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Spin polarization of electrons in two-photon resonant three-photon ionization
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%e present a theory of spin polarization of electrons ejected from atoms by two-photon resonant three-photon

ionization. Our treatment includes saturation effects and pays proper attention to the finite rise time of the laser

pulse and the non-Lorentzian wings of the laser spectrum. Numerical results for the cesium atoms indicate that due

to saturation efFects the spin polarization is generally less than its value predicted by perturbation theory. The
diferent saturation behavior of the ionization channels causes a saturation dip to develop in the degree of spin

polarization.

I. INTRODUCTION

A number of theoretical as well as experimental
studies on multiphoton processes have investigated
special effects such as angular distributions of
ejected photoelectrons, their spin polarization,
the i.nfluence of photon correlations, etc.' " Such
experiments have become feasible in recent years
owing to the availability of high power tunable
lasers. Each of these experiments yields specific
information about the atomic system, properties
of the radiation field or both. For example, while
photon correlation effects give information about
the state of the exciting light, photoelectron an-
gular distributions or spin polarization measure-
ments —and combinations thereof —provide values
for bound-free matrix elements and relative phase
shifts for atomic systems. The spin polarization
of an ejected photoelectron is related directly to
the degree of spin-orbit coupling. The presence
of such coupling causes spin mixing during the
multiphoton process thus producing electrons with

partial or even total polarization'0 depending on
the specific circumstances. Theoretical predic-
tions for this effect have been based either on
lowest-order perturbation theory" ' or on a more
elaborate formalism based on the density matrix
formalism and taking into account the hyperfine
structure. The latter is particularly important
when there is a resonance with an intermediate
atomic state. This formalism has been successful
in the interpretation of related experiments.

The motivation for the present work arises from
the need to explore the modifications brought about
by the intensity of the light. Although previous
theories provide an adequate description of the
phenomenon in the limit of weak fields, a thorough
description that is applicable for a range of inten-
sities from weak to strong is not available. Re-
cent work on related problems in resonant multi-
photon processes has shown that significant mod-
ifications can be expected as the light intensity

becomes large. ~~" It is also known by now that a
related question often arising in connection with
large intensities in resonant multiphoton process-
es is the effect of the laser bandwidth; and a
proper description of resonance phenomena re-
quires the appropriate treatment of this effect. If
not for other reasons, only because it is not a
priori evident which combination of intensity and
bandwidth is most appropriate for a given specific
purpose, and usually, small bandwidth implies a
sacrifice of intensity.

Special attention must also be paid to the laser
line shape; for Lorentzian line shapes the inco-
herent population of the atomic states by absorp-
tion of photons from the wings of the spectrum
may dominate the ionization probability. Qn the
other hand, such contributions become negligibl. e
for line shapes falling off faster than Lorentzian
intheir wings. "" Since laser line shapes do in-
deed fall off much faster than Lorentzian in their
tails, a Lorentzian line-shape model is inadequate to
describe the ionization probability and spin polar-
ization in the presence of several interfering reso-
nances. Closely related to the problems in context
with the laser line shape are the spurious effects
arising from the sudden (stepwise} turning on of
the laser pulse assumed in theoretical calcula-
tions. 0 A laser pulse turned on instanteously has
initially a very broad bandwidth which in turn pop-
ulates the atomic states irrespective of their de-
tuning. Such a population of the states can domi-
nate the ionization probability in a way similar to
the effects arising due to the Lorentzian laser
spectrum. These effects can be eliminated by
taking into account the finite turning on time of
the pulse.

