n=0, etc.

The linear combination of these CGO's which
define the background continuum at each R are
found by diagonalizing the electronic Hamiltonian
in the space orthogonal to the diabatic state. If
a projection operator and its complement are
defined,

-0.4—

2 3 4 5
R(a)

FIG. 2. Electronic potential energy curves for the
hydrogen atom plus a negative meson. The meson-
nucleus potential has been subtracted out. The dashed
curve is the adiabatic energy and the solid curves are
three different diabatic approximations.

P =1-Q, (6)

then the square-integrable approximations to the
continuum functions satisfy

&X. l»~IX' =6..s.

moving in the field of a dipole is known. " Although
the exact solution for the next more complicated
situation, the motion of a continuum electron in the
field of a meson-He' core, is not known, recent
advances" in the theory of electron scattering
from diatomic molecules and ions could be ap-
plied to generate the static exchange (Hartree-
Fock) continuum functions which are of compara-
ble quality to the bound states. These techniques,
however, are still incapable of treating even the
simplest meson-molecule collision, and so we
instead focused on an approach recently suggested
by Hazi. " This method, which should allow both
meson-atom and meson-molecule collisions to
be studied, employs a discretization of the con-
tinuum coupled with Stieltjes moment theory. It
is described in detail elsewhere"" and only the
essentials of the theory will be presented here.

Two important concepts form the basis of Hazi's
theory. The first is that because the bound-state
wave functions which enter into the matrix element
(8) fall off exponentially as a function of r, knowl-
edge of the large x behavior of the continuum func-
tion is in some sense unnecessary. If affects the
magnitude of the matrix element only through a
normalization. This suggests an expansion of
the continuum in terms of square-integrable func-
tions which have roughly the same spatial extent
as the bound states. It is this feature which makes
extension of the model to diatomic and polyatomic
targets feasible, for the requisite integrals are
relatively straightforward to evaluate. In the
present work, both the bound states and the con-
tinuum are expanded in a basis of Cartesian Gaus-
sian orbitals (CGO) centered on the target atom,

(

&x. fx.& =6„..
The discretized approximation to.the width as

a function of energy which results from using
these square integrable functions directly, i.e.,

y„,=2vf &ex„e.fa, z', fe'-, & fm,

(8)

is meaningless because the (X„}are improperly
normalized. The importance of the set (y„,c„}lies
in the fact that they can be thought of as providing
a set of points and weights which determine the
moments of the width distribution. Thus, if the
negative moments of I'(e) are considered

de '1"(e ')
s(-&)= . , a (10)

it is found that the first few moments are well
approximated by

N y
s(-u) =

n= +n

as long as k«N/2.
This fact suggests the second important com-

ponent of the theory: Givenreliableapproximations
to the first few moments of the distribution, the
problem can be inverted to give a (appropriately
normalized) histogram approximation to the width
distribution. The inversion is justified by Stieltjes
moment theory, and the details of the procedure
can be found in the papers by Hazi" and Langhoff
and co-workers. "

A practical difficulty with implementing this
approach for hydrogen surfaces immediately.
When the continuum is imaged with basis sets
which include very diffuse functions, the discret-
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ization leads to a large number of states whose
eigenvalues lie quite close to threshold. Since
the ionization threshold in hydrogen occurs at
c =0, this leads to a number of extremely small
eigenvalues. In the present work, the smallest
eigenvalues are of the order of 10 ' a.u. These
low-lying states dominate the moments of Eg. (11)
and quickly lead to numerical instability in the
Stieltjes procedure. This can be avoided by re-
defining the energy scale; that is, by simply adding
a constant to all the eigenvalues before the mo-
ment analysis is performed. However, because
not all of the moments which can be generated
from the set of {y„,c„jare used to reconstruct
the cumulative width function F(c), the re-
sults can in principle be somewhat affected
by the magnitude of the shift. In practice,

mutually consistent histogram approximations
for F(e) were obtained from the first 12-20
moments, with shifts in the range 0.1 to 0.5 a.u.
When larger numbers of moments were used, wild
oscillations arose in the approximation to F(z),
much as is the case in Stieltjes theory applications
to photoionization cross sections. "'"

