Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same authors are included in Brief Reports.) A Brief Report may be no longer than $3\frac{1}{2}$ printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Probable nonexistence of a ${}^{3}P^e$ metastable excited state of the positronium negative ion

Allen P. Mills, Jr.

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 14 May 1981)

The H⁻ ion is known to have a metastable $2p^{23}P^e$ triplet excited state. To see if an analog of this state is present in the positronium negative ion Ps^- the Coulomb binding energy E_b of the lowest-energy even-parity $L = 1$ configuration of two identical-charge $-e$ fermions of mass m_1 plus one spinless particle of mass m_2 and charge +e is calculated. We find a value of E_b below the $n = 2$ level of the neutral atom for $0 \le m_2/M \le 0.17$ and $0.90 < m_2/M \le 1$, where $M = 2m_1+m_2$ is the total mass of the ion. However, we cannot say that the ${}^{3}P^{e}$ state exists for Ps⁻, where $m_2/M = \frac{1}{3}$.

The existence of a bound state of a positron and two electrons was predicted in 1946 by Wheeler' and was recently confirmed by observation.² It is interesting to ask whether this positronium negative ion Ps⁻ (e⁺e⁻e⁻) has a metastable excited state analogous to the $2p^2{}^3P^e$ state of H⁻ predicted by Holøein and others.³ Such a Ps⁻ state would have fine structure and would decay not by annihilation (there is no e^+e^- overlap in first order) but by a slow radiative transition to an autoionizing Ps^- configuration. We present here a calculation of the ${}^{3}P^e$ Coulomb binding energy of three particles which unfortunately does not show the existence of a metastable excited state for Ps

While there are numerous calculations dealing with the ground-state⁴ and autoionizing resonances⁵ of Ps⁻, these have dealt exclusively with states having zero total angular momentum. We may extend the usual Hylleraas⁶ or Pekeris⁷ calculation to our ${}^{3}P^e$ problem as follows. Neglecting the center-of-mass motion, the Hamiltonian for two identical fermions of mass m_1 and like charge interacting with an oppositely charged particle of mass m_2 is

$$
H = -\frac{\hbar^2}{2\mu_1}\nabla_1^2 - \frac{\hbar^2}{2\mu_2}\nabla_2^2 + \frac{e^2}{u} - \frac{e^2}{s} - \frac{e^2}{t}, \quad (1)
$$

where the problem has been reduced to a two-body problem⁸: μ_1 is the reduced mass of the two like particles relative to each other, $\mu_1 = m_1/2$; μ_2 is the reduced mass of the third particle relative to

FIG. 1. Relative dissociation energy ϵ of the ³P^e state of H⁻-like ions vs the relative mass m_2/M of the unlike particle. Positive values of ϵ show where the calculation is not sufficiently precise to give the free particle value ϵ =0. The curves were calculated for Ω =4 and 7 which means $n = 22$ and 70 different terms were included. The inset shows the coordinates used to calculate binding energies of three charged particles.

24 3242

the first two, $\mu_2 = 2m_1m_2/(2m_1+m_2)$; the reduced coordinates are the separation of the two identical particles $\vec{\rho}_1$, and the separation of the third particle from the center of mass of the identical pair $\vec{\rho}_2$, with ∇_1^2 and ∇_2^2 being the Laplacian for $\vec{\rho}_1$ and $\vec{\rho}_2$, respectively. As shown in Fig. 1, the separations between the three particles are $u = |\vec{p}_1|$, $s = |\vec{\rho}_2 - \frac{1}{2}\vec{\rho}_1|$, and $t = |\vec{\rho}_2 + \frac{1}{2}\vec{\rho}_1|$. A Hylleraas wave function for the $L=0$ ground state $({}^{1}S^e)$ is

$$
\psi_S = \sum_{k,l,m} a_{klm} \psi_{klm} \tag{2}
$$

where the wave functions

$$
\psi_{klm} = u^k (s^l t^m e^{-(\alpha s + \beta t)} + s^m t^l e^{-(\alpha t + \beta s)}) \tag{3}
$$

are symmetric under $\vec{p}_1 \rightarrow -\vec{p}_1$ as is required when the two identical fermions are in a relative singlet state. The Schrödinger equation $H\psi_S = E\psi_S$ becomes