The work presented in this paper incorporates
these effects into the calculation of spin polariza-
tion in a specific resonant multiphoton process
that we have chosen as an example; namely,
three-photon ionization of cesium via a two-photon
resonance with the 9D state. This is a transition
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that can be reached easily with present-day tun-
able lasers. Since the fi'ne-structure states-
9D3/2 and 9D5/2 are separated by about 7 cm ',
this problem also allows us to explore the effect
of two neighboring resonant states on the satura-
tion behavior of such processes. A process in
which spin-polarized electrons are produced can
always be assessed as a potential source of po-
larized electrons. Its merits depend on how large,
predictable, and insensitive to the changes in ex-
perimental parameters the spin polarization is.
Sources of spin polarized electrons, however,
exist in large variety and it is not our intention to
elaborate on such questions here. It is rather the
fundamental aspects of the interaction that are at
the focus of this work, especially since these pro-
cesses can be employed in the determination2i of
atomic parameters. In Sec. II, we present a brief
description of the theory and the numerical results
are presented and discussed in Sec. III.

II. THEORY

In this section we shall discuss the theory of
three-photon ionization with intermediate two-
photon resonances. Attention will be focused on
alkali atoms where the ground state is an S state.
The higher angular-momentum states (l e 0) are
split due to the spin-orbit coupling. Specifically
we shall consider the 9D»2, 9D5/& doublet as a
pair of two-photon resonant intermediate states.
A schematic level diagram is shown in Fig. 1 for
cesium.

Because of the spherically symmetric ground
state, linearly polarized light will eject unpolar-
ized electrons after ionization. However, in the
presence of circularly polarized light, the strong
spin-orbit coupling will cause the electron to be

Eg(t}= v't/r E, , 0(t«
Eo, t)&

(2)

with & the (finite) rise time of the pulse. Q(t) is
the phase of the field which is assumed to fluctu-
ate according to the phase diffusion model
(PDM)."'" These fluctuations are described by
the Langevin equation

(3a)

where F(t) is a Gaussian stochastic force with
first-order correlation function

( (F)f(F'f)}= pbe'~' ' . (3b)

From Eq. (3b} the parameter l/P is identified with
the coherence (fluctuation) time of dp/dt, while
from the correlation function

(e' "'e ' "')=exp —b(r+
with

the spectrum is found to be a Lorentzian with
FWHM 2b having a cutoff at frequencies P(»b)
Note that in the limit P - ~, where Q(f) has a zero
correlation time, the spectrum becomes a pure
Lorentzian.

Within the dipole and rotating wave approxima-
tion the slowly varying density matrix elements
for the system shown in Fig. 1 (averaged over the
phase fluctuations) obey the following equations.

ejected with a definite nonzero spin polarization
(SP). For this reason we shall assume light to be
right circularly polarized and write the electric
field vector as

R(t) =E,(f}ee '"'e ' "'+c.c. , (l)
where q (t) = —(2/~2(q, +~,) represents the po-
larization vector, Q, Q2 are unit vectors ortho-
gonal to the direction of propagation, and & cor-
responds to the center frequency of the field. E~(t)
is the slowly varying amplitude of the field. To
study the effects of a sudden and quasiadiabatic
turning on of the pulse, we choose, following
Theodosiou et al. ,"

nP~i

nP~

ss,, io) ls)

mj —1/p 1/Z

Channel 1 Channel 2
5/2 7/q

1 1

dt
—

poo ——p't (Qpg pgp —c.c.) —
g z(Q02 p20 —C.C.), (5a)

dt pl| F|p|| g f(Qoi plo —C.C.) + g f(Q~ p~ —c.c.),

(Sb)

FIG. 1. Schematic level diagram for three-photon
ionization in cesium via the 9D3/2 5/2 states. Only the
relevant m& levels are shown for clarity. nP f/2 3/2 de-
note the off-resonant intermediate P states.

d 1 1

dt
—

pzz = —I'2 p22+ z f(Q@p» —c.c.}—2 f(Qz p~ —c.c.},

(5c)
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l
s +((w„+s„)+-.(r, +r, ))p„

1 ~ l l
2 RQlop02 2 1QOR plo+ 21(Q12 Pll Q1R pRR) s

(Sd)

dt
—pm=-Ri(Qwp~-c c }

d
dt
—

P44 = —I'0 Poo+ Ri (Qss Pos —C.C.),

(5e)

