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The generalized Enskog equation is used to describe the dynamic structure factor
S(k,e) for a hard-sphere gas. The problem of constructing kinetic models for the calcu-
lation of S(k,co) is considered and the minimum set of matrix elements of the exact col-
lision operator required by hydrodynamics is identified. The source of existing discrepan-
cies between kinetic-model calculations and light-scattering experiments is also found and
removed. Sensitivity of S(k,co) to the parameters of kinetic models is discussed and a
simple model proposed. A preliminary comparison of the hard-sphere S(k,m) calculated
from this model with neutron-scattering data from gaseous krypton is given.

I. INTRODUCTION

Equilibrium time correlation functions may be
described quite generally in terms of the solution to
a linear kinetic equation. The structure of this
equation is complicated and, although much pro-
gress has been made, the many-body analysis re-
quired for its application in most cases is prohibi-
tively difficult. However, the exact short-time
form of this equation may be determined explicitly
in terms of the equilibrium properties of the fluid,
such as the radial distribution function. For con-
tinuous potentials the application of this short-time
form is limited to times small compared to a col-
lision time. In contrast, for a hard-sphere fluid the
collision time is zero so that the short-time kinetic
equation describes collisions as well as mean-field
effects. The resulting equation is a generalization
of the Enskog equation for hard spheres. ' It is
well known that the Enskog equation gives an ade-
quate description of the transport properties for
hard spheres. Since the transport properties are
determined in principle from the long-time form of
the kinetic equation, this suggests that the general-
ized Enskog equation might be applicable for times
considerably longer than that suggested from its
derivation. A closer inspection of the hard-sphere
kinetic equation shows that the generalized Enskog
equation results from the neglect of dynamically

correlated many-body collisions, while retaining the
static correlations. The time for the dynamic
correlations to grow should be of the order of the
time between collisions, and the error associated
with the Enskog approximation at finite times
should increase with density. This is in fact the
case for transport coeAicients. On this basis, the
generalized Enskog equation may be considered as
a reasonable first approximation to calculate time
correlation functions for a hard-sphere fluid, except
perhaps at high densities.

The dynamic structure factor S(k,co) is defined
as the Fourier transform of the density-density
time correlation function and contains a wealth of
information about the static and dynamic proper-
ties of the fluid. Furthermore, it is directly
measurable by both neutron and light scattering.
In recent years there have been several calcula-
tions' ' of S(k,co) based on the generalized En-
skog equation, providing the first detailed connec-
tion between the collision dynamics of particles in
phase space and the dynamic structure of fluids at
all frequencies and wavelengths. However, inter-
pretation of these results is not entirely clear due to
the approximations required to solve the general-
ized Enskog equation. These approximations are
introduced by the construction of kinetic models",
designed to preserve the most important properties
of the kinetic equation, but also amenable to exact
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solution. A given kinetic model is exact in some
finite dimensional subspace of the functions on

which it operates, but only approximate with

respect to the complement of this subspace. The
resulting kinetic equation may then be written as a
finite dimensional matrix equation and solved by
standard methods. For any transport process it is
clear that the subspace of conserved quantities
should be included; beyond this the number and
choice of additional dimensions must be based on
other properties expected to be important, such as
frequency moments of S(k,co) and transport coefII-

cients. The kinetic-model calculations of Refs.
8—10 are constructed in this spirit but are all dif-

ferent in detail, and lead to somewhat different

results for S(k,co). In particular, comparison of
the calculations of Furtado et al. , with neutron-

scattering data for liquid argon suggests that hard

spheres are not a good model for real fluids

(without a phenomenological modification),
whereas de Schepper and Cohen's comparison with

the same data suggests some~hat better agreement.
In summary, then, it is not entirely clear: (I) to
what extent real fluids may be represented by a
hard-sphere fluid, (2) how accurately the hard-

sphere fluid may be described by the generalized

Enskog equation, and (3) how well a given kinetic
model represents the generalized Enskog equation.
The latter two questions are currently being stu-

died by comparison of kinetic models with molecu-

lar dynamics simulation of S(k,~) for hard

spheres. '

The objectives here are twofold —to clarify the
constraints imposed by hydrodynamics on kinetic
models for S(k,~) and to give a comparison with

neutron-scattering data in the gas phase where the

accuracy of the generalized Enskog equation
should be less questionable. Regarding the first ob-

jective, it is shown that many of the matrix ele-

ments of the generalized Enskog operator incor-

porated in the above kinetic models are not re-

quired for the description of S(k,co) due to rota-

tional invariance about the axis k. Among these

are the matrix elements associated with shear and

bulk viscosities; instead, the viscous contribution to
the sound damping constant is shown to be deter-

mined by diFerent matrix elements constructed
from functions with the proper symmetry. This
difFerence is also shown to remove the recently ob-

served discrepancies between the Brillouin peaks
observed in light-scattering experiments and
kinetic-model calculations. ' The relevant hydro-
dynamics for S(k,~), thermal difFusion and sound

modes, is shown to be determined entirely by
operation of the gerieralized Enskog operator in a
five-dimensional subspace of functions symmetric
about k. On the basis of this identification, kinetic
models are suggested that necessarily preserve the
hydrodynamic limit of S(k,co). A minimal model

containing no additional information beyond that
of this five-dimensional subspace is suggested here

as a suitable compromise between the requirements
of accuracy and tractability. It can be argued that
the emphasis placed here on the hydrodynamic
limit as a criterion for choosing the matrix ele-

ments for a kinetic model may not be appropriate
for calculations at the relatively large frequencies
and wave vectors observed by neutron scattering.
However, de Schepper and Cohen have shown re-

cently (on the basis of their kinetic model) that the
hydrodynamic part of S(k,m), calculated by ana-

lytic continuation of the hydrodynamic modes to
larger wave vectors, continues to be important over

a wider range of k and ~ values than might have

been expected. Further comment on this point ls

given in the last section.
Much of the existing neutron-scattering results

are limited to the liquid phase and the comparison
with the kinetic models has been most extensive at
correspondingly high densities, where the accuracy
of the generalized Enskog equation is more ques-

tionable. More recently, high-flux reactors have

made experiments in the gas phase feasible. '

