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Free-electron lasers, except for those using helical wigglers, are predicted in most cases

to generate higher harmonics of the fundamental optical frequency. The basic equations

describing this process are derived and applied in particular to the linearly polarized

wiggler.

INTRODUCTION

The possibility of using nonlinear optical
processes to generate coherent optical harmonics of
the fundamental frequency in the free-electron laser
(FEL) has been discussed by us at a number of
conferences, ' but has not been previously published
in detail. Several other workers have also
described mechanisms of harmonic generation in

the FEL. A number of FEL devices and undu-

lator experiments now being constructed use

linearly polarized wigglers. These devices are ex-

pected to produce significant amounts of radiation
at higher harmonics. The present paper provides
the theoretical framework for understanding such
harmonic generation. Numerical solutions of the
basic equations derived here will be published else-

where.

I. DERIVATION OF THE BASIC EQUATIONS

The analysis presented in this paper is based on

the use of multiple-scaling perturbation theory and

is very similar to that which we used previously to
treat the helical wiggler. The starting point of the
analysis is the Maxwell-Boltzmann description of
an FEL with an arbitrary magnet geometry, as

presented in Sec. II of Ref. 6. We then specialize
to the case of a quasiperiodic wiggler, introducing
separate "fast" and "slow" variables to describe
periodic oscillations and slow modulation (if any)
of the complex wiggler amplitude. Similarly, we
introduce fast and slow variables to describe the
temporal behavior of the light and electron distri-

butions on the scale of optical oscillations and on
the scale of picosecond pulse envelopes. We next
use multiple-scaling perturbation theory to obtain
the slowly varying Maxwell and Boltzmann equa-
tions. Finally, these equations are transformed to
the equivalent coupled Maxwell and single-particle
equations, which are more amenable to numerical

analysis.
We assume that the electrons have a narrow ul-

trarelativistic distribution of energies centered at
mc yo and introduce a detuning parameter p, , de-

fined by

) =re(I+rap«, ),

A,ttttIc(z) =2 ' e A&(z)+ c.c.,

E~, ,(z, t)=2 '~ e E,(z, t)+c.c.

Also define the mass shift 5, which is generally a
function of position, according to

4(z)=l+e ~Ae ~
lm c . (2)

We choose as independent variables the coordi-
nates

(3)

(4)

where r is the retarded time and g is a generalized

to describe deviations of electron energy from the
central value. The constant k, is to be defined

later. Let Az and E, be the on-axis complex com-

ponents of the wiggler vector potential and the
laser electric field with respect to circular polariza-
tion basic vectors
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(5)

Bh 1 1 ~ Bh ~q Bh

(6)

Here h (g, r, IJ, ) is the Boltzmann distribution func-
tion, and D =e2Fy&&/2epk, and a =e2k, /2m iciyp
are constants defined in Ref. 6. Equations (5) and

(6) are the same as Eqs. (21) and (17) of Ref. 6. F
is the filling factor (ratio of electron to optical
beam areas}, which for the time being we assume

to be constant. Note that the wiggler field appears
only through the ratio Aq/h. At this stage Aq is

completely arbitrary.
Since the field E, oscillates at optical frequen-

cies, Eqs. (5) and (6) are not readily solvable as

they stand. Moreover, one must introduce a
periodic structure to the wiggler in order to deter-

mine the frequency of operation of the laser and
concentrate the gain at this frequency. To this end

we define a quasiperiodic wiggler according to

Aq/E=Aq( f,P),

P=k, g/2yp.

(7)

(g)

The complex function Aq(g, P) is assumed to be

position coordinate. The coordinate g is a useful
means for taking into account variable mass shift.
Although the wiggler in the absence of laser radia-
tion cannot change electron energy (if one neglects
incoherent emission}, more or less of the electron

energy gets transferred to transverse motion as 6
becomes larger or smaller. The z component of
electron velocity gets correspondingly smaller or
larger. However, in terms of the (g,r} coordinates
the electron motion appears uniform, aside from ef-

fects induced by the lasing process itself.
If one neglects diffraction, the Maxwell-Boltz-

mann equations take the form

BE, Aq=D f1' h,

Q =60~1 =r le,

and the phase of the bunching potential

8=13 P (g r)—le, — —

where

(10)

e=2y()lk, L'= 1/(2nN)

serves as the small expansion parameter for the
theory and N is the number of periods in the
wiggler. We regard Ez Aq and h as depending in-
dependently on the fast and slow variables. Using
Eqs. (10) and (11) and the chain rule, we thus
make the replacements