—,'n, ,=-,'a„.= """".s', ~,
Jo+

with g = 1,2 and an analogous expression for 04s
denote the two-photon transition Rabi frequencies.
}1,& =(ilr tlj) are the atomic dipole matrix ele-
ments. The field-induced shift width functions
for the various levels are given by

2 RQ10(Pll POO) 2 RQ12 P20 RRQRO Pls ) (Sg)

IrI2——~&2+.-I'2+4~ ~dt 42+ P

—2 RQRO(PRR Poo} —RRQ21Plo+ RRQlo Psl s (Sh)

(
I4 psn4+ +4f) 2 2 I pos —2RQOR(poo —Pss) ~

dt 2 44+p ]
In writing these equations we have eliminated

the intermediate off-resonant states as well as
the continuum. Details of this procedure are de-
scribed in Ref. 22. In E(I. (5}, (d;, = (d,. —01, are
the differences between the atomic energies;

Pl = 1 —Poo Pu P22 (9a)

atomic coherence due to the phase fluctuations.
The factor of 45 in these damping constants arises
from the relaxation constant of the second-order
field correlation function. The detuning dependent
cut-off factor stems from the non-Lorentzian
nature of the laser line shape. For detunings
smaller than the cutoff p of the frequency spec-
trum, these damping terms reduce to 45 in
agreement with the result quoted for the PDM
with Lorentzian spectrum. For detunings larger
than p, the bandwidth dependent damping con-
stants drop out of Eqs. (5g) through (5i). Thus
a laser with a spectrum falling off faster than a
Lorentzian appears monochromatic to the atom
for large detunings. The description of the effect
of phase fluctuations in terms of these detuning
dependent damping constants is restricted to the
parameter regime where the Rabi frequencies Q,.~
and the shifts $,.&

are smaller than the cutoff
parameter of the speetr'urn P. A more accurate
treatment of phase fluctuations, valid for Q,.~ » p
has been given in Ref. 19 in connection with the
double optical resonance. Such a detailed calcula-
tion, however, does not seem necessary at this
stage.

In Eq. (5) we have neglected spontaneous emis-
sion from the excited resonant states. This is
possible if the ionization widths are larger than
the spontaneous decay constants. Within this ap-
proximation, channels 1 and 2 become decoupled.

The ionization probabilities (IP) in channels 1

and 2 are given by

m I pl;&.«}l' v ~ I Ps&&0«) I'

- + (gP&& + t6 q (d&&+ M+'4~

i=0, 1,2, 2, 4 (7)
r

with S„=S,-S„while

Pss P44

while the total IP is given by

I'=-2'(I', +I 2) .

(9b)

(9c)
I

1 Q —1 Q 1(Qi iQn ) P(l i p (2
l E (i)ls

(dig —4) + g»

+
'

I lapa2 E t 2

QPlg +(d +$6

represents Raman-type interferences between the
two resonant states of channel 1.'s 24 The de-
tunings ~~ are defined as 4& =2 ~go Syop g lp 2

and &4 = 2~ ~4s $4s.
In writing E(I. (5) the averaging over the phase

fluctuations has been performed using a procedure
described in detail in Refs. 18 and 19. This in-
troduces additional damping constants in Eqs.
(Sg)-(Si) for the off-diagonal matrix elements

p„, p», and p4, descxibing the destruction of the

—&f = I'f Pll + I'2 PRR + 2Qis' Itepls ~

dt
(10}

The first two terms in (10}describe the ioniza-
tion loss from states l1) and l2) while the third
term is an interference contribution. The SP of

For the calculation of SP, the IP for the ejected
electron with its spin up (m, =-,') or down

(m, = ——', ) needs to be calculated. I.et Js; denote
the spin up (down) IP's from channel i = 1,2. Ang-
ular-momentum selection rules then suggest that

P2 ——P2, P2 ——0.