Here, a preliminary comparison is given of the
kinetic-model calculation of S(k,m) for hard
spheres with neutron-scattering data for krypton in

the gas phase. ' A similar comparison with
neutron-scattering data for gaseous argon was

described recently by Postal and Pelizzari, ' and
for neon by Chen et al. '

II. KINETIC MODELING FOR S(k,a))

Since kinetic modeling has been discussed exten-

sively elsewhere, only the basic ideas are described
here to indicate the special simplifications associat-
ed with calculating S(k,~). To formulate the
problem it is convenient to consider solutions to
the kinetic equation in a Hilbert space P with
the scalar product

(a,b)= Jdvg(u)a (v)b(v),

where the weight function P(v) is the Maxwell-

Boltzmann distribution and the symbol ~ denotes
complex conjugation. The dynamic structure fac-
tor is then given by'8
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=2Re(I,R (k,a))1) .
S{k) (2.2)

and S(k) is the static structure factor. The opera-
tor L (k) is defined by

Here R (k,co) is the resolvent operator associated
with the generalized Enskog equation L (k)—:ik. v —B(k), (2.4)

R (k,co)—:lim [ iso—+e+L (k)]
g~p+

(2.3) and B(k) is the generalized Enskog operator

\

B(k)h =i k vn [C(k)—g{o)CO(k)](l,h)
2% CT ~ —+

ng—(cr) J dv& f dP f dbb
~

v —v&
~
P(v&)[h(v) h(—v')+e'" h(v, ) e—'"' h(v'&)] . (2.5)

The functions C(k) and Cp(k) are the direct corre-
lation function and its low-density limit, respective-
ly; g(o) is the radial distribution function at the
hard-sphere diameter o. Also n is the density and
the primes on the velocities denote the values of v
and v l after collision.

The operator, L (k), is invariant under rotations
about the axis, k. Let P, denote the subspace of
A composed of functions with cylindrical sym-
metry about k, and let 4 z denote its orthogonal
complement. As a result of the rotational invari-
ance, L (k) maps each of these subspaces into itself,
and may be represented as

L, =9'i k.vH —gP' BPp= 9'i k v—9' —B, ,
a,P

(2.9)

L~=gik vQ gP+P—p= Qi k vQ——B~,
a, P

where P' and P are the projection operators onto
u' and u, respectively. A kinetic model for L, is
obtaine8 by selecting a finite subset of the t

u' I,
for example, a (X, and making the following ap-
proximations:

(u', Bup)=0 for a&N P&N; a &N P&N

with

L (k) =Ls(k)+Ll( (2.6)
and

L,(k)=9'L (k)H,

Lg(k) =QL (k)g,

where H is the projection onto P, and g =(1
—H). It is then straightforward to show that
S(k,co) is entirely determined by L„

S(k,co) =2 Re(I,R, (k,co)1),

R, (k,r0): lim [ ico+e—+L,(k)]-
a~0~

(2.7)

(2.8)

(u', BuIt)=A, 5 s for ,a&NP&N . (2.10)

These approximations correspond to a decomposi-
tion of P, into a finite dimensional subspace and
its complement, such that L, is given exactly in
the subspace but is proportional to the identity
operator in the complement and represented there
by the single degenerate value, A, The spirit of
this approximation is that if the subspace is suit-
ably chosen, the quantity to be calculated will be
relatively insensitive to the details outside that sub-
space. Following a similar procedure for L~, kinet-
ic models for Eqs. (2.9) are given by

Consequently, any kinetic-model calculation of
S(k,~) need only contain an adequate representa-
tion of L„' conversely, any features of the model
based on Lq are either extraneous or inappropriate.

A given kinetic model is defined in terms of a
representation of B(k) with respect to a chosen
basis set. If I

u'
( denotes a complete orthonormal

set in A, and I u I denotes a corresponding set
for A j, then

N

L, =9'i k v9' —g.P+P& A., 9' —g P'—
a,P a=1

(2.11)

N N

Lj =Qik vg —gP+P~ —A, ~ Q —g P
a,P a=1

The parameters A,, and A,j are usually chosen as
one of the diagonal matrix elements of B in the
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complement to the corresponding subspace chosen,

e.g.,

~s (uN+1, BuN+1 )

~i=(uN+1»N+1 )

(2.12)

More systematic methods for choosing these A, 's

have ban suggested' but will not be discussed

here.
For small k the spectrum of L (k) contains

eigenvalues corresponding to the five hydrodynam-

ic modes. Three of these, thermal diffusion and

the two sound modes, are associated entirely with

L,(k). The twofold degenerate shear modes are as-

sociated entirely with Li(k) In th.e next section, it
is shown that a five-dimensional subspace is re-

quired for a representation of L,(k) that preserves

the thermal diffusion and sound modes. An ortho-

normal basis set spanning this space is given by

u1 ——1,

u*, =W2
Up

u 3 ——&2/3 ———V 3

2
Up

s 2 k v v 5u4= ~
(2.13)

us=ad 3

A 2 ' 2
k v 1 v

Up 3 Vp

where uo=(2/pm}'i and where p=(ks T} '. The

first three members of this basis set are eigenvec-

tors of L,(0},with zero eigenvalue, corresponding

to conservation of particle number, component of
momentum along k, and energy. The function u4

is required to describe the thecal conductivity,

and u 5 is required for the sound damping constant.