B . B 1B
e a8

B B 1B 1B+'ar ar e ay e a8

Equations (5) and (6) now take the form

(14)

slowly varying in g and to be periodic in P with

period 2p. and zero mean. Thus, P is an angle
describing the phase of the wiggler. Equations (7)
and (8} also define k, . An FEL with such a
wiggler will produce radiation at frequency

co, =ck, and, in general, at multiples of co, .
Implementation of the multiple-scaling perturba-

tion technique depends on identifying fast and slow
scaled variables aypropriate to the problem. We
use the same slow variables as in Ref. 6, scaling
the coordinates with respect to the effective magnet
length

L
L'= I h(z)dz

0

to get

g=(IL', P=L'p, r=2cyprIL'.

The time unit L'/2cyp is typically on the order of
picoseconds and is therefore an appropriate one for
describing short-pulse propagation. As fast vari-
ables we choose the optical phase

BS, 1 BS,
e a8 DAq(g 8+$)J dP h(g r P 8 P) (15)

B~ B~ 1 BS ,Ba Ba BS

ar e ay
" ' a- +

ay a8
=zL' [E,(g, r, 8,$)Aq(g, 8+/)+c c]'..

Bp
(16)

Following the same procedure as in Ref. 6, we assume perturbation expansions

E E(0)+~E(i)+. . . (17)

(18)
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We introduce these expansions into Eqs. (15) and (16) and solve order by order. However, if E is sufficiently

small, we are really only interested in E' ' and h' '. The equations of order 1/e are the leading terms.

These are

BE("/ae=o,

ah '"/ay =o.

(19)

(2o)

These equations say that the laser field does not have rapid oscillations if evaluated on a trajectory moving

at the speed of light (/=const), and that the electron distribution does not have rapid oscillations if evaluat-

ed on a trajectory moving at the speed of the bunching potential (0=const).
The equations of order e are

BE(0) BE(i )

+ =DAq((, 8+/) fdP h' '(g, r,P, 8),

ah"' ah'" ah(" ah"' Bh'"
+ + +P =«L' [E' '((,7,$)Aq((, 8+/)+c. c.]

aq. a4 a8
' ' ' '

ap

If we regard Eq. (21) as being of the form

BE(&)ae='

(21)

(22)

(23)

where /represents the driving term which is a specified function of 0, it is clear that the average of the

driving term over 8 must be zero in order to prevent secular growth in E'". A similar argument applies to

Eq. (22), except that the angle to be averaged over in that case is P. Imposing the condition of no secular

growth yields the desired slowly varying Maxwell and Boltzmann equations:

BE, =D f d8Aq($, 8+$)fdph(g, r, p, ,8),

Bh 1 Bh Bh 1 Bh

ag 2 ~ ar a8
=

2m
+ +p =" f dg[E, (g, r, g)Aq((, 8+/)+c c]..

Bp

(24)

(25)

Here we have dropped the superscripts for simplicity and restored the units of the independent variables. In

the analysis below we again omit the factors of I/(2ypc).
Equations (24) and (25) can be written in a somewhat more illuminating form by introducing Fourier

series expansions of the laser and wiggler fields:

E,(g, r, g) = $E„(g,r)e
n~

Aq(g, P)= QA„(g)e
n~

The Maxwell equation separates into a set of equations for the various harmonic amplitudes:

BEn
=DAn(g) f d8e '" f du h(g, r,p, 8).

(26)

(27)

(28)

The Boltzmann equation becomes

+ +p =«g [E„(g,r)A„'(g)e'" +c.c.]
n~ Bp

(29)

We see that the ponderomotive force, while periodic, is, in general, not simply sinusoidal but has higher har-

monic content. An exception is the helical wiggler, for which only the n =1 term contributes. We see from

Eq. (28) that, if A„+0, radiation at frequency neo, will be generated even if not initially present. All that is

required is that the electron bunching have higher harmonic content, which is invariably the case if the FEL
is saturated. On the other hand, if all radiation is in the small-signal regime, it is easy to show that the

various harmonics become decoupled and evolve independently.
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Equations (28) and (29) can be reformulated in terms of single-particle coordinates 8(g', ro, p0, 80) and