The procedure outlined above generates a family
of curves I"(R,c). Conservation of energy dictates
that the appropriate function for the optical po-
tential is I'(R, E,), where E~ depends paramet-
rically on R, which we denote by simply I'(R).
This function for the hydrogen 1s orbital is plotted
in Fig. 3. Note that it rises smoothly from a small
value near the crossing to a maximum of about 0.58

0.6

0.5

a.u. at R =0. This behavior is most simply under-
stood in terms of the spatial extent of the diabatic
state. Near threshold, the wavelength of the
continuum function is too large to overlap ap-
preciably with the H(ls) orbital, but as R decreas-
es and the diabatic state moves higher into the
continuum, a better match is found.

IV. ENERGY LOSS IN COLLISIONS

A. Theory

The scattering problem may be formulated in
terms of the local complex potential

IV(R) = V(R) ——1 (R), (12)

where V(R) and I'(R) have been described in Secs.
II and III, respectively (it is assumed that the
target is an atom so that the potential depends
on R only}. The rate of electron emission at
distance R between the meson and the atom is
given by I'(R)/h (}1=1in atomic units). The meson
energy loss when ionization occurs is given by
the target ionization potential I, plus the kinetic
energy c carried off by the electron; i.e. , the
final meson energy is

E~=E-I, -g. (13}

If E&&0, the meson is captured; by energy con-
servation the principal quantum number of the
capture orbital is such that E„=E&, where n is
treated as continuous.

For the hydrogen atom

n z=( —m/2 E&)'~2, (14)

where m is the reduced mass of the meson (hence-
forth, all quantities are in electronic atomic units).
Since the maison is typically captured in a rather l.arge
orbital, this quasiclassical assignment of n should
be adequate. The electron is much lighter than
the meson so the l quantum number of the cap-
tured meson is about the same as its initial an-
gular momentum, i.e. ,

o 0.5 I= (2mE)'"5 --,', (15)

0.2
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0.5
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where b is the impact parameter.
A useful treatment of the complex-potential

scattering problem is the impact-parameter meth-
od with quasiclassical trajectories. A given tra-
jectory is specified by its asymptotic velocity
v and impact parameter b, or alternatively by
its relative energy, E=2mv', and angular mo-
mentum t. Letting P(t) be the probability that
ionization has occurred by time p, we have the
differential equation

FIG. 3. Ionization width I'(R) for the hydrogen atom
plus a negative meson.
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It is more convenient to rewrite the differential
equation with R as the independent variable; i.e. ,

(1 -R, —
E ]I 1'(R)[1 -P(R)]

(1V)

Note that R goes from ~ to R„(X= -1), then from
R„ to ~ (X =+ 1), where

The energy-loss cross section is obtained by
integrating over the impact parameter,

do(E, c) "dP(E, c,b)
(24)

1 dE " do(E, s)
(25)

From this cross section we get the more t.asily
observed stopping power

E —V(R„)— = 0;
Rci

(18)
where N is the target number density.

hence P(R) is double valued and we will denote
its iwo values as p~, (R) and p,„,(R). Note that it
is not necessary to solve explicitly for the tra-
jectory itself. The total ionization cross section
is given by

o (E) =2v P,„,(R -~)b db .
0

(19)

However, results depending on the kinetic energy
of the ionized electron are more relevant to slow-
ing down and stopping.

The solution of Eq. (1V}gives the probability
of ionization as a function of R. At each value
of R the electron may have a distribution of kinet-
ic energies c given by a function f(s,R). To first
approximation the electron kinetic energy is just
the difference between the diabatic energy E~(R)
and ion energy E,(R), i.e. ,

f(e,R) = 6(e —e,(R)), (20a)

where

g, (R) =E~(R) -E,(R).