Although the hydrodynamic analysis of the next

section is limited to the modes of L,(k}, a similar

analysis of the shear modes for Li(k) would indi-

cate that a three-dimensional subspace in P'z is re-

quired. The orthonormal basis set is

5 5—g g P'[B(k)—){,5 p]P'p
a=1 P=1

(2.16)

where e1 and e2 are unit vectors orthogonal to k
and to each other. The first two functions are the

two components of momentum orthogonal to k,
providing the remaining conservation laws. The
last member is required for the shear viscosity.

A possible confusion arises fr'om the dependence

of the sound damping constant on shear and bulk

viscosities. For example, in the low-density limit

the bulk viscosity vanishes and the sound damping
constant is given by

(p)
(p) AI7 1 Cp 1 4 (p)r = — —1+ (g, )

P p v P

where A, T
' and g,' ' are the low-density thermal

conductivity and shear viscosity, respectively, p is

the mass density, and Cp and C„are the specific
heats at constant pressure and volume. Since A, 'T'

is described by matrix elements with respect to u4,
and g,

' ' is described by the matrix elements with

respect to u 3, it may be expected that I' ' is deter-

mined and the dimension u 5 is therefore extrane-

ous. However, the sound modes are properties of
L,(k} which has vanishing matrix elements with

respect to u 3 (and all other members of A i). Con-

sequently, the viscous contribution to the sound

modes arises from entirely different matrix ele-

ments of L (k) than those that determine the
viscosity in the shear modes. As will be scen

below, the relevant function in A, for the deter-

mination of both shear and bulk viscosity contribu-
tions to sound damping is u 5. This function has

not appeared in the construction of previous kinetic
models.

In summary, none of the matrix elements of
L (k) with respect to functions in A j [in particu-

lar, those of Eq. (2.14)] is relevant for the calcula-

tion of S(k,co). Anticipating the results of the next

section, a kinetic model for S(k,ra) consistent with

the hydrodynamics of the generalized Enskog equa-

tion at all densities is given by Eq. (2.8} with

[L,(k)],=H(ik v —A)9'

Ae1.v
ui =~2

Vp

e2 v
u, =v2

Vp

i (&1 v)(e2 v)
u3=2

Vp

(2.14)

and A. is arbitrary.

III. HYDRODYNAMIC LIMIT

To determine the matrix elements of L,(k) that
are important for the hydrodynamic limit of
S(k,m), i.e., the behavior for small k and co, the



3216 DQI-r Y, LINDENFELD, AND GARLAND 24

hydrodynamic modes and corresponding transport
coefficients may be determined from the eigen-
values of L,(k). In particular, the three modes as-
sociated with L,(k) are identified, for sufficiently
small k, by

L,(k)fi —— k Pi,
T 2

pCp

L, (k)gg (iC—g—k ~I'k )fi,
L,(k)g =( iC—,k+I k )Q,

(3.1)

where A, T, I, and C, are the thermal conductivity,
sound damping constant, and sound speed associat-
ed with the generalized Enskog equation. It is now
possible to determine the eigenvalues and eigenvec-
tors of Eq. (3.1) by expanding the operator L,{k)
and the eigenfunctions in powers of k,

L,(k) =L,(0)+kL i +k L2+ ~

(3.2)

li (k)=P'"+kli"'+. . . ,

and treating the k-dependent terms as a small per-
turbation. The perturbation theory is straightfor-
ward, although complicated by the degeneracy of
the unperturbed zero eigenvalue and the fact that
the perturbation is not Hermitian. Only the results
will be discussed here (further details are given in
Appendix A). The sound velocity is obtained by
first-order perturbation theory and is found from

0 0 0
(P' ',Ligp'}= 0 iC, 0

0 0 —iC,

(3.3)

where [ P' ' ],[ Qadi

'
J

ar'e bi-orthogonal sets of three
vectors formed from linear combinations of u i, u 2,
and u 3 [see Eqs. (A 1 1) and (A13) for a precise de-
finition]. Direct calculation of the matrix elements
on the left side of Eq. (3.3) gives

constant are found from second-order perturbation
theory. Consider first the thermal conductivity,
which is found to be [see Eq. {A23)]

24k'(gg)+
& gg + 2 (0) +

g ira &P &cpm

A, T
' ———kgngv0(u 4,X) (3.6)

and X is the solution to

B(0)X= —u4, (3.7)

with the condition that (X,u' ) =0 for a = 1 —3.
The operator P in the last term of Eq. (3.5) denotes
a projection orthogonal to I

u' I, a= 1 —4. To ob-
tain Eq. (3.5), matrix elements of the form (u4,
L]u' ) have been evaluated for a=1—3. The first
two terms in Eq. (3.5) are the exact Enskog result,
since the terms PB]u ] and PB]u 3 are found to
vanish by direct calculation. This latter property
implies

(u', Biuii)=0, a&4 P=1,3 . (3.8)

Finally, for practical purposes Eq. (3.7) may be
solved by an expansion of X in the set I

u' J. The
first approximation is accurate to within a few per-
cent and is given by

X- —u4[(u4, B(0)u4)) (3.9)