$$
\sum_{klm} (\psi_{k'l'm'}, H\psi_{klm}) a_{klm} = \sum_{klm} E(\psi_{k'l'm'}, \psi_{klm}) a_{klm} ,
$$
\n(4)

where the symbols $(\psi, A \psi')$ denote overlap integrals. We let i denote a certain combination of k , l , and m , and we let Ω be the largest value of $k+l+m$. Defining $H_{i'j} = (\psi_{k'l'm'}, H\psi_{klm})$ and

$$
A_{i' i} = (\psi_{k'l'm'}, \psi_{klm})
$$
 we have
\n
$$
\sum_{i' i} A_{i' i' i'}^{-1} H_{i' i} a_i = E a_{i'}.
$$

An upper limit on the ground-state binding energy is found by minimizing the lowest-energy eigenvalue of $A^{-1}H$ with respect to the parameters α and β .

The metastable triplet excited state in which we are interested has even parity and one unit of angular momentum $(3P^e)$. Thus, if its binding energy is below the $n = 2$ state of the neutral atom, the ³ P^e state is stable with respect to emission of a particle. The only available final state is the even-parity $L = 0$ ground state plus a free particle which must have $L = 1$ and thus odd parity. Since the electromagnetic interaction conserves parity, such a transition will not be possible. Instead, a ${}^{3}P^{e}$ state bound below the $n = 2$ threshold must first emit a photon before autoionizing.

A Hylleraas wave function for the ${}^{3}P^e$ state is obtained by multiplying a wave function with the symmetry of ψ_S by the axial vector $\vec{p}_1 \times \vec{p}_2$ which has $L = 1$ but is even under parity

 $(\vec{\rho}_1, \vec{\rho}_2) \rightarrow (-\vec{\rho}_1, -\vec{\rho}_2)$. The $m = 0$ state wave function is thus

$$
\psi_{3pe} = (\vec{\rho}_1 \times \vec{\rho}_2 \cdot \hat{z}) \sum_{k,l,m} a'_{klm} \psi_{klm} . \tag{5}
$$

This represents a triplet state because it is odd under $\vec{\rho}_1 \rightarrow -\vec{\rho}_1$. Using Cartesian coordinates for \vec{p}_1 and \vec{p}_2 it is straighforward to show that $H(\vec{\rho}_1 \times \vec{\rho}_2 \cdot \hat{z})\psi_{klm}$ is a linear combination of other $(\vec{\rho}_1 \times \vec{\rho}_2 \cdot \hat{z}) \psi_{klm}$'s. The overlap integrals are easily performed using Pekeris's⁷ perimetric⁹ coordinates. The matrix elements are then evaluated numerically and the lowest eigenvalue E_b of $A^{-1}H$ for a given choice of m_2/M , α/β , and Ω is minimized

> 0.009_{65f} 0.00948'

TABLE I. Dissociation energies of the ¹S^e and ³P^e states of various H⁻-like ions. The dissociation energy is the binding energy relative to the autoionization threshold. The number of terms in the present calculation is $n = 70$. The total mass of the ion is $M = 2m_1 + m_2$.

	Mass ratio	Dissociation energies (eV)	
Ion	m_2/M	1 Se	$3p$ e
H_2 ⁺	0.000 272 2	2.644^a	0.162^e
$p^+\mu^-p^+$	0.053 304	253.9 ^b	12.35^e
Ps^-		0.32667 ^c	
$e^-\mu^+e^-$	0.99042	-0.7	0.00859e

 0.747 ^d

'V. A. Johnson, Ref. 11.

 $H^ H^-$

W. K. Wessel and P. Phillipson, Ref. 11.

'Y. K. Ho (unpublished).

^dC. L. Pekeris, Ref. 7; A. A. Frost et al., Ref. 4.

'Present results representing lower limits to the exact values.