C(R)
[s -e,(R)]'+ [1"(R)/2]' '

where C(R) is chosen so that

(20b)

The probability of an electron being ejected with
energy between k and k+Ck is then

;,"~ = f"f(.,~)—[-),.) )+), M))
Bcl

dRdc
dR (22}

and the corresponding differential cross section
is

d o(E, c,b) dP(E, c,b)
Ck db dk

(23)

When the ionization width is large, as is the case
in the present application, the electron energies
will be spread out. We approximate this distribu-
tion as Lorentzian

d o(E, n, l) diE db d~o(E, s, b)
dna dn dl dk c5 (25)

For the hydrogen atom we use Eqs. (13)-(15)to
get

d'o(E, n, l) 1 d'o(E, e, b)
dndl n v Ck db

(2V)

This differential cross section depends on E so
before we can determine the distribution of orbit-
als into which the negative meson is actually
captured we must obtain the energy spectrum of
the stopped meson. Using the method of Leon"
we determine the arrival probability density
E (E), defined such that the probability of a
meson arriving in an energy interval dE is given

B. Numerical quadrature

The integrations over electron energy and im-
pact parameter were performed by Gaussian
quadrature. First, N, energy quadrature points
(N, ~ 50) were selected. Separate quadratures
were done in the capture and scattering ranges
of k. The distances R, corresponding to these
electron energies and the impact parameters 5,
having these 8 values as classical turning points
were then determined. Independent N, -point
quadratures (N, & 4) over impact parameter were
performed between each adjacent pair of 5,. This
procedure was designed to avoid the difficulties
sometimes associated with numerical integration
over classical singularities. The integration of
Eq. (1'l) was carried out using a standard first-
order differential equation solver, which was
modified to prevent evaluation of the right-hand
side of the equation at R&R„.

C. .Stopped mesons

It is important to characterize the orbital into
which the meson is initially captured since its
quantum numbers will determine the subsequent
relaxation of the mesic atom via Auger and x-ray
emissions. Quasiclassically the quantum numbers
are treated as continuous variables. In the case
of capture into a bound orbital, i.e. , for I, +k & E,
we define
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by F,(E)dE T. he arrival function is determined
by the integral equation

where P, ,(E,k) is the probability that the meson
is captured in a collision at energy E in which
an electron of energy a is ejected. If capture at
positive energy (i.e. , trapping by a centrifugal
barrier) can be neglected, "then

P, t(E,k)=e(k +I, —E),
where e is the unit step function. We solve for
F „(E)by discretizing Eq. (28), typically using
a mesh size of 0.02 a.u. and a constant initial
distribution between 14 and 15 a.u. (which inte-
grates to unit probability). For accurate i esults
u(E) must be obtained by a similar quadrature.
The capture probability is then given by

F t(E)

,(E) P, ,(E,k) „' Idk ~

0
(29)

Hence the probability of the meson being captured
in the orbital having quantum numbers n and l is

V. RESULTS FOR MESONS ON HYDROGEN ATOMS

The total ionization cross sections, given by

Eq. (19), are shown in Fig. 4 for collisions of p

I
'

I
' I j I

and p with H. The cross sections as a function
of velocity are nearly independent of the particular
meson mass except at small velocities. As the
incident velocity decreases, negative mesons
with larger impact parameters are drawn into
the ionization region by the nuclear attraction
resulting in a very large cross section, especially
for the lighter mesons. The ionization probability
in Eq. (19) is typically large, e.g. , p,„,(R-~)
= 0.5 for v =0.8 and 5 =1.0. We may note that in
the limit that the ionization width is very large
a straight-line trajectory calculation would yield
an ionization cross section of mR', =3.46ma0'.

As mentioned in Sec. IV, the differential energy-
loss cross section and related stopping power
are more relevant to the stopping of negative
mesons. These results depend on the function

f(k, R) which influences the ionized electron ki-
netic-energy distribution. We present results
for both the delta function (20a) and Lorentzian
(20b) distributions. The cross section da/Ck,
given by Eq. (24), is shown in Fig. 5 for H+ p,

collisions at three different velocities. The peaks
at low electron energies result from ionization
occurring near the crossing into the continuum.
The distribution of ionization as a function of R
is shown in Fig. 6. If a collision is sufficiently
slow, then little flux is left at the smaller dis-
tances and only low-energy electrons w'ill be
ejected; this effect causes the cross section for
v ~0.1 in Fig. 5 to fall below the cross sections
for higher velocities in the high electron energy
range. The cross sections in Figs. 5(a) and 5(b) are
not too different at low electron energies. Of
course the maximum electron energy in the delta
function case is just the maximum value of k, (R)
in Eq. (21), which is 0.5 a.u. The Lorentzian
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FIG. 4. Total cross sections for ionization of the
hydrogen atom by negative mesons.