This approximation is equivalent to the condition,

(u4, B(0)u' )-0, a &4 . (3.10)

With Eq. (3.9). A, T
' may be evaluated. Substitution

in Eq. (3.5} then gives the final result

(3.5)

5 represents terms proportional to PB]u ~ and
PB~ u 3 and where A, T

' is the usual Boltzmann re-
sult,

C, = [1 nC(0)+ ,—(1+4')g)']—'~', (3.4)

kz
Xr —— i [1+1.2(4i)g)+0.767(4i)g) ] .64 o'g&e.m p

where C(0) is the k =0 limit of the direct correla-
tion function, g =g(cr) is the pair-correlation func-
tion at contact, and g =~no /6 is the packing
fraction. This is the usual Enskog result. Conse-
quently, any kinetic model incorporating the exact
properties of the generalized Enskog operator in a
subspace spanned by u ], u2, and u 3 will necessarily
give the correct sound speed.

The thermal conductivity and sound damping

(3.11)

The above shows that the thermal conductivity is
accurately given' if the exact properties of 8 are
given in the subspace spanned by u' for a =1—4.
Further, the matrix elements of 8] between u

~ or
u 3 and the space orthogonal to this four-dimen-
sional subspace must vanish.

Similarly, the sound damping constant is found
to be
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and F is the solution to

—B(0)Y=u5, (3.15)

with the condition ( Y,u' )=0 for a= 1 —3. The
projection operator P in the last term of Eq. (3.13)
denotes projection orthogonal to u' for a=1—5.
To obtain Eq. {3.13) use was made of the matrix
element {u2,Biu5}=(ui,Biu2}. Evaluation of
PB1u 2 shows that this term is zero, or

(u'„B,u', )=0, a&5. (3.16)

Just as with Eq. (3.7), the first approximation in

the expansion of the solution to Eq. (3.15}is very

accurate, with the result,

Y- —u5[(u&, B(0)ui)] (3.17}

Equivalently, this would result from the condition

(uq, Biu' )=0, a& 5 .
Equation {3.17}now allows evaluation of ri,

' ', and

Eq. (3.13) becomes

( —,ri, +g) =—„&m/m. P
0 g

X [1+0.8(4i)g)+ 1.54(4rig)'], (3.19)

which is the Enskog result. '

To summarize, the hydrodynamic modes and

transport coefficients relevant for S(k,co } will be

accurately reproduced' by any kinetic model that
retains certain matrix elements of B(k} in the five-

dimensional subspace spanned by the basis set of
(2.13). More specifically, the matrix elements in

this subspace are

0
B21

(u', B(k)u p)~ 0

0

0 0
B22 B23

B23 B

B24 B34

B2s

0 0

B24 B25

B34 0, (3.20)

0 B„

I = — —1 + ( —,ri, +(}i (3.12)
~T 1 Cp 1 4

pCp 2 C„2p
where A,r is given by Eq. (3.11) and [see Eq. (A28)]

( —,ii, +g) = —,ri,
"'—(1+—,rig )'

+ i &m /irP(4rig) +b,', (3.13)
5~a g

where 5' represents terms proportional to PB1u2.
Here g,'

' is the Boltzmann shear viscosity'
2

2
(3.14)

where the symmetry B p=Bp for (a,P)Q(1,2}
has been noted. The zeros in the fifth row and
column are due to the conditions (3.8) and (3.10).
Also, conditions (3.8), (3.10), (3.16), and (3.18) re-

quire the matrix elements between u4 or u 5 and the
orthogonal complement to this subspace must van-

ish. No other properties of the collision operator,
B{k),are necessary to determine the hydrodynamic
limit of S(k,co).

IV. COMPARISON OF MODELS

A kinetic model for S(k,co} consistent with the
conditions of Sec. III is that given by Eq. (2.16).
The properties of the generalized Enskog operator
are primarily represented by its matrix elements in

the five-dimensional subspace. The matrix ele-

ments B~p(k) for a,P= 1 —4 have been calculated

by Furtado et al., and it is straightforward to
determine the additional two elements, B25 and

B55. The results are given in Appendix B. Substi-
tution of Eq. (2.16) in (2.8) then gives the kinetic
model for S(k,ro)

S(k,co) =2ReC~(k, co), (4.1)

—g g P'(B A, )Pp . —
a=1 P=1

(4.4)

This four-dimensional model results from the five-

dimensional one if A, is chosen to be the matrix ele-
ment B55, and the matrix element B2& is neglected.

where C1 is the solution to a coupled set of five

equations,

5 5

C~=C + g g D p(Bp„A5p, )Cr . —(4.2)
P=1y=1

The functions C~ and D~~ may be calculated in(0)

terms of the complex plasma dispersion function
and are also given in Appendix B.