0.99891

A. K. Bhatia, Ref. 3.

with respect to the parameter β . In Fig. 1 we plot the dissociation energy relative to the $n = 2$ threshold,

$$
\epsilon = [E(n=2) - E_b]/E(n=2) ,
$$

for $\Omega = 4$ and 7, for $\alpha/\beta = \frac{1}{4}$, and for $0 < m_2/M_1 < 1$, where $M = 2m_1 + m_2$. The correctness of the present calculation is indicated by the agreement between our ϵ at $m_2/M \approx 1$ and the value for H^- calculated by Bhatia³ (see Table I). Bhatia's dissociation energy is better than the one calculated here because he used more terms (90 instead of 70) and he used a different and presumably more optimal value of α/β =0.32. The present choice of $\alpha/\beta = \frac{1}{4}$ is a compromise between Bhatia's α/β which works well for H⁻ and a very small α/β which for a given Ω would give smaller positive values of ϵ in the forbidden region near $m_2/M = \frac{1}{2}$. Near the extremes at $m_2/M = 0$ or 1 the ³P^e state is stable, but for $m_2 \approx m_1$ it is not stable at our present level of approximation. Only negative values of ϵ represent a meaningful upper limit on the binding energies since $\epsilon = 0$ represent-

- ¹J. A. Wheeler, Ann. N.Y. Acad. Sci. 48, 219 (1946). ²A. P. Mills, Jr., Phys. Rev. Lett. 46, 717 (1981).
- ³E. Holsein, in Proceedings of the Fourth International Conference on the Physics of Electronic and Atomic Collisions (Science Bookcrafters, Hastings-on-Hudson, 1965), p. 6; K. Aashamar, Institute for Theoretical Physics, University of Oslo, Norway, Institute Report No. 35 (unpublished); G. W. F. Drake, Phys. Rev. Lett. 24, 126 (1970); A. K. Bhatia, Phys. Rev. A 2, 1667 (1970); R. N. Hill, Phys. Rev. Lett. 38, 643 (1977) has shown that H^- has only one bound state below the $n = 1$ threshold.
- ⁴E. A. Hylleraas, Phys. Rev. **71**, 491 (1947); W. Kolos, C. C. J. Roothaan, and R. A. Sack, Rev. Mod. Phys. 32, 178 (1960); A. A. Frost, M. Inokuti, and J. P. Lowe, J. Chem. Phys. 41, 482 (1964); P. Cavaliere, G. Ferrante, R. Geracitano, and L. LoCascio, J.

ing a free particle plus an $n = 2$ atom is obviously a lower-energy state than any $\epsilon > 0$ configuration. The present results suggest that for

 $0.2 < m_2/M < 0.8$ and therefore for Ps⁻ the ³P^e state does not exist. It might be interesting to do a calculation with a magnetic field included to see if any experimentally interesting binding energy for Ps^- would result for reasonable field strengths.

Since Fig. 1 shows that ${}^{3}P^e$ states are metastable for $0 \le m_2/M < 0.175$ and $0.894 < m_2/M < 1,^{10}$ we now know that in addition to H^- , the following ions have a ${}^{3}P^e$ state: the muonium negative ion $\mu^+e^-e^-$, the hydrogen molecular ion H_2^+ , and the muonic hydrogen molecular ion $p^+\mu^-p^+$. Our calculated values for the dissociation energies of these states are given in Table I. The ${}^{1}S^{e}$ (groundstate) dissociation energies are taken from the these states are μ
state) dissociatio
literature.^{3,4,7,11}

The author is pleased to acknowledge very helpful discussions with R. J. Drachman, Y. K. Ho, and H. N. Pendleton.

- Chem. Phys. 63, 624 (1975); J. A. Mignaco and I. Roditi, J. Phys. B 14, L161 (1981); R. C. Witten and J. S. Sims, Phys. Rev. A **9**, 1586 (1974).
- ⁵Y. K. Ho, Phys. Rev. A 19, 2347 (1979).
- ⁶E. A. Hylleraas, Z. Phys. 54, 347 (1929).
- ⁷C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
- 8A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1968), Vol. 1, pp. ³⁶⁵—366.
- ⁹A. S. Coolidge, Phys. Rev. 51, 857 (1937).
- ¹⁰The upper range 0.894 $\lt m_2/M \le 1$ over which a ³P^e state exists is slightly wider than the range $0.913 < m_2/M \le 1$ implied by a linear extrapolation of the mass polarization correction for ${}^{3}P^{e}$ H⁻ obtained by A. K. Bhatia [Phys. Rev. ^A 2, 1667 (1970)].
- ¹¹W. R. Wessel and P. Phillipson, Phys. Rev. Lett. 13, 23 (1964); V. A. Johnson, Phys. Rev. 60, 373 (1941); Y. K. Ho (unpublished).