FIG. 5. Energy-differential cross sections for H+ p
at three different velocities. Parts (a) and (b) cor-
respond to choices of the delta-function [Eq. (20a)J or
Lorentzian [Eq. (20b) J electron-energy distribution,
respectively.
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FIG. 6. Profiles of distances at which ionization
occurs for H+ p at three different velocities.
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distribution has the effect of speading some of
the low-energy electrons out to energies greater
than 0.5 a.u. At collision velocities above about
0.2 a.u. , the energy-loss cross sections for dif-
ferent mesons at the same velocity tend to be
about the same, but this is not the case at low
velocities from which most captures occur. In
regard to capture, it is more instructive to com-
pare the energy loss to the collision energy. In
Fig. 7, dg/Ck is compared for the various mesons
all undergoing collisions at the same relative
energy. From this comparison it can be seen

that the lighter mesons will be captured into
orbitals lying at somewhat lower energies.

From the energy-loss cross section it is a
simple matter to calculate the stopping power
[see Eq. (25)]. The stopping powers are plotted
in Fig. 8. The use of the Lorentzian spread of
electron energies increases the calculated stop-
ping power by about 25%.

The stopped mesons can be characterized as
discussed in Sec. IVC. The relative energies of
the mesons (in the center-of-mass system) just
before capture are plotted in Fig. 9. Note that
each curve must integrate to unit probability.
The effect of the Lorentzian spread of electron
energies is that about 8% of the mesons get cap-
tured in higher energy collisions than in the delta-
function case. The slope is not really discontinuous
at 0.5 a.u. and the curve there would be smoother
if inelastic (nonionizing) processes were included.
Since we assume all energy loss occurs via ioniza-,
tion, the capture probability is the same as the
arrival probability at energies below 0.5 a.u. The
arrival probability is a fairly flat function of en-
ergy"; hence a "white" spectrum would not be a
bad approximation in this case.~' '

The probabilities of capture into an orbital with

given quantum numbers are shown in Figs. 10 and
11. In Fig. 10 the probabilities are summed over
E. The n distribution peaks close to the value
which has maximum radial density at the same
distance as the normal hydrogen atom, i.e. ,

(m =185.9 for p , 237.8 for s, 633.2 for K, and
918.1 for p ). The most important effect of the
Lorentzian spread of electron kinetic energies
is capture into lower -lying principal quantum
numbers; nevertheless, the results clearly pre-
dict that the probability of capture rapidly de-
creases as n falls below n . At n&n, I"„
behaves nearly as n~, corresponding to an ap-
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FIG. 7. Energy-differential cross sections at a rela-
tive collision energy of 0.7 a.u. Parts (a) and (b) are
as in Fig. 5.
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FIG. 8. Stopping powers (per atom) for negative mesons
by hydrogen atoms Curves (a) and (b) are as in Fig
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FIG. 9. Spectra of meson energies just prior to
capture. Parts (a) and (b) are as in Fig. 5.

proximately uniform distribution in binding ener-
gy,

"from zero to I,. The l distributions, shown

in Fig. 11 for selected values of n, are particular-
ly important as input to cascade calculations.
The populations start out statistical at small l
(i.e. , proportional to 2E+1), increase somewhat
more rapidly at intermediate E and in some cases
decrease abruptly at a value of l smaller than
the largest permissible value. The cut off is more
pronounced for the lighter mesons and for the
larger n values. In Table I the average l values
are given and compared with the values corre-
sponding to a statistical distribution.