The parameter' A. in Eq. (4.2) is still arbitrary.
As indicated in Sec. II its role is to represent L (k)
in the complement to the five-dimensional subspace
required by hydrodynamics. To suggest a simple
choice, it is convenient to rewrite Eq. (2.1'6} as

[L,(k)]5——[L,(k)]4

+(A, —B5g)P5 (P5BP2+P2BP)—) . (4.3)

Here [L,(k)]4 is the kinetic model based on repre-
sentation of B(k) in only the four-dimensional sub-

space spanned by [ u~ I for a = 1 —4,

[L,(k)]4——9'(i k v A)8'. —,

4 4
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The choice A, =B„is simply that of Eq. (2.12) for
the four-dimensional model, but the neglect of B25
leads to an incorrect sound damping constant as
calculated from (4.4}. Closer inspection of the
results in Appendix A shows that B25 is responsi-
ble only for some of the density corrections to the
viscous contributions of I . Consequently the
model [L,(k)]4 is consistent with hydrodynamics
at low density. It is important to note that this
agreement with hydrodynamics at low density is
only obtained if the choice A, =B» is made. The
kinetic model used by Furtado et al. is, in fact, that
of Eq. (4.4), although with a different choice for A,

[Eq. (2) of Ref. 8]. The resulting hydrodynamics is

therefore in error even at low densities. In particu-
lar, the sound damping constant is almost 30% too
large. Since the amplitudes of the Brillouin peaks
are inversely proportional -to I, this error is seen to
be responsible for the recently discussed discrepan-
cies at low-density light-scattering data or hydro-

dynamics and calculations using the kinetic model
of Furtado et al. ' In constrast, a comparison of
the kinetic model using A, =B» with a hydro-

dynamic calculation shows good agreement. At
higher densities the five-dimensional model is re-

quired, as described below. Interestingly, for
values of k and co well outside the hydrodynamic

range the results of Furtado et al. , and those ob-

tained using A, =B» are essentially the same, indi-

cating a surprising insensitivity to A, . Further
comment on this will be given below.

The kinetic model of Eq. (4.4) fails to give the
correct hydrodynamics at higher densities. This is
due to the neglect of B25 in passing from (4.3} to
(4.4). Returning to the model [L,(k)]5, it is noted
that by construction the hydrodynamic modes are
correct at all densities, for arbitrary choice of A, .
One possibility is that of Eq. (2.12),

TABLE I. Comparison of S(k,co=0)/S(k) at
nor =-0.47 as calculated from Eqs. (4.3) and (4.6) for
v=0.5, v=1.0, and v=5.0, o =3.52 A.

k ( A ') v=0.5 v= 1.0 v=5

the collision operator in the subspace orthogonal to
the chosen five-dimensional space. Table I gives

S(k,co=0)/S(k) as calculated for v=0. 5, 1.0, and
5.0. Table II shows a similar comparison for cal-
culation of the full width of S(k,co) at half max-
imum. The insensitivity of these results to changes
of A, by an order of magnitude suggests that the
structure of L,(k) that is important for S(k,co) is

largely contained in the matrix elements of
[L,(k)]5.

The wave vectors considered in Tables I and II
are those typical for neutron-scattering results.
Somewhat surprisingly even the four-dimensional
model [L,(k)]4 agrees reasonably well (within

10%) with the five-dimensional models in this
range. Furthermore, a certain insensitivity to vari-

ation of A, in the four-dimensional model is also
found, suggesting that for sufficiently large wave

vectors the dominant behavior of S(k,co) is deter-
mined from the matrix elements of B(k) with

respect to only the four functions I
u' ] for a =

1 —4. This is in substantial accord with the rela-
tive agreement between the single- and triple-
relaxation time models of Ref. 8. Similarly the
results of de Schepper and Cohen suggest that the
analytic continuation of the hydrodynamic heat
mode dominates in this range of wave vectors.
Since this mode is determined by the matrix ele-

ments of B(k) with respect to these same four
functions, an insensitivity to higher-order dimen-

sions is again indicated.

A, =(u 6,B(k)u 6 }, (4.5)

where (u 6,u' )=0 for a=1—5. Instead of adding
any new information to the model it is useful first
to determine just how sensitive S(k,co) is to this
free parameter. To do so, let A, be a multiple of
B»s

A, =vB»(k), (4.6)

where v is to be varied. The comparison of kinetic
models obtained by increasing the dimension of the
subspace of matrix elements B & is discussed in
Ref. 12, and indicates convergence is slowest for
S(k,co) at co=0. The variation of v in the [L,(k)]5
model gives a similar measure of the importance of

0.1

0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2. 1

2.3
2.5
2.7
2.9

1.10' 10-"
0.239
0.160
0.136
0.129
0;130
0.136
0.138
0.124
0.990' 10-"
0.798
0.685
0.623
0.587
0.564

1.09)& 10
0.232
0.157
0.134
0.128
0.129
0.135
0.137
0.123
0.987 y 10-"
0.794
0.680
0.618
0.583
0.559

1.08 ', 10-"
0.224
0.151
0.130
0.124
0.126
0.132
0.134
0.120
0.952 X 10-"
0.760
0.649
0.588
0.554
0.532
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TABLE II. Same as Table I, except for the full width
at half maximum.

k ( A. ') v=0.5 v=1

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

2.3
2.5
2.7
2.9

0.208 X 10'~

2.30
3.38
3.91
4.10
4.05
3.89
3.90
4.48
5.76
7.24
8.39
9.12
9.45
9.96

0.212 X 10'
2.38
3.44
3.96
4.15
4.09
3.92
3.91
4.48
5.75
7.22
8.38
9.13
9.61
9.99

0.216x 10'
2.48
3.53
4.08
4.19
4.21
4.04
4.04
4.60
5.77
7.26
8.45
9.30
9.87

10.30

O
C

f 4

I ] I I I I ]

O. I 0.2 0.3 0.4 0.5 0.6 0.7
n 0.3

FIG. 1. Sound damping constant as calculated from
Eq. (4.4) (———), and the MM model, Eq. (4.7)
( ). Both are normalized to the low-density
Boltzmann result I ' '.

