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Light-scattering studies of phase separation in isobutyric

acid + water mixtures: Hydrodynamic effects
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The growth of droplets in a binary fluid mixture undergoing phase separation has been

studied by light scattering. The measurements have focused on the dependence of growth

rate on the overall composition of the mixture. For mixtures of the critical composition,

there is a crossover: k, the wave number corresponding to the maximum in the scatter-

ing, decreases initially as t ' and at long times as t '. In accordance with hydro-

dynamic arguments of Siggia [Phys. Rev. A 20, 595 (1979)], the existence of the crossover

can be related to the volume fraction of the new phase v. Only for U & 0.10 are cross-

overs observed. In more dilute mixtures we find ~k
~

=At '~' with A proportional to v

for 0.10)U )0.02. Lifshitz-Slyozov growth, for which A is independent of v, is found

for v &0.02.

I. INTRODUCTION

Light-scattering studies of phase separation in

fluid mixtures' have provided a wealth of infor-

mation about the complex, highly nonlinear

processes by which a new phase forms in a system

that was originally homogeneous. Measurements

of the scattered light I(k, t) as a function of the

scattering vector k and the time after quench t
have been compared with the behavior of the struc-

ture factor S(k, t) predicted by the only quantita-

tive nonlinear theory, that of Langer, Bar-on, and

Miller (LBM), and with computer simulations on

model systems. So long as the effects of multiple

scattering are small, the scattered intensity is pro-

portional to the structure factor.
In qualitative terms, close agreement has been

found between experiment, theory, and computer
simulation. The structure factor, which is initially

broad, grows and narrows with time. The wave

number corresponding to the position of the max-

imum in S(k, t), k (t), moves toward smaller

values as a result of "coarsening", the growth of
the average droplet size.
growth of the average droplet size.

The quantitative differences between experiment,

theory, and simulation are significant, however.

As reported in the first paper in this series, (here-

after called I), in "off-critical" quenches, i.e., those

for compositions other than the critical (see Fig. 1),
the experimental coarsening rate can be expressed

as a power law ~k (t)~=A't ', with a'= —,, while

the growth of the intensity at k can similarly be

written l(k, t)=A "t', with a"=1.2. On the

other hand, LBM find a'=0.21 and a"=0.8,
values similar to those obtained from the Monte

Carlo calculations.
A more striking difference is apparent in critical

quenches. We observed that the coarsening rate

depends on quench depth, the exponent a' chang-

ing from 0.3 to 1 with increasing quench depth.

The intensity exponent a" shows a parallel increase

from about 1 to 2. This acceleration, which was

not predicted by LBM and is not found in the

simulations, was verified in the experiments of
Chou and Goldburg. If the data are appropriately

scaled, the change in the exponents can be seen as

a dependence on the reduced time.
The LBM theory and the simulations are more

X

FIG. 1. The overall composition is specified by hT;,
the temperature at which, under equilibrium conditions,

a second phase first appears. For a "critical" quench,

b, T; =0. When the system is quenched to a temperature

specified by hTy, the volume fraction of new phase is

given by U =5x/Lx. Substitutions with Eq. (4) yield

Eq. (5).
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we can rewrite (1}in scaled form

As shown in Fig. 1, the volume fraction can be
calculated from the lever rule. The computation is
simplified by the use of the well-known relations
for the coexistence curve

2(x' x, )=x' x"=—B[(T, ——T)/T, ]~ . (4)

In these expressions, P is a critical exponent, x, is
the mole fraction at the critical composition, and
x' and x" are the mole fractions of the coexisting
phases at the temperature T. If we define
ATf —T Tf as the temperature difference be-
tween the critical temperature and the temperature
to which the mixture is quenched and hT;=T, —T;
as the temperature difference that corresponds to
the composition of the system before a quench, we
can write

appropriate to solid mixtures than to fluids.
Kawasaki and Ohta have attempted to introduce
the hydrodynamics by grafting mode coupling onto
the LBM model. Their results, which do produce
an increase in a' and a", apply. only at relatively
early times and therefore correspond to only very
shallow quenches.

Binder and Stauffer ' have discussed the dynam-
ics of phase separation in terms of, the diffusion
and reactions of clusters. Their arguments, which
rely. on scaling, lead to a t ' growth law for fluid
mixtures. However, long-range hydrodynamic in-
teractions are not included.

More recently, Siggia has focused on what he
terms the "late stages" of phase separation. This
regime can be defined in terms of the reduced wave
number q, which is the wave number scaled by the
equilibrium correlation length g,

q =k /&0. 1

Siggia has enumerated several different coarsen-

ing mechanisms that apply in this regime and are
experimentally distinguishable. The simple coales-
cence of spherical droplets of diameter a leads to a
growth law that can be written

u =12Duut -,

where D is the diffusion constant, t is the time, and
u is the volume fraction of the droplets. To con-
nect Eq. (1) to light-scattering measurements, we
take a =k~ '. Then, if we define a reduced time

This equation applies when the interfacial thick-
ness of the drop is of the order of the correlation
length, a condition that holds for the experiments
that we wiB consider.