-500

IO

IO

(b)

10 20 30 40 50
MESIC ATOM QUANTUM NUMBER. n

VI. DISCUSSION IO
IO 20 30 40

MESIC ATOM QUANTUM NUMBER, n
We can summarize our principal conclusions

about moderation and capture of negative mesons
by hydrogen atoms as follows.

(1) The total ionization cross section is large
(- mR', ) and has a fairly weak dependence on inci-
dent energy.

FIG. 10. Spectra of n values for initially captured
negative mesons. Parts (a) and (b) are as in Fig. 5.

TAB[.E I. Average angular momentum in orbital of initial capture for the delta-function distribution (a)

and Lorentzian distribution (b) of electron kinetic energies. The result for a statistical population (c) is given

for comparison.

10 15 20 30 50

1(p )

1(n. )

1(K )

1(p )

3.5 9.1

6.5
13.5
13.4
6.5

16.0
17.1
19.0
11.8

16.2
17.7
25.3
27.6

16.6
18.8
28. 1

32.0

1(p )

-1(n )

1(K )

l(p )

2.8
2.8

5.8
6.0
6.1

6.1

9.4
7.9
9.4
9.5

(b)
13.2
13.1
12.0
12.6

16.5
17.9
19.7
15.5

17.4
19.4
26.3
26.7

17.8
20.0
29.8
32.8

2.8 6.2 9.5
(c)

12.8 19.5 26.2 32.8



IQ
2

(o)

COHEN MAR~IN AND WAD&

IO'

IO4

IO'

I(-3

IP-4

102

IQ

IO4

IP5

I(-3

(b)

Io - I5

IO

IP-5

l02

I03

I I

I(-4

-5
~IO

4
Ip - IS

Ip

IP5

102

Ip

-5
Ip 0 IO 20

ESIC ATOM QUA gANTUM NUMBER, 1

bital

I(-3

-5
'po I

SICATOMQUAN
40 50

ANTUM

IP-4

NUMBER, )

FIG. 11. Spectrac a ofl values fors or negative mesos or mesons initially captury captured in ory captur s having the designateda n values. Parts

(2) The main enerain energy loss is du
ion potential.

ue to the target's

(3) Most mesons arens are stopped at lowow energies

4) The mmost probable cap
e displaced ele t

m).
ec ronic orb t

( ) The angular-momen i u io

, dt t ff tla arge values in th'n e case of

ur total ionization cro

at by the adiab t
pp

a 1c lonlza

e ectrons tend to be

b f b g' p

o low en-

s, which is a
apture at lo

also predict d Ba 'c e from B
g

o tl
r however wh th

ects dis
e er this

' agreement with
lscrepancy

lf o 'th he met

from th
pe meson s Th

o used to obt
amblgult

yh cp
eel ll 1 tsn slowing down cross

We are r
LEDGMENTS

Th ls work was su
zl or helpful discuss

supported in part b
c Initiatives Pro

y the New

S tf' Lb
amos

e ausp es of the U.S. De .S. Department fo Energy.

sections were calcul

ep d on the corn etit
ons are sto e

mes
egard we note th at our sto

a e in parallel. IIn this
pp ng po

. . to @=0.1
opp ng po

d b Haff

y orenman and R
f and Tombrell "

Nogeadd d
ogovaya " e o

mitted we 1

e . Shortl y after this a

eterm of th
e first e '

n a
g tive

u et al."at S
muon in 1-Torr h dr

a ed inversel w
at this sto i

th p ess
ic ion, usi t

re. Our theor
ng he stoppin

oretical
g

the ex od

lg.

one with H b
ac ory.

ACKNOW



DIABATIC-STATE TREATMENT OF NEGATIVE-MESON. . .

«L. I. Ponomarev, Ann. Bev. Nucl. Sci. 23, 395 (1973);
S. S. Gershtein and L. I. Ponomarev, in Muon Physics,
edited by V. %.Hughes and C. S. Wu (Academic, New

York, 1975), Vol. III, p. 141.
2E. Fexmi and E. Teller, Phys. Bev. 72, 399 (1947).
3M. Leon and B.Seki, Phys. Bev. Lett. 32, 132 (1974);

Nucl. Phys. A282, 445 (1977); M. Leon and J.H.
Miller, ibid. A282, 461 {1977).