At smaller wave vectors the full five-dimensional
model, [L,(k)]„ is required as the hydrodynamic
limit of S(k,co) is approached. However, since
S(k,co) is independent of A, in this limit and insens-
itive to A. otherwise, this parameter of the model
may be chosen for convenience and simplicity.
Consideration of Eq. (4.3) suggests the choice
A, =B5q. The model then contains only the
minimum information about B(k) required by hy-
drodynamics and no additional matrix elements.
This will be referred to as the minimum matrix
element model (MM) and is given by

[L,(k)]g ——[L,(k)]4—(PsBP2+P2BPg), (4.7)

where [L,(k)]4 is defined by Eq. (4.4) with A. =B5q.
The model differs from the four-dimensional model
only by the matrix element B52 ——B25. As noted
above the latter is required to give certain collision-
al transfer contributions to the viscous part of the
sound damping constant. Figure 1 compares the
sound damping constant as calculated from Eqs.
(4.4) and (4.7). The error associated with the four-
dimensional model can be as much as 18%. Simi-
larly the Brillouin peaks in S(k,co) will have a cor-
responding error if B&z is neglected, except at very
low density. In contrast, since Eq. (4.7) predicts
the correct Enskog sound damping constant at all
densities the discrepancies between hydrodynamics
and kinetic models discussed in Ref. 13 are re-
moved at all densities.

V. COMPARISON WITH EXPERIMENT

Neutron-scattering experiments on gaseous kryp-
ton were performed recently' at twelve densities
along the 297 K isotherm for wave vectors in the
range 0.4& k & 3.5 A '. This allows determination
of the density derivatives of S(k,co) and S(k) in
addition to the functions themselves, and should
provide a more severe test of kinetic theories and
potential models used to describe the results. ' In
this section a preliminary comparison of the MM
kinetic model with the experimental results is made
at only a single density, n =1.07)(10 cm; a
more complete analysis will be given elsewhere.
The only free parameter of the kinetic model is the
hard-sphere diameter, a. This is chosen by requir-
ing that the hard-sphere static structure factor be
similar to the experimental result for the k range of
interest. The hard-sphere structure factor is calcu-
lated from Percus-Yevick theory. Figure 2 shows
a comparison of S(k) for hard spheres at 0 =3.52 A
with the corresponding experimental results. At
least in the region of the peak the structure of the
hard-sphere fluid is seen to be qualitatively similar
to that of xenon. All of the following kinetic-
model results are based on the choice can=3.52 A.

Figure 3 shows S(k,co)/S(k) at %co=0, 1, and 2
meV. The static structure factor has been divided
out to emphasize the dynamical effects, and the
theory has been convoluted with an instrument
profile. The agreement is seen to be reasonably
good at Ace= 1 and 2 rneV, although significant
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I.5—

I.O

0.5
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I.O 2.0
k{4 )

FIG. 2. Comparison of S(k) for hard spheres with
sr=3.52 A ( ), and from neutron-scattering data
for krypton gas at T =297 K (0 0 0); both are at
n cr' =0.47.

I

3.0

40—

differences in detail are evident. At fico =0 the
disagreement between the kinetic-model calculation
and experimental results is clearly larger. This
difference could be due to either the failure of hard
spheres to represent xenon, or errors associated
with the MM kinetic model. However, the latter
explanation is unlikely in light of the results of the
last section, showing that the kinetic model is in-
sensitive to variations of the collision rate outside
the five-dimensional subspace. Furthermore,
hard-sphere molecular dynamics results at this den-
sity' are in substantial agreement with the Ace=0
MM results of Fig. 3. Consequently, it is likely
that the discrepancies should be attributed to the

unrealistic nature of the hard-sphere potential
model.

A more graphic representation of the failure of
hard spheres to accurately model xenon gas is
shown in Fig. 4. The full width at half maximum
for hard spheres is seen to be too large for k & 1

and too small for 1 & k & 1.5. Interestingly, for
k & 1 the hard-sphere width is also larger than that
for an 'ideal gas, a point that has been observed re-
cently elsewhere. The fact that the deviations in
widths changes sign with k suggests that the
difference in potential model is responsible for
more than an overall change in collision rate, as
might be expected from comparison of transport
coefficients. Instead it appears that a detailed
description of the spatial dependence of particles
interacting via continuous potentials is required.
The situation should clarify when molecular
dynamics results for continuous potentials are
available for comparison with both experimental
results and hard-sphere molecular dynamics re-
sults. A practical kinetic theory of dense gases for
continuous potentials with accuracy comparable to
the Enskog theory is still lacking.

VI. DISCUSSION

The kinetic model for Slk, roi suggested above,
Eq. (4.7), has been obtained by requiring that suffi-
cient information about the exact generalized En-
skog operator be maintained for the accurate repre-
sentation of the hydrodynamic limit, i.e., small k
and co. At larger k and co the k dependence of
these same matrix elements provides the exact
low-order frequency moments of S(k,co). Conse-
quently, the model is accurate at the limits of

3.0 7.0—

hC

v) 2-o

3

V)

I .0

K(A )

FIG. 3. Comparison of S(k,co)/S(k) for the MM
model, Eq. (4.7) ( ), and neutron-scattering data for
krypton gas (0 0 0); for 0, 1, and 2 meV, respectively,
from top to bottom.