At low supersaturations, when the volume frac-
tion of droplets is small, growth will take place by
the evaporation-condensation mechanism analyzed

by Lifshitz and Slyozov. ' The growth rate for
this process is independent of the volume fraction
of the droplets:

q =0.053m .

If the volume fraction exceeds the percolation
limit, extimated by Siggia as 0.15, the droplets are
connected and another growth mechanism can be
envisaged. It results from the necking down of un-
dulations in tubular regions of the new phase and
is driven by the interfacial tension. Dimensional
analysis leads to the relation

where o is the interfacial tension and g is the
viscosity; the numerical factor is very uncertain.
To a good approximation, "cr=0.2k' T/g, so
Eq.(8}can be written

q~ =0.3v .

For the critical mixture, then, the initial stages
of growth are expected to be diffusional (i.e.,
q~ ~ ~ '

) but there will be a crossover to w
'

behavior at a point that can be estimated by equat-
ing growth rates

or, in scaled form,

q =02 (10)

A second crossover to gravity-dominated motion is
expected as well. The difference in density between
isobutyric acid and water is so small, however, that
this regime would occur only at very late stages of

U = [1 (h—T;/ET/)~]/2

When hydrodynamic interaction, which results
from the squeezing out of fluid between spheres
that difFuse toward each other, is added to the sim-

ple coalescence model, a growth law somewhat dif-
ferent from Eq. (3) is obtained,

16~~
ln(0. 55/q~ )
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coarsening.
The behavior of off-critical mixtures will depend

on the relative quench depth; i.e., on hT;/ETf. If
hT; &0.356Tf, the volume fraction exceeds the

percolation limit and some region of v
' behavior

would be expected. Quenches for which 0.35

ETf & hT; &0.9b,Tf should initially exhibit ~
growth with a volume-fraction-dependent prefactor.
After the supersaturation has been reduced, a
crossover to Lifshitz-Slyozov (volume-fraction-

independent) growth should be observed. Only

Lifshitz-Slyozov growth should be observed when

hT; & 0.96Tf.
The sharp distinction in behavior between the

critical and off-critical quenches that was reported

in I can be seen then as merely reflecting the diffi-

culty in achieving large volume fractions in off-

critical quenches, basically because the coexistence

curve is very flat. For example, in a quench for
which hT; =10 mK, a volume fraction of 0.40 can

be achieved only for ETf ——1250 mK. Such deep

quenches could not be accomplished with our ap-

paratus. Of the 11 off-critical quenches studied,

only three were at volume fractions greater than

0.10. Quenches J and M, for which v =0.14 and

0.18, respectively, show some evidence of crossover

at very late times; no deviation from 7

behavior can be seen in Quench I (v =0.21), but

measurements were made for only 300 sec. Thus,

although the experiments described in I are con-

sistent with Siggia s models, they are not satisfac-

tory probes of the dependence on volume fraction.

The work that we will discuss here was planned to
investigate explicitly the transition between critical

and off-critical behavior and therefore provides a
more meaningful test of the theory.

II. EXPERIMENTAL

Details of the pressure-quench method used to
drive the isobutyric-acid+ water mixture from a
one-phase region into a two-phase region, and a
description of the apparatus, have been given in I.
Since we were interested only in the position of
maximum in S(k, t), the intensity was recorded

photographically rather than with a digital tech-

nique. In the initial experiments, the position of
the maximum was located with a recording densi-

tometer. This method was abandoned when we

recognized that equivalent results could be ob-

tained by making measurements on the films with

a vernier caliper.
All the measurements in I were performed on

samples of critical composition; off-critical

quenches were accomplished by starting with two

coexisting phases in the cell and studying phase

separation in one phase or the other. The advan-

tage of such a procedure is that it allows the criti-

cal temperature of the sample to be determined

periodically, making it possible to relate all tem-

perature measurements to T, .
In contrast, only the first set of the current series

of measurements was performed on a critical mix-

ture. This set consisted of five quenches that be-

gan with the cell at a temperature about 0.5 mK
above T, and were produced by pressure jumps of
2, 4, 8, 16, and 32 cm Hg. Since, for isobutyric

acid+ water, dT, /dp= —0.055 Katm ', these

pressure jumps correspond to temperature changes

of 1.5, 2.9, 5.8, 11.6, and 23.2 mK, respectively.

