Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same authors are included in Brief Reports.) A Brief Report may be no longer than 3½ printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Probable nonexistence of a ${}^{3}P^{e}$ metastable excited state of the positronium negative ion

Allen P. Mills, Jr.

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 14 May 1981)

The H⁻ ion is known to have a metastable $2p^{2} {}^{3}P^{e}$ triplet excited state. To see if an analog of this state is present in the positronium negative ion Ps⁻ the Coulomb binding energy E_{b} of the lowest-energy even-parity L = 1 configuration of two identical-charge -e fermions of mass m_{1} plus one spinless particle of mass m_{2} and charge +e is calculated. We find a value of E_{b} below the n = 2 level of the neutral atom for $0 \le m_{2}/M \le 0.17$ and $0.90 < m_{2}/M \le 1$, where $M = 2m_{1} + m_{2}$ is the total mass of the ion. However, we cannot say that the ${}^{3}P^{e}$ state exists for Ps⁻, where $m_{2}/M = \frac{1}{3}$.

The existence of a bound state of a positron and two electrons was predicted in 1946 by Wheeler¹ and was recently confirmed by observation.² It is interesting to ask whether this positronium negative ion $Ps^-(e^+e^-e^-)$ has a metastable excited state analogous to the $2p^{23}P^e$ state of H⁻ predicted by Holøein and others.³ Such a Ps⁻ state would have fine structure and would decay not by annihilation (there is no e^+e^- overlap in first order) but by a slow radiative transition to an autoionizing Ps⁻ configuration. We present here a calculation of the ${}^{3}P^{e}$ Coulomb binding energy of three particles which unfortunately does not show the existence of a metastable excited state for Ps⁻.

While there are numerous calculations dealing with the ground-state⁴ and autoionizing resonances⁵ of Ps⁻, these have dealt exclusively with states having zero total angular momentum. We may extend the usual Hylleraas⁶ or Pekeris⁷ calculation to our ³P^e problem as follows. Neglecting the center-of-mass motion, the Hamiltonian for two identical fermions of mass m_1 and like charge interacting with an oppositely charged particle of mass m_2 is

$$H = -\frac{\hbar^2}{2\mu_1} \nabla_1^2 - \frac{\hbar^2}{2\mu_2} \nabla_2^2 + \frac{e^2}{u} - \frac{e^2}{s} - \frac{e^2}{t} , \quad (1)$$

where the problem has been reduced to a two-body problem⁸: μ_1 is the reduced mass of the two like particles relative to each other, $\mu_1 = m_1/2$; μ_2 is the reduced mass of the third particle relative to

FIG. 1. Relative dissociation energy ϵ of the ${}^{3}P^{\epsilon}$ state of H⁻-like ions vs the relative mass m_{2}/M of the unlike particle. Positive values of ϵ show where the calculation is not sufficiently precise to give the free particle value $\epsilon=0$. The curves were calculated for $\Omega=4$ and 7 which means n=22 and 70 different terms were included. The inset shows the coordinates used to calculate binding energies of three charged particles.

3242

the first two, $\mu_2 = 2m_1m_2/(2m_1 + m_2)$; the reduced coordinates are the separation of the two identical particles $\vec{\rho_1}$, and the separation of the third particle from the center of mass of the identical pair $\vec{\rho_2}$, with ∇_1^2 and ∇_2^2 being the Laplacian for $\vec{\rho_1}$ and $\vec{\rho_2}$, respectively. As shown in Fig. 1, the separations between the three particles are $u = |\vec{\rho_1}|$, $s = |\vec{\rho_2} - \frac{1}{2}\vec{\rho_1}|$, and $t = |\vec{\rho_2} + \frac{1}{2}\vec{\rho_1}|$. A Hylleraas wave function for the L = 0 ground state (¹S^e) is

$$\psi_S = \sum_{k,l,m} a_{klm} \psi_{klm} , \qquad (2)$$

where the wave functions

$$\psi_{klm} = u^k (s^l t^m e^{-(\alpha s + \beta t)} + s^m t^l e^{-(\alpha t + \beta s)}) \qquad (3)$$

are symmetric under $\vec{\rho}_1 \rightarrow -\vec{\rho}_1$ as is required when the two identical fermions are in a relative singlet state. The Schrödinger equation $H\psi_S = E\psi_S$ becomes

$$\sum_{klm} (\psi_{k'l'm'}, H\psi_{klm}) a_{klm} = \sum_{klm} E(\psi_{k'l'm'}, \psi_{klm}) a_{klm} ,$$
(4)

where the symbols $(\psi, A\psi')$ denote overlap integrals. We let *i* denote a certain combination of *k*, *l*, and *m*, and we let Ω be the largest value of k + l + m. Defining $H_{i'i} = (\psi_{k'l'm'}, H\psi_{klm})$ and $A_{i'i} = (\psi_{k'l'm'}, \psi_{klm})$ we have

$$\sum_{i'i} A_{i''i'}^{-1} H_{i'i} a_i = E a_{i''}.$$

An upper limit on the ground-state binding energy is found by minimizing the lowest-energy eigenvalue of $A^{-1}H$ with respect to the parameters α and β .