6.0

X
5.0—

X

4.0—

X 3.O'-

XI-a 2.0—

2 1.0—

0
0 I.O 2.0 3.0

k(A ')

FIG. 4. Same as Fig. 3, except for the full width at
half maximum.
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small k, co and large k, co for all densities, and inter-

polates between them. The relative accuracy of the

model for intermediate values of k and co is expect-

ed on the basis of the results in Tables I and II,
which show that S(k,co) is quite insensitive to
variations of the model in that portion of the sub-

space for which the approximations have been in-

troduced. As will be shown elsewhere' these ex-

pectations are generally confirmed by comparison
with molecular dynamics simulations. The con-

straints of hydrodynamics require that only matrix

elements of the collision operator in a five-

dimensional subspace need to be retained. Howev-

er, this should not be confused with retaining only

the hydrodynamic part of S(k,co). The kinetic

models discussed above all describe both hydro-

dynamic and microscopic modes. As noted in the
Introduction de Schepper and Cohen have recently

suggested that the further approximation of retain-

ing only the hydrodynamic modes of a kinetic

model may also be a good description, if these

models are suitably extended to larger k than those

of Appendix A. See also Ref. 23 for further dis-

cussion of this suggestion.
The comparison of the kinetic-model calcula-

tions with xenon data suggests that significant

differences between the dynamics of hard spheres

and that for real fluids may be studied via S(k,co).

These differences are expected to be enhanced at
lower temperatures and in the gas phase. Further

analysis is called for before any substantive con-

clusions can be drawn, but S(k,co) continues to
prove a good testing ground for many-body

theories of the dynamic structure of fluids.
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APPENDIX A: HYDRODYNAMIC MODES
OF L, (k)

The discrete eigenvalues and corresponding
eigenfunctions of L,(k) may be determined from

A&'(u', g~ ') =(u', L &g'p') . (A6)

The P' ' are solutions to L,(0)f =0 and must be

of the form

3

4a = g Ca@up
P=1

(A7)

so that the first-order eigenvalues are solutions to

3

g Cpr[(u', [ik v B)]ur) kp"5—r]=—0.
@=1

(A8)

The matrix elements of B1 may be calculated from

the expansion of the generalized Enskog operator,

Eq. (2.5), to first order in k. The condition for
solutions to Eq. (Ag) is then found to be
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[1—nC(0}]

lVO

lVO (1+4')

v'3
—(I+4rig) =0

{A9)

and the normalization condition gives

'2
1 Vp 2(1+4'),

S

2
VO

N, N3 N, N——
3
——— [1—nC(0)] .

4 CJ

(A14)

with vp =(2/Pm)'~ . The solutions are

X',"=0,
(A10)

The eigenvalues to first order may then be written

(A15)

~3,3 +iC, —= + [1 nC—(0)+ , (1+—4rig)]'i
2

The corresponding eigenfunctions are

y(0) N s g3 2
[1 nC(0)] s

(1+43)g)

(A11)

with

0 0 0
((t)~ ',L) fp ') =iC, 0 1 0

0 0 —1,
(A16)

(A12)

(()) N' s ~~ ~ s

1 —nC(0}

+ 2/3 (1+4')
[1—nC(0)]

S
Q3

{A13)

3 N3 3 ui +~2 u2+P2/3( 1+4rig)u3
Vp

where the N are normalization constants. This
set [ P' '

] is not pairwise orthogonal, due to the
fact that the perturbation is not Hermitian. How-
ever, a second set I (I}' '

] may be found such that

( (({}~
'

) and [ l(l' '
I are biorthogonal, i.e.,

(y(0) y(0))

This set is given by

pI
' Ni ui ———3/3/2 u31+4'

This verifies the first result quoted in Scc. III,
namely that the sound velocity is. completely deter-
mined by the properties of L, in the subspace
spanned by [ u ], a= 1 —3.

2. Second order

The first-order eigenfunctions are given by Eq.
(A4} with )(,

"' given by (A15),

3

=Lp (l(+ Li )1{)+ + g—d p(((lp . (A17)
p=i

The coefficients d ~ are arbitrary at this point.
Substituting (A17} into the second-order equation,
(A5), and taking its scalar product with respect to
(I}p ', we obtain

A~ 5~p=((t)p, L3$~ )—( ({')p,[lL) —A~ ]Lp [Li —A~ ]Q~ )+(Ap —}(~ )d~p

or, more explicitly,

g' '=(({)' ' L l{)' ') (y' ' L L 'L y' ')

(A18)

{A19)

A i
—(I{)I L2$) )—((1)) L )L p 4u)( u4 L ) (( ( )—((t)I L )L p PL ()t)I )

I

The projection operator P projects orthogonal to u', a =1—4. The first two terms in Eq. (A20) may now

(A20)

3 —(I(i 3&L $/3 3)—($3 3~(L i +(Cz )L p (L i +lC& )t{)33)

Consider first the expression for }(,I '. The term L)li)') ' is orthogonal to u~, for a= 1 —3. It may be
decomposed further into its component along u4 and the component orthogonal to u~, a=1 —4. Then A, '&

'

becomes
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be evaluated to give,

(2) XT
A]

pCp

where C& and C„are the specific heats at constant pressure and volume,

2 (1+4i}g)~ 3 ka
3 [I—nC(0)] ' "

2 m

and the thermal conductivity A, z is identified as

(A21}

(A22)

24k (r}g}
Ar = (1+—,i}g) + (o)g

' pro'kr &mPm
}(4') '

i o'
(1+4rlg)

(Ni L—iLO PL)e) ) . {A23)

Here A, z
' is the Boltzmann thermal conductivity,

I

where the sound damping constant is defined by

l(.r g ,k——snu—o(ii4 Lo u4} ~

(0) 5 2 s —I s (A24)
(A26)

Equation (A23) is the result used in Sec. III, Eqs.
(3.5) and (3.6). The last two terms in Eq. (A23)
vanish, and with the approximation (3.9), the En-
skog result, (3.11), for A, r is obtained. Consequent-
ly, the thermal conductivity is seen to be deter-
mined by the properties of L, in the space spanned
by u', a=1—4.