Decomposing I'&, I'2, A&z into their spin up
(I'1, I'2, Q,'1") and spindown(I', , I"„Ql'2 ) components,
P& with P& ——P&+P& obey
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the electrons can then be expressed as

PI +PI —(PI +P2 } x+y
P,'+Z,'+Z, +S; &+y '

where x =(PI -PI)/PI and y =PI/PI. The parame-
ter x is the SP in channel 1 while y denotes the
ratio of the total ionization probabibties in chan-
nels 2 and l. Equation (ll) is in a form which
is useful for discussion of the behavior of the SP.

The SP of the ejected electrons can now be
found by solving the density matrix equations (5),
assuming the electrons to be equally distributed
in the two ground levels

~
0& and

~
3& at t =0

[ppI(f 0) 1 =p»(t = 0)]. The time integral of
the ionization rates P& together with Pz ——Pz then
yields the SP via formula (11).

III. NUMERICAL CALCULATIONS AND RESULTS

In this section we shall discuss the behavior of
the SP and IP as a function of the intensity, band-
width, the detuning from resonances, etc. Owing
to the complexity of analytical solutions of Eq. (5)
for the IP, we will restrict ourselves to numeri-
cal calculations. The three-photon ionization
process under consideration is the 6$,&,--9D», »,- continuum process in cesium. For
right circularly polarized light, various atomic
parameters, expressed in radians/sec are,

0„=9„=59.785I, 0„=9„=35.055I,
r, = 9.690I, r, = V.611I,
$O = 201.364I, S~ = 101.572I,
$, = 95.607I, g„=g„=24.204I-z1.384I,

r; =1.384I, r-, = 8.305I,

r; = 5.536I, I'-, = 2.076I,

a,",'=-2.768I, g,", =4.152I,

n„=n„=V8.411I, r, =10.3VVI,

$, =231.536I, $,=117.66VI,

where I denotes the average intensity in W/cm'.
The calculations have been carxied out in the

fine-structure scheme. The largest hyperfine
splitting of the 9D states is about 12 MHz. " For
the on-resonance (either with 9D», or the 9D,~,
state) excitation, the fine-structure scheme is
justified as long as the ionization width is larger
than 12 MHz or the laser duration is shorter than
-80 ns. Note that the spontaneous life times of
the 9D», », states are 226 and 120 ns, respec-
tively, and therefore longer than 80 ns. Since
all, of our calculations have been performed for
laser durations of 5 ns, the fine-structure scheme
is perfectly valid. Even if the laser duration were
long the calculations would still be valid because,

at the intensities we have used, the ionization
widths will be l.arger than 12 MHz.

As g, =0, electrons ionized in channel 2 wQl all
be polarized in the spin up (m, =-,'}direction. On
the other hand, the $p in channel 1, denoted by
x, depends on the photon frequency. For example,
for photon frequencies close to the D», reso-
nance, x&0 because I", &I', , while if 2wco is tuned
to the D», resonance, x&0 because I",&I', .
Moreover, x- —1 when photon frequency is very
far off resonance from both the D», », levels.
In this case y -1 and $p= 0 as the atomic fine
structure is not resolved. At the D», resonance,
p2 ~~ Qy and y - 0 which impl, ies SP =x & 0. On the
other hand, at the D,&, resonance, x&0 and hence
SP & 0. Thus as one tunes 2k(d from the D», to
D,» resonance, the $& exhibits a dispersioalike
behavior. This dispersionlike behavior is greatly
affected by saturation as both x and y are sensitive
to these effects. %e shall now proceed to discuss
the behavior of the $p under saturating conditions
in some detail.