The metastable triplet excited state in which we are interested has even parity and one unit of angular momentum $({}^{3}P^{e})$. Thus, if its binding energy is below the n=2 state of the neutral atom, the ${}^{3}P^{e}$ state is stable with respect to emission of a particle. The only available final state is the even-parity L=0 ground state plus a free particle which must have L=1 and thus odd parity. Since the electromagnetic interaction conserves parity, such a transition will not be possible. Instead, a ${}^{3}P^{e}$ state bound below the n=2 threshold must first emit a photon before autoionizing.

A Hylleraas wave function for the ${}^{3}P^{e}$ state is obtained by multiplying a wave function with the symmetry of ψ_{S} by the axial vector $\vec{\rho}_{1} \times \vec{\rho}_{2}$ which has L = 1 but is even under parity $(\vec{\rho}_{1}, \vec{\rho}_{2}) \rightarrow (-\vec{\rho}_{1}, -\vec{\rho}_{2})$. The m = 0 state wave func

 $(\vec{\rho}_1, \vec{\rho}_2) \rightarrow (-\vec{\rho}_1, -\vec{\rho}_2)$. The m = 0 state wave function is thus

$$\psi_{3pe} = (\vec{\rho}_1 \times \vec{\rho}_2 \cdot \hat{z}) \sum_{k,l,m} a'_{klm} \psi_{klm} . \qquad (5)$$

This represents a triplet state because it is odd under $\vec{\rho}_1 \rightarrow -\vec{\rho}_1$. Using Cartesian coordinates for $\vec{\rho}_1$ and $\vec{\rho}_2$ it is straighforward to show that $H(\vec{\rho}_1 \times \vec{\rho}_2 \cdot \hat{z})\psi_{klm}$ is a linear combination of other $(\vec{\rho}_1 \times \vec{\rho}_2 \cdot \hat{z})\psi_{klm}$'s. The overlap integrals are easily performed using Pekeris's⁷ perimetric⁹ coordinates. The matrix elements are then evaluated numerically and the lowest eigenvalue E_b of $A^{-1}H$ for a given choice of m_2/M , α/β , and Ω is minimized

TABLE I. Dissociation energies of the ${}^{1}S^{e}$ and ${}^{3}P^{e}$ states of various H⁻-like ions. The dissociation energy is the binding energy relative to the autoionization threshold. The number of terms in the present calculation is n = 70. The total mass of the ion is $M = 2m_{1} + m_{2}$.

Ion	Mass ratio m ₂ /M	Dissociation energies (eV)	
		¹ S ^e	³ P ^e
H ₂ +	0.000 272 2	2.644ª	0.162 ^e
$p^{+}\mu^{-}p^{+}$	0.053 304	253.9 ^b	12.35 ^e
Ps ⁻	$\frac{1}{3}$	0.326 67°	
e ⁻ µ+e ⁻	0.990 42	~0.7	0.008 59
H-	0.998 91	0.747 ^d	0.009 65 ^t
Н-			0.009 48

^aV. A. Johnson, Ref. 11.

^bW. K. Wessel and P. Phillipson, Ref. 11.

°Y. K. Ho (unpublished).

^dC. L. Pekeris, Ref. 7; A. A. Frost et al., Ref. 4.

Present results representing lower limits to the exact values.