Next consider the expressions for A, 'i 3, Eq. (A19).
A similar decomposition of Life 3 into its com-
ponent along u4 and that orthogonal to u~,
a=1—4, leads eventually to

(A25)
I

and ( —,rl, +g) is identified as

( —,rl, +g) =
~

&m InP(4r}g).
5m'0 g

—2p(gi, L)Lo 'PL)(ti~ } . (A27}

To evaluate the last term in Eq. (A27) one last
decomposition is useful, dividing PL)gz ' into its
projection along u 5 and its component orthogonal
to u', a=1—5. This gives,

( —,i},+g)= —,r), —(1+—,rig) + &m IMP(4i)g)i —2p(({)(q ',L)Lo 'PL(gi '}5' g
{A28}

'% = guo(iis~Lo tie} .
2

{A29}

where P projects orthogonal to u~, a=1—5, and

g,' ' is the Boltzmann shear viscosity
k2 3(k)=+iC k +1 k (A30)

with A, T and I given by Eqs. (3.11), (3.12), and
(3.19).

Equation (A28} is the result used in Sec. III, Eq.
{3.13). Direct calculation shows that the term

PL(pi ' 0, so that with th——e approximation (3.17)
the Enskog result (3.19}is obtained. Therefore, the
sound damping constant is determined from the
properties of L, in the subspace spanned by u',
a=1—5.

In summary, to second order in k the eigen-
values are

PCp

APPENDIX B: DETAILS OF THE KINETIC
MODEL

kUO
' ——2 ImC~(k, co),

S(k,co)

S(k) (B1)

where C& is the solution to the set of five coupled
equations,

In this appendix the equations (4.2) determining
S{k,o) } are described in more detail. For practical
purposes it is better to consider the dimensionless
equations
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(B2)
5 5

C =C' ' i—y g g D isEis„Cr .
P=&y=&

Here the functions C~y C~ y D~p, and E~p are de-
fined by

2 81
B44 ———,(1—

80 B22)

B4s =Bs4 =o

4 5 18
Bss ————1 ——1 — jp(x)

3 4
C =ikvp(u', R 1},
C =ikvp(u', Rpl),

D i) =ikv p(u ',Rpu p),
E i)=(u', (B'—A, )u&}.

Also,

(B3)

15 9+ 1—,j((x)

where x =ko. It is also straightforward to deter-
mine the functions C' ' and D p in terms of the
plasma dispersion function

R p
=—( i p3+i k—.v A,}—

B =B(k}/A—g,

}(,
' —=A, (k)/A, p,

y—:Q/kv p,

(B4)
with

2

~( )

" dv e-- 3/v v —z

The results are

C) ——P(z),

z=w —lA, g, w =co/kUp .

(B7)

(B8)

and A,p is an arbitrary normalization constant intro-
duced to scale B(k). A useful choice is

12Up4=
I Bss{0)

I
= 3 2/n'(43)g) ~

50
(Bs)

The matrix elements, B'~{k)=(u', B(k)u p}/Ap are
given by

Bi~——0, a=1—5,

B~& ——0, a=1,3—5,

sikC(k)
21

16v @go

5 1 . 2.
~ B22 3 jp(x) + ji (x)

2 x

and

C2 ——~2[1+z({)(z)],
C', '=&2/3[z+(z' ——,)P(z)],

C4
' —— [{z —1)+z(z'——)P(z)],

5 2

C',"=3/2C(P)

D & Dis, a,p=——1 —5,
D, =C' ', a=1—5,
D =3/2 C."', a=2 —S,
D33 3 [Cp'+3/3/2(z ——,)C3 ]

(B9)

e
B23 ——B32— 1 4

")/ 7T/6j i (x),

B24=B42 =
2 10

(B6)
D35 = (z ——)C3 — C~

2 2 1 (p) 1 (p)

3 ' 3/6
(810)

D34 +6/5[1+ —,zCP'+&2/3z(z ——,)C3 '],

e e 3.
B25 B52 i )2 3')r jp(x)— D44 ———,z 1+—,zC'i '

B33— [1—jp(X)],

9+ 1 — j,(x)
x

+&2/3z(z ——, ) C3 ' —
3

C4 '

D45 =&3/5[ —1 ——,zCp —3/2/3z (z ——, )C3' '

+3/5(z2 ——,
'

)C,"'],

3
34 43 — B23,

10

(I(

B35 ——Bs3——0,

Dss ='" 3 C) — (z ——)C3
(p) 2 2 ( (p)

3 3 3

+ (z' ——,
'

)C',"
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Equations (B2}may be written in matrix form 5

Aett 5——e.it+iJt g DerErit .
y=1

(B12)

ac =c['~, (Bl1)

where C' ' is the five-dimensional column matrix
with elements C' ', and A is the five-by-five square
matrix elements

The matrix multiplication of Eq. (Bl 1}and inver-
sion of (B10}were done numerically in complex
arithmetic. A detailed listing of the program is
available on request. The hard-sphere equilibrium
properties used are those of the Percus-Yevick
theory, i.e.,

g(a) =(1——,ri ——,ri )/(I —g) (B13)

nC(k) = ( I+2r}) (sinx —x cosx) —6ri(1+ —,ri) „[2xsinx —(x —2)cosx —2]
—24' g 1 2 1 2

(1—g) X X

+ 2 g(1+2r}) [(4x —24x)sinx —(x —12x +24)coax+24]x' (B14)
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