P(g, ro,p0, 80) in the same way as in Ref. 6. Here ro r——g—is retarded time at the speed of the electrons and

po, 80 are the initial energy detunings and phase angles at /=0. The single-particle equations corresponding
to the Boltzmann equation (29) are

d8(f*&o Vo 8o)

dg
=P(kroi 08o» (30)

dP(k&ro&po&80) e= —s g I E„(g,ro+g)A„(g)exp[in 8(g, ro,p0, 80)]+c.c.).
dg

(3l)

Using these equations, it is easily shown that Eq (29. } has the formal solution
2e'

i (g,r,i,8)=fdy. f,, de(o, r„i.,8,)f(i P(g,—'T,p, ,8 )N(8 8(g, r—„i,8 }),

which is the same as Eq. (44) of Ref. 6. Inserting this equation into the right-hand side of Eq. (28) and car-
rying out the integrations over p and 8, we obtain

BE„(g,r} 21K

=Dg„(g)fdp, d8sii(o, r„p„80)exp[—in 8(g, ro,p0, 80)].
2m'

If we assume that the electrons entering the wiggler «re unbunched, then h (O, ro,po, 80) is independent of 80
and is proportional to the current W(vo, po) per unit po entering the wiggler:

D h( 0&rop&,08)O=(& /~&~ )J (&o,po) ~

Here a =e/2mcyo and
~
o

~
/roc is the optical mode area. We can take into account the fact that the mode

area may be different for the different harmonics by including an index n on 0.„. Moreover, by regarding 0„
as a complex function of g, we can account approximately for difFractive beam spreading and phase shi8t.
The power in the nth harmonic with a given circular polarization is

~
o'„E„(,whereas

)
0 „E „( gives

the power at the same frequency, but with opposite circular polarization. %lith these generalizations, the
Maxwell equation takes the form

, B[o„E„(g,r)] 2m'

crN =ad„(g)fdp~(r —g,po) d80exp[ in8(g, r—g,p0, 80—)]
8 2m'

(32)

Equations (30}—(32) are the basic equations for the
FEL with a quasiperiodic wiggler. For further dis-
cussion of the method by which we include diffrac-
tion in the Maxwell equation (32), see Appendix A
of Ref. 6. For the case of a strictly periodic
wiggler, where A„ is constant, one can show by an
argument along the lines given there that the ap-
propriate function o.„ for operation in the funda-
mental Gaussian mode is given by

cr„(g)= (s.eoc/2
~
n

~
) '~ wo

X [I+i sgn(n)(2$ —6')/Zwok, ], (33)

where mo is the beam waist at the fundamental fre-
quency and h, is the average of the mass shift over
a magnet period:

A,

Z=As ' f h(z)dz (34)

Equation (33) assumes that the been waist is locat-
ed in the middle of the wiggler. Equation (33}

I

should be a good approximation for low-loss reso-
nators, provided that

~

n
~

'/ its is large com-

pared to the cross-sectional dimension of the elec-
tron beam.

H. LINEARLY POLARIZED %rIGGLER

The linearly polarized wriggler, which is being
used in several FEI. devices under construction,
offers several advantages over the helical wiggler.
In particular, it can be constructed of permanent
magnets. The wiggler geometry can be varied rela-
tively easily by varying the positions of the mag-
nets. There is also considerable freedom in ad)ust-

ing the harmonic content of the wiggler by using
repeated sequences of magnets of different strengths
and shapes. However, even in the case where the
wiggler 6eld does not have higher harmonic con-
tent when viewed as a function of z, such content is
nevertheless efFectively created by the mass shift.
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Such a field (with the magnetic field polarized in

the y direction and the vector potential polarized in

the x direction} is described by the function

The integral (40} is zero for even n, and for odd

n has the value

(A& /21/2+ )( I )("—i )/2

Aq (z)=2 Alcos( klz)& (35) x [J( —i)/2(n5i) —J( +i)/2«5i)] (41)

5i —=—,(1—I/6i ) (36)

can take on values between zero and one half.