At the completion of the measurements on the

critical sample, the bath was cooled 4.90 K below

the critical temperature and the cell was allowed to
equilibrate. A small portion of the lower phase

was then withdrawn with a syringe attached to a

length of 0.8-mm i.d. Teflon tubing that had been

threaded through the side arm of the cell. For
convenience, the volume of liquid removed was

gauged from the length of the column of mixture

withdrawn into the tubing. The 30-cm-long

column removed was found by calibration to corre-

spond to 0.148 cm .
After heating the sample above T, and stirring it

thoroughly, we determined its temperature of phase

separation. A series of quench measurements was

then performed with the same set of pressure

jumps employed in the critical-quench set.
The sample withdrawal procedure was repeated

eight more times and, on each occasion, the same

volume of lower phase was removed and the same

set of jumps was utilized. The first photograph

was taken five or ten seconds after a quench and

data taking continued until the maximum in the

scattering was at an angle less than 0.01 rad. Ob-

servation times varied from 300 to 2000 sec

depending on the coarsening rate. Corrections to
the scattering angle were applied for the differences

in refractive index between sample, bath, and air.

All measurements were made in the upper,
isobutyric-acid-rich phase.

Given the volume of the initial critical sample

(10.89 cm ) and the density' and weight fraction'

of the lower phase along the coexistence curve, it is

possible to calculate the compositions after each

withdrawal and the corresponding temperatures of
phase separation. If there were no change of the
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critical temperature with time, the accuracy of the
calculation could be checked by comparison with

observed phase-separation temperatures. Unfor-

tunately, the critical temperature of isobutyric-
acid + water mixtures in contact with mercury has
been shown to drift downward with time. Thus,
although we calculate that the relative separation
temperature hT; in the tenth set of measurements
is 25 mK, the measured separation temperature
was only 3 mK lower than that recorded for the
critical sample. This 22-mK discrepancy could
certainly be accounted for by a drop in T, over the
three months during which the experiments were
performed. We therefore will base our estimate of
hT; on the volumetric measurements alone.

The principal source of random error in v is the
4% uncertainty in the volume of fluid removed.
An error of this size produces at most an uncer-

tainty of +0.02 in v. All the volume fractions in a
given set would be either systematically high or
low, depending on the direction of the volume er-
ror.

A summary of the experiments performed is
given in Table I, where the volume fractions calcu-
lated from Eq. (5) are listed for each initial tem-

perature and pressure jump, 50 quenches in all.
The number of photographs taken following a
quench was 12—20 for the 1.5-, 2.9-, and 5.8-mK
quenches, 6—8 for the 11.6-mK quenches, and
1 —8 for the deepest quenches.

III. RESULTS

The changes in the coarsening rate with compo-
sition and quench depth are typified by Figs. 2—6,
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which show, in scaled form, the results for sets 1,
4, 7, 8, and 10, respectively. Values of D and g
used in the scaling were calculated by the relations
D/cm sec '=1.5X10 (hT /T, ) and
g/em=1. 8X10 (hT~/T, )

' ', taken from the
work of Chu and co-workers. '

There is a clear progression in the figures from
"critical" to ofF-critical behavior. For the early
sets, in which the volume fractions are high, all
quenches show crossovers from s ' to r
behavior. As the concentration moves further
away from the critical, however, the crossover no
longer appears in the shallower quenches, which
correspond to small volume fractions. On the oth-
er hand, v

' behavior persists in deeper quenches,

FIG. 2. Dependence of log~~ on log~0~ for the crit-
ical quench, set. 1. Symbols represent different quench
depths: 0, 1.5 mK; 0, 2.9 mK; 6, 5.8 mK; 0, 11.6
mK; ~, 23.2 mK. The choice of symbols is the same in
the other figures.

Table I. Initial relative temperatures hT&, temperature jumps 5T, and corresponding
volume fractions v.

Set hT; /mK 1.45 2.89
5T/mK

5.79 11.6 23.2

1

2
3
4
5
,6
7
8
9

10

0
0.01
0.14
0.55
1.5
3.0
6.0

10.2
17.1
24.7

0.50
0.39
0.26
0.16
0.10
0.06
0.03
0.02
0.01
0.01

0.50
0.41
0.31
0.22
0.14
0.09
0.06
0.04
0.02
0.02

0.50
0.43
0.34
0.27
0.20
0.14
0.09
0.06
0.04
0.03

0.50
0.44
0.37
0.31
0.25
0.19
0.14
0.10
0.07
0.06

0.50
0.45
0.40
0.34
0.29
0.24
0.19
0.15
0.12
0.09
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FIG. 3. Quenches in set 4. FIG. 5. Quenches in set 8.

for which v remains high.
In order to be able to make more quantitative

comparisons between experiment and theory, we
have fitted the log~~ —logic data by unweighted
linear least squares. Where there are crossovers,
the limiting low- and high-slope regions were fitted
separately. There is clearly a degree of arbitrari-
ness in the grouping of points and the small
amount of data precludes meaningful tests of the
sensitivity of parameters to truncation. Statistical
estimates of the uncertainties in the derived quanti-
ties are therefore misleading and will not be given.
The numbers we cite are useful in demonstrating
trends and in checking consistency with theory.