In Fig. 2 we have plotted $g as a function of the
photon frequency (detuning} for a monochromatic
laser field of intensity I= 10' W/cm' and duration
7 = 5 ns. Solid and broken curves correspond to
the rise time of the pulse (r} being 0.106 ns and
1.06 ps, respectively. The dotted line represents
the perturbative results of Teague and I.ambro-
poulos, "which coincides with the solid line in the
vicinity of the D», and D», resonances indicating
excellent agreement between the pxesent cal-
culations and the perturbative results. Small
deviations between the two results seen at larg-
er detunings can be attributed to the fact that
the effect of the background D states on the $p
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FIG. 2. Plot of SP for three-photon ionization in
cesium. Solid and dashed lines are results of present
calculation for v'= 0.106 ns and v'=1.06 ps, respectively.
Other parameters mere I= 10~ W/cm2, 5 = 0, and T = 5 ns.
Dotted curve is the data taken from Ref. 12.
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has been neglected in the present calculations
while it was retained in the calculation of Ref. 12.
Notice that at the position of the interference min-
imum between the D,~, and the D, &, state SP
reaches the value unity. This is due to the fact
that Py «p2 in this region which implies y =P,/P,
»1 and therefore SP=1.

The SP is seen to be quite sensitive to the turn-
on time of the pulse. For a pulse turned on sharp-
ly the off resonant SP is found to be smaller (in
magnitude) than its value for an adiabatically
turned on pulse. Theodosiou et al. ' have pointed
out similar behavior for the probability of multi-
photon ionization. The reduction of the magnitude
of the SP can be explained as follows. A sudden
switching on of the pulse gives rise to a large
Fourier bandwidth to the field which causes in-
coherent excitation of the D states of the atom.
It is the contribution to the SP from the subse-
quent ionization of these incoherent excitations that
causes a reduction of the SP. Near the D,» reso-
nance, it is the incoherent pumping of the D,»
state that causes the reduction of SP while similar
contributions due to the D», state reduce the mag-
nitude of the SP near the D,» state. Such effects
are not observable at exact resonances as the
resonant contributions are orders of magnitude
larger than the off-resonant, incoherent contribu-
tions. This is evident in Figs. 3(a) and 3(b) where
we have plotted, respectively, the IP and SP as
a function of photon frequency. In both figures,
the solid and the dashed curves correspond to
turning-on time of the pulse 7 = 0.106 ns and T
= 1.06 ps, respectively. Other parameters used
in these calculations were I= 10' W/cm' and T =5
ns and the field is assumed monochromatic (b =0).
Increasing v from 1.06 ps (d, v «1) to about 0.1
ns (aT»1) decreases the IP at the minimum. This
is explained by the reduction of the transient ef-
fects arising because of the sudden switching on
of the pulse. The effect of these transients on
the SP is exhibited in Fig. 3(b).

Thus far we have considered fields of moderate
intensities (I~ 10' W/cm'). The ionization prob-
ability has not yet saturated and the SP therefore
behaves as predicted by perturbation theory. With
increasing intensities, however, saturation begins
to set in as P, and P, tend to unity. Significant
deviations from perturbative results occur and
the SP exhibits a variety of new features arising
solely from the saturation as we shall see next.

Figure 4 describes the SP as a function of the
detuning for various values of the intensity. Once
again the field is assumed to be monochromatic
(b = 0) and T and T are fixed at 5 and 0.106 ns, re-
spectively. Curves (a), (b), and (c) correspond
to I=10', 10, and 10' W/cm'. Before discussing
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FIG. 3. Plot of the ionization probability (a) and the
corresponding spin polarization (b). In both figures

:T= 1.06X10" s, and - - ———:v= 1.06
&&10 s. Other parameters were I=107 W/cm, T = 5
ns, and 5 = 0 (monochromatic).

various effects in this figure let us note that SP
is insensitive to saturation effects if only one
intermediate state exists as can be seen from Eq.
(10). Thus all the saturation and bandwidth effects
discussed in this paper arise from the presence
of other intermediate states contributing to the
ionization process. Recall from Eq. (11) that x
denotes the SP from channel 1 while y denotes the
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FIG. 4. SP as a function of photon frequency for
monochromatic excitation (5 = 0). Curves (a), (b), and

{c)correspond to I=10, 10, and 10 W/cm, respec-
tively. Other parameters used in these calculations
were 7 =0.106 ns, T=5 ns.

ratio of IP's in the two channels which is a mea-
sure of relative saturation between the two chan-
nels. Saturation effects in channel 1 manifest
themselves through the variation of x.