Carrying out the integration in Eq. (4), we ob-

tain the generalized position coordinate

g =6i [z+ (5i /ki )sin(2kiz )] (37)

The generalized position coordinate g provides a
mechanism for treating oscillations in the z com-

ponent of electron velocity associated with periodic
transfer of electron energy between longitudinal

and transverse motion in the wiggler. Even though

the amplitude of such oscillations may easily be a
thousand times the laser bandwidth, there is no

broadening in the emitted radiation at the funda-

mental frequency. This is analogous to the un-

broadened radiation from a Mossbauer nucleus un-

dergoing large, but periodic, oscillations in a crys-

tal lattice.
The evaluation of the wiggler harmonic coeffi-

cients A„may be carried out, by inverting Eq. (27):

1
2%

A„= f dPAe(P)e'"~. (38)

where Ai is the constant rms amplitude. From Eq.
(2) we see that the mass shift hi in such a wiggler
is a rapidly varying function of position,

4l =1+(2Al /m c2)cos (klz)

=hi[1+25icos(2kiz)].

Here hl ——1+Al /m c is the average mass shift

and

kl ~~1 kh ~~h (42)

where the subscripts h refer to the helical wiggler.

On the other hand, the effective length L' of the

two wigglers must be the same in order that the

I.O

0.8

0.6-

0.4-

n=5

and is thus, in fact, real. The harmonic coeffi-

cients as functions of 6l are shown in Fig. 1.
Clearly excitation of the harmonics requires an in-

creasingly strong wiggler field as n increases.

Let us now compare the FEL with a linearly po-

larized wiggler with the FEL with a helical

wiggler. If we suppose that the higher harmonics

in the linear FEL are suppressed (for instance, by

making the resonator lossy to the higher harmon-

ics), we can ask what, if any, helical wiggler will

give the same FEL operation as a given linear

wiggler. We require that both FEL's operate with

the same co, and yo, and the same temporal evolu-

tion of electron and optical pulses. Operation at
the same co, requires that

Using Eqs. (4), (7), and (8), this becomes
2s

A„=(2nbi) ' f dgArexp(«kig/hi),

where 1( =knez and we have used the fact that

k, hi/2y~=ki. Inserting Eqs. (35) and (37) into

(39), we obtain

(39)

0.2-

-0.2

IO oo ~g

0.5

-0.4-Ag ——2 Al (2775l )
2%'

X f dfcosfexp[in(f+5isin2$)] (40).
It is evident that A „=A„*,and it is easy to check

that it is consistent with the basic Eqs. (30)—(32)

to assume E „=E„'. This implies that E~, , is po-

larized in the x direction. Note that the total opti-
cal power at frequency neo, is 2

~
cr„E„~

FIG. 1. Harmomc coefficients of the linearly polar-
ized wiggler are shown as a function of 5I (a measure of
wiggler field strength) for the first, third, fifth, and
seventh harmonics. The harmonic coefficients A„are
found by multiplying the ordinate by AI/2' El.
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electron phase angles evolve to the same amount.
Thus,

ILI ——EI Lg. {43) 0.2

By multiplying Eqs. (42) and (43), we see that both
wigglers must have the same number of periods.

The helical wiggler is described by the function

Ae(z) =Ah exp( —ikhz). (44)

Only the n =1 wiggler amplitude in Eq. (27) is
nonzero and has the value A iI, ——A~/B, I, . Bearing
in mind that the laser power of the helical FEL is

~

o ihEih ~, whereas the laser power of the linear
FEL is 2

~

o iiEii ~
because of the equal contribu-

tions of n =1 and n =—1 terms, it is easy to see
that the basic equations (30)—(32) for the two
FEL's becomes identical provided we choose
2' A it/trit =A ih ltrih Usin. g Eq. (41), this condi-
tion becomes

{Ait'ihttrit)[Jo{fit) Ji{~—t)l=Ahf~htrih {45)

Now using Eq. (33), we see that in order for Eq.
{45}to hold, we must choose the beam waists ac-
cording to

i/2 1/2
WPI =AI)( Wo (46)

and furthermore must choose

Al ~! [ 0{5!) J1 {5l ) l Ah ~h

The latter condition may be expressed' more sim-

ply as

(47)

{)h (il[J0{I)l) Jl{~l)l ~ (48)

where 5h is defined analogously to Eq. (36}. Figure
2 shows a plot of Eq. (48}. The slope is unity at
5I ——0 and goes to zero at 5I ——0.5. We see that,

O. I

O. l 0.2 0.3 0.4
I

0.5

FIG. 2. Curve relating the wiggler amplitudes of
linear and helical wigglers giving equivalent FEL opera-
tion, as measured in terms of the parameters 5I and 5q.