With three exceptions, rapid coarsening rates are
found only in quenches for which v & 0.10. The
power-law exponents that characterize this
behavior range from 0.8 to 1.1 and their average
lies close to 0.9. Within a given off'-critical set,
there is a trend toward higher exponents with in-

creasing quench depth. Three relatively shallow

quenches, those for volume fractions of 0.06 and
0.09 in set 6 and that for v=0.06 in set 7, also
have high exponents (0.89, 0.88, and 0.80, respec-
tively}.

The coefficient of ~ in Eq. (9) can be compared
with the value derived from the constant term ob-

tained from the linear fit. We find (4+2) X 10
for the average of all the quenches showing cross-
over, which is two orders of magnitude smaller
than Siggia's estimate. The rather poorly deter-
rnined coefficients show no evidence of a depen-
dence on v.

Crossover regions in the shallow quenches of sets
2 —5 are sufficiently sharp to allow the early time
data to be fitted. For the 10 quenches examined,
the average slope is 0.31, with an average deviation
of 0.03. The location of the crossover can be fixed

by equating the functions obtained from fitting the
early and late-time behavior. This procedure gives

q =0.5 with an average deviation of 0.01.
In sets 8, 9, and 10, we find the w

' behavior
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FIG. 4. Quenches in set 7. Note change in abscissa.
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FIG. 6. Quenches in set 10.
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without crossover that was observed in the off-

critical quenches in I. The coarsening rate in these

quenches can be compared with that predicted by

Eqs. (3), (6), and (7). Values of a', the exponents,

and A, the coef6cients of r, obtained by fitting the
data, are presented in Table II.

For the shallowest quenches (U &0.02), A lies

close to the Lifshitz-Slyozov value, 0.053. The
coef6cients for the deeper quenches show a depen-

dence on volume fraction and with one exception
lie within a factor of 2 of 12v, the value consistent
with Eq. (3). In the range of q values measured in

these quenches, the average value of the coefficient
'of r in Eq. (6) is 13U and a log&yg~ log&—or plot of
the equation is very nelly linear and has an aver-

age slope of —0.31. Clearly, then, we are not able
to distinguish the simple coalescence behavior from
that involving hydrodynamic interaction. The
coefBcients obtained by fitting the early time 'p

portions of those quenches with crossovers are sys-

tematically smaller than 12v. They are better
represented as constant (0.6+0.2) than as a func-

tion of v.

IV. CONCLUSIONS

Siggia's hydrodynamic analyses provide an ap-
pealing physical picture of droplet growth mechan-
isms and the crossovers between them. For the

growth, the agreement between experiment
and theory is semiquantitative: The predicted
volume-fraction dependence of the prefactors, mag-
nitudes of the prefactors, and location of the cross-
over to Lifshitz-Slyozov growth are all consistent
with the experiments.

The description of the t growth is qualitative-

ly correct but a prefactor two orders of magnitude
smaller than Siggia's estimate is needed to account
for both the observed growth rate and the cross-
over from t ' to t ' growth. Chou and Gold-

burg, who, with a microscope, studied the late
stages of droplet growth in a phase-separating
fluid, found that the ratio of the average droplet di-
ameter l(t) to k (t) ranged from 5 to 10. If we

TABLE II. Exponents and coefficients of r for sets 8,
9, and 10.

Set LET) /mK a'

1.5
2.9
5.8

—0.40
—0.36
—0.33

0.055
0.98
0.76

3
24
13

1.5
2.9
5.8

11.6

—0.36
—0.40
—0.30
—0.28

0.041
0.016
0.67
0.10

4
8

17
1.4

10 1.5
2.9
5.8

11.6

—0.36
—0.36
—0.34
—0.32

0.052
0.052
0.22
0.85

5

3
7

14
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assume that this relation holds throughout the
growth process arid we substitute 10 k ' for a in

the expressions for the concentrated mixtures, we

can reduce the discrepancy by an order of magni-
tude. At the same time, however, the use of 10
k ' in the other equations destroys the concor-
dance found for the dilute mixtures. It is also ob-

served that l decreases more rapidly than k~ ' and
with a time dependence that can be greater than
t '. Thus, k ' appears to be a generally better
measure of the characteristic size than l.

The t ' behavior appears to be restricted to
v &0.10. Of the three quenches that are exceptions
to this limit, one certainly lies at v =0.10 within

the experimental error. The other two, for which
v=0.06, differ significantly from v=0.10, however,
and their behavior is inconsistent with that of other
quenches with similar volume fractions. Further
study of this crossover region is needed.

'Present address: Chevron Oil Field Research Co., La
Habra, California 90631.
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