Let us for the moment focus our attention on
the SP near the D,&, resonance. For I=10' and
10' W/cm', p, «p„which implies y «1 and hence
SP =x = -0.V independent of the intensity. At 10'
W/cm', p, and p, begin to saturate and we find
that y = 5.3 x 10 ' while x = —0.64. Thus the SP is
raised at the D,&, resonance. Further increases
in intensity cause y to tend to unity while x in-
creases as well and the SP= (1+x)/2 becomes
positive. The increase in x at the D,~, resonance
can be attributed to the increasing ionization via
the D», state. Thus we see that the presence of
a nearby off-resonant state greatly affects the SP
under strong saturation conditions.

Even more spectacular behavior in the SP ia seen
at the D», resonance. For I=10' W/cm', SP
agrees well with the perturbative results of Teague
and Lambropoulos. " With increasing intensity,
SP develops a dip at the D,~, resonance which
deepens and widens with further intensity in-.

creases. This behavior can be explained as fol-
lows. First of all note that channel 1 has two in-
terfering intermediate states while no such inter-

ference exists in channel 2. Thus p, » p, near
the interference minimum. This corresponds to
y~&1 and hence SP=1 at this frequency. As the
intensity is increased, both P, and P, increase.
Whether y will increase or decrease depends on
the relative saturation of the IP in the two chan-
nels. For low intensities (less than 10' W/cm')

P, and p, are not saturated and hence increase
at the same rate thereby keeping their ratio fixed.
Thus SP also remains unchanged. At higher pow-
ers P, saturates faster than P, and thus increases
at a slower rate compared to py This reduces
y and the SP reflects this reduction through the
minimum. At I= 10' W/cm', the SP in channel 1
decreases due to increasing ionization via the

D», state as the Ip through the resonant D, »
state saturates. This causes a further deepening
of the saturation dip as seen in curve (c). Under
total ionization conditions, y = 1 and hence SP
=(1+x)/2 is positive everywhere. We have ob-
tained such behavior at 10"W/cm'.

Next we examine the effect of finite bandwidth
fields (b x 0) on the SP. In Fig. 5 we have plotted
SP as a function of the photon frequency for var-
ious values of the bandwidth. The line shape is
assumed Lorentzian (p-~) and the intensity,
pulse duration and its rise time are fixed at 10'
W/cm', 5 and 0.106 ns, respectively. Curves
(a)-(d) correspond to b = 0, 0.001, 0.01, and 0.1
cm '. With increasing values of the bandwidth,
the SP near the D,&, resonance increases (be-
comes less negative). Incoherent contributions
to Py and P2 due to resonant absorption of photons
from the wings of the laser explain this effect.
Such contributions are more significant in P,
than in P, because in P„ the resonant ionization
via the D,&, state masks any changes in the effect
of the D», level while no such overshadowing
exists in P,. Hence y increases with increasing
bandwidth thereby increasing the Sp. Exactly an
opposite effect occurs near the D», resonance
where the incoherent contributions due to the off-
resonant D», state increase p, and hence reduce
y. Thus SP decreases in the region between the
D,g, and D», level.