This research was supported by the Office of ¹

val Research.

while every linear FEL has a corresponding helical

FEL, a helical FEL with sufficiently large 5~ does
not correspond to any linear FEL. Since 5I & 5~, it
follows that EI & h~, AI &A~, and ki & kI, . The
magnetic field B~——kIAI required for the linear
FEL is therefore greater than the field SI, ——k~AI,
of a corresponding helical FEL. Recall that 8~ is
the rms field, so that the peak field is higher yet by
a factor of ~2. On the other hand, the wiggler
length of the linear FEL is less than that of the
corresponding helical FEL, which could be advan-

tageous in cases where space is a problem (e.g.,
storage-ring operation).

Our group has been carrying out numerical cal-
culations of harmonic generation in the linear

FEL, both in the cw and short-pulsed regimes. We
plan to publish there results in a subsequent paper.

iWe have discussed harmonic generation in the FEL at
the following conferences: Stanford FEL Workshop,
Stanford University, 1979 (unpublished); Conference
on the Physics of Quantum Electronics, Telluride,
Colorado, 1979 (unpublished); Los Alamos Free-
Electron Workshop, Los Alamos, New Mexico, 1980
(unpublished); International Quantum Electronics
Conference, Boston, 1980 [abstract published in J.
Opt. Soc. Am. 70, 620 (1980)]; International School
of Quantum Electronics, Erice, Italy, 1980 (unpub-
lished); ONR Workshop on Free-Electron Lasers, Sun
Valley, Idaho, 1981 (proceedings to be published by
Addison-Wesley, Reading Mass. , in press). W. Beck-
er, currently a member of our group, has discussed

quantum aspects of harmonic generation in the FEL
in Z. Phys. 42B, 87 (1981).
2F. De Martini, in Free Electron Generators -of Coherent

Radiation, Proceedings of the Conference on the Phy
sics of Quantum Electronics, Telluride, Colorado,
1979, edited by S. F. Jacobs, H. S. Pilloff, M. Sargent,
M. O. Scully, and R. Spitzer (Addison-Wesley, Read-
ing, Mass. , 1980), Vol. 7, p. 789.

J. M. J. Madey and R. C. Taber, Ref. 2. p. 741.
4W. B. Colson, IEEE J. Quantum Electron. OE-17,

1417 (1981).W. B. Colson, Phys. Rev. A 24, 639
(1981).

5Linearly polarized wigglers are being used for the FEL
and undulator experimental projects headed by C.
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Brau at Los Alamos National Laboratory, New Mexi-
co; J. Slater, at Math Sciences Northwest, Bellevue,

Washington; G. Neil at TRW, Redondo Beach, Cali-
fornia H. Winick at SPEAR, Stanford, California; C.
Pelligrini at Brookhaven National Laboratory, Upton,
N.Y.; V. Baier at Novosobirsk, USSR; L. Elias at
University of California at Santa Barbara; and Y.
Farge at Orsay. J. M. J. Madey, at the ONR
Workshop on Free-Electron Lasers, Sun Valley,
Idaho, 1981 (Addison-Wesley, Reading, Mass, in

press), has reported observation of second-harmonic
emission from the Stanford helical wiggler. It is not
known if this emission is coherent. Such emission is
not predicted by our theory, although off-axis in-

coherent harmonic radiation has been calculated for
the helical wiggler by W. B. Colson (Ref. 4).

G. T. Moore and M. O. Scully, Phys. Rev. A 21, 2000
(1980).

7Generalizations of the theory can be made to cases
where the electrons lose a substantial fraction of their

energy by becoming trapped in the wells of the pon-
deromotive potential of a tapered wiggler and also
cases where the electrons are not ultrarelativistic.
These results will be published in the proceedings of
the 1981 Sun Valley, Idaho FEL Workshop (see Ref.
1)~

8Equations for the small-signal regime are easily derived

along the lines used by R. Bonifacio, P. Meystre, G.
T. Moore, and M. O. Scully, Phys. Rev. A 21, 2009
(1980).

We disagree here with the Bessel function expression of
J. M. J. Madey and R. C. Taber [Eq. (I) of Ref. 3].
The difference seems to be traceable to sign errors in
their Eq. (52).

' D. A. G. Deacon pointed out how such Bessel func-
tion expressions affect the effective amplitude of the
linear wiggler in lectures at the International School
of Quantum Electronics, Erice, Italy, 1980 (unpub-
lished).