P. K. Haff, P. Vogel, and A. Winther, Phys. Bev. A 10,
1430 (1974); P. Vogel, P. K. Haff, V. Akylas, and

A. Winther, Nucl. Phys. A 254, 445 (1975).
H. Daniel, Phys. Bev. Lett. 35, 1649 (1975).

8A. H. deBorde, Proc. Phys. Soc. (London} 67A, 57

(1954).
~G. A. Baker, Phys. Bev. 117, 1130 (1960).
8B A. Mann and M. E. Rose, Phys. Rev. 121, 293

(1961).
SA. D. Martin, Nuovo Cimento 27, 1359 (1963).
«OP. K. Haff and T. A. Tombrello, Ann. Phys. {N. Y.) 86,

178 (1974).
««G. Ya. Korenman and S. I. Bogovaya, Yad. Fiz. 22,

754 (1975) [Sov. J. Nucl. Phys. 22, 389 {1976)];J.
Phys. B 13, 641 (1980).

«2T. J. Baird, Ph.D. thesis, Bensselaer Polytechnic
Institute, 1976 (unpublished) and Los Alamos Report
LA-6619-T.

«W. L. Bosenberg, Philos. Mag. 40, 759 (1949).
«4A. S. Wightman, Phys. Bev. 77, 521 (1950).
«~S. S. Gershtein, Zh. Eksp. Teor. Fiz. 39, 1170 (1960)

[Sov. Phys. —JETP 12, 815 {1961)j.
«H. S. %. Massey, E. H. S. Burhop, and H. B. Gilbody,

Elech"onic end Ionic Impact Phenomena: Sloso Posi-
txon end Muon Collisions, 2nd ed. {Clarendon, Oxford,
1974), Vol. V, Chap. 27.

"F.T. Smith, Phys. Bev. 179, 111 (lg6g).
A. U. Hazi, J. Phys. B 11, L259 (1978).

"T.F. O' Malley, Phys. Bev. 150, 14 {1966).
B.C. Baffenetti, J. Chem. Phys. 59, 5936 (1973).

2«A. Temkin and J. C. Lamkin, Phys. Bev. 121, 788
(1961).

~%. H. Miller, Chem. Phys. Lett. 4, 627 {1970).
3Modem Theoretical Chemist~, Vols. III and IV,
edited by H. F. Schaefer (Plenum, New York, 1977).

24See, e.g., L. I. Ponomarev and L. ¹ Somov, J.
Comput. Phys. 20, 183 (1976).

25Elect'on-Molecule and Photon-Molecule Collisions,
edited by T. Bescigno, V. McKoy, and B.Schneider
(Plenum, New Yox'k, 1979).

26P. %. Langhoff, C. T. Corcox'an, J. S. Sims, F. rein-
hold, and R. M. Glover, Phys. Bev. A 14, 1042 (1976).

27B. L. Martin, %'. B.Daasch, and E. B.Davidson, J.
Chem. Phys. 71, 2375 (1979).
See the ax'ticle by P. W. Langhoff in Bef. 25.

29M. Leon, Phys, Bev. A 17, 2112 (1978).
30Capture at positive energies does not occur with

hydx'ogen atom targets, but may be important for
many-electron targets. See, e.g. , Ref. 29.

3«For example, S'~'~ (0)=1.07 E~'~ (4) and S'~~~{0)=1.27
E ~(4} for H+p.aff
M. Leon, in Exotic Atoms 'F9, edited by K. Crowe,
J. Duclos, G. Fiorentini, and G. Torelli (Plenum, New
York, 1980), p. 141.

33H. Anderhub, J. Bocklin, M. Devereux, F. Dittus,
R. Ferreira Maxques, H. Hofer, H. K. Hofer,
F. Kottmann, O. Pitzurra, P.-G. Seiler, D. Taqqu,
J. Unternahrer, M. Walchli, and Ch. Tschalar, Phys.
Lett. B (in press).