The on resonance SP at the D, &, level exhibits
interesting behavior as a function of the band-
width. With increasing values of b, the SP first
decreases, then it begins increasing again and

finally becomes flat with further increases in the
bandwidth. The optimum value of 5 lies in the
region where b is of the order of magnitude of the
Rabi frequency. A further increase of b beyond
this value causes a destruction of the coherence in
the bound-bound transition. This reduces the IP,
the saturation and hence SP increases reflecting
an increase in y. For b»Q ionization proceeds
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FIG. 5. SP for excitation by nonmonochromatic fields
(5 & 0). Laser line shape is assumed to be Lorentzian.
Curves (a)-(d) correspond to b =0, 0.001, 0.01, 0.1
cm ', respectively, while I=10 W/cm, T=5 ns, and T

= 0.106 ns for all the curves. The inset shows in detail
the SP at the D5&2 resonance.

FIG. 6. Effect of the non-. Lorentzian line shape on the
spin polarization. These curves are plotted for b = 0.1
cm, T=5 ns, 7 =1.06X10 s, and I=10~ W/cm
Curves (a) through (d) correspond to P=1000, 10, 1, and
0.1 cm ~, respectively.

via simple rate equations which yields a flat reso-
nance shape for the SP. We have seen such be-
havior for bandwidths beyond a few wave numbers.

The above calculations have been performed
assuming a Lorentzian laser line shape. Real-
istically, the line shape may be Lorentzian up to
a few laser bandwidths around the center but falls
off much faster in their wings. Therefore inco-
herent contributions from the far wings of a Lo-
rentzian will be unphysically high. In a more
realistic calculation, however, such contributions
are negligible. We demonstrate this using the
non-Lorentzian line-shape xnodel described in
Sec. II to calculate the SP. The results are shown
in Fig. 6 where the SP is plotted as a function of
the photon frequency for p =0.1, 1, 10, and 1000
cm '. Recall that the parameter p characterizes
the shape of the laser spectrum; namely, for
finite values of p, the line shape is Lorentzian
with FWHM 2b having a cutoff at p(» b) while in
the limit p -~ the spectrum becomes pure Lo-
rentzian. Decreasing p reduces the incoherent
contributions discussed in connection with Fig. 5
and therefore decreases the off-resonance 5& near

the D», resonance, while increasing the SP near
the D,&, resonance. Exactly on resonance, the
ionization process is insensitive to the line shape
as the line shape looks Lorentzian of FWHM 2b

at the center. Hence SP remains constant at D3/
and D, &, resonances. For smaller p, off-resonant
SP tends towards the monochromatic value while
for p ~ the behavior obtained for a Lorentzian
line-shape field is recovered.

IV. CONCLUSIONS

We have discussed the behavior of the photo-
electron spin polarization in a particular three-
photon ionization process. As far as the specific
process and atom are concerned, the calculation
is realistic and aside from minor detailed adjust-
ments it could be compared with experimental re-
sults if they became available. Many of the re-
sults, however, are of much more general signif-
icance and are expected to be qualitatively valid
in other processes as well. The SP has been
found to be lower than predicted by perturbation-



SPIN POLARIZATION OF ELECTRONS IN TWO-PHOTON. . . 325

theory results reported earlier. Moreoever, the
SP at the intermediate Dsim resonance has been
shown to develop a dip due to the difference in the
degree of saturation of the IP in the two channels.
Thus saturation is seen to have a significant influ-
ence on the SP. But in resonant processes one
must also be concerned with the effect of the laser
bandwidth and line shape. Our analysis has shown
the importance of that effect. As in previous work
concerned with the effect of line shape under sat-
uration conditions, we have found that a Lorentz-
ian line shape can introduce unphysical effects
due to its high wings. Through explicit calcula-
tions with non-Lorentzian line shapes, we have
shown how such unphysical effects are eliminated.

The type of calculations and effects presented in
this paper are relevant not only to questions of
SP but also to other resonant multiphoton process-
es such as those involved in recent experiments2~
aimed at the determination of atomic parameters.
It is our feeling that further calculations along
similar l.ines will be necessary as the interplay
between theory and experiment leads to questions
of finer detail in such measurements.
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