^fA. K. Bhatia, Ref. 3.

with respect to the parameter β . In Fig. 1 we plot the dissociation energy relative to the n = 2 threshold,

$$\epsilon = [E(n=2) - E_b] / E(n=2),$$

for $\Omega = 4$ and 7, for $\alpha/\beta = \frac{1}{4}$, and for $0 < m_2/M_1 < 1$, where $M = 2m_1 + m_2$. The correctness of the present calculation is indicated by the agreement between our ϵ at $m_2/M \approx 1$ and the value for H^- calculated by Bhatia³ (see Table I). Bhatia's dissociation energy is better than the one calculated here because he used more terms (90 instead of 70) and he used a different and presumably more optimal value of $\alpha/\beta = 0.32$. The present choice of $\alpha/\beta = \frac{1}{4}$ is a compromise between Bhatia's α/β which works well for H⁻ and a very small α/β which for a given Ω would give smaller positive values of ϵ in the forbidden region near $m_2/M = \frac{1}{2}$. Near the extremes at $m_2/M = 0$ or 1 the ${}^{3}P^{e}$ state is stable, but for $m_{2} \approx m_{1}$ it is not stable at our present level of approximation. Only negative values of ϵ represent a meaningful upper limit on the binding energies since $\epsilon = 0$ represent-

- ¹J. A. Wheeler, Ann. N.Y. Acad. Sci. <u>48</u>, 219 (1946). ²A. P. Mills, Jr., Phys. Rev. Lett. <u>46</u>, 717 (1981).
- ³E. Holøein, in Proceedings of the Fourth International Conference on the Physics of Electronic and Atomic Collisions (Science Bookcrafters, Hastings-on-Hudson, 1965), p. 6; K. Aashamar, Institute for Theoretical Physics, University of Oslo, Norway, Institute Report No. 35 (unpublished); G. W. F. Drake, Phys. Rev. Lett. <u>24</u>, 126 (1970); A. K. Bhatia, Phys. Rev. A <u>2</u>, 1667 (1970); R. N. Hill, Phys. Rev. Lett. <u>38</u>, 643 (1977) has shown that H⁻ has only one bound state below the n = 1 threshold.
- ⁴E. A. Hylleraas, Phys. Rev. <u>71</u>, 491 (1947); W. Kolos, C. C. J. Roothaan, and R. A. Sack, Rev. Mod. Phys. <u>32</u>, 178 (1960); A. A. Frost, M. Inokuti, and J. P. Lowe, J. Chem. Phys. <u>41</u>, 482 (1964); P. Cavaliere, G. Ferrante, R. Geracitano, and L. LoCascio, J.

ing a free particle plus an n = 2 atom is obviously a lower-energy state than any $\epsilon > 0$ configuration. The present results suggest that for

 $0.2 < m_2/M < 0.8$ and therefore for Ps⁻ the ³P^e state does not exist. It might be interesting to do a calculation with a magnetic field included to see if any experimentally interesting binding energy for Ps⁻ would result for reasonable field strengths.

Since Fig. 1 shows that ${}^{3}P^{e}$ states are metastable for $0 \le m_{2}/M < 0.175$ and $0.894 < m_{2}/M < 1$,¹⁰ we now know that in addition to H⁻, the following ions have a ${}^{3}P^{e}$ state: the muonium negative ion $\mu^{+}e^{-}e^{-}$, the hydrogen molecular ion H_{2}^{+} , and the muonic hydrogen molecular ion $p^{+}\mu^{-}p^{+}$. Our calculated values for the dissociation energies of these states are given in Table I. The ${}^{1}S^{e}$ (groundstate) dissociation energies are taken from the literature.^{3,4,7,11}

The author is pleased to acknowledge very helpful discussions with R. J. Drachman, Y. K. Ho, and H. N. Pendleton.

- Chem. Phys. <u>63</u>, 624 (1975); J. A. Mignaco and I. Roditi, J. Phys. B <u>14</u>, L161 (1981); R. C. Witten and J. S. Sims, Phys. Rev. A <u>9</u>, 1586 (1974).
- ⁵Y. K. Ho, Phys. Rev. A <u>19</u>, 2347 (1979).
- ⁶E. A. Hylleraas, Z. Phys. <u>54</u>, 347 (1929).
- ⁷C. L. Pekeris, Phys. Rev. <u>112</u>, 1649 (1958).
- ⁸A. Messiah, *Quantum Mechanics* (North-Holland, Amsterdam, 1968), Vol. 1, pp. 365-366.
- ⁹A. S. Coolidge, Phys. Rev. <u>51</u>, 857 (1937).
- ¹⁰The upper range $0.894 < m_2/M \le 1$ over which a ${}^{3}P^{e}$ state exists is slightly wider than the range $0.913 < m_2/M \le 1$ implied by a linear extrapolation of the mass polarization correction for ${}^{3}P^{e}$ H⁻ obtained by A. K. Bhatia [Phys. Rev. A 2, 1667 (1970)].
- ¹¹W. R. Wessel and P. Phillipson, Phys. Rev. Lett. <u>13</u>, 23 (1964); V. A. Johnson, Phys. Rev. <u>60</u>, 373 (1941);
 Y. K. Ho (unpublished).