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Removal of the intermediate states in an all-order theory
of multiphoton processes
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The implicit summation technique used to calculate the N —1 sums over the
intermediate states appearing in the expression of the N-photon transition amplitude

provided by the lowest-order perturbation theory is generalized to the calculation of the
transition amplitude resulting from the resummation of the whole perturbation series.

The method is illustrated by two-photon ionization.

The accurate calculation of the N —1 sums run-

aing over the complete set of atomic states appear-
ing in the Nth-order transition matrix element
describing N-photon absorption is a considerable
task. This problem has been tackled by generaliz-
ing to arbitrary order an implicit summation tech-
nique within the framework of the lowest-order
perturbation theory (LOPT), i.e., when only the
lowest-orcier nonvanishing term of the perturbation
series is retained. We know that LOFT is not able
to give satisfactory predictions regarding the
behavior of multiphoton processes in which
higher-order contributions were expected to play an
important role, i.e., resonant absorption. ' A
higher-order perturbation theory (HOPT) has been

proposed. As a result of the resummation of the
perturbation series, the transition amplitudes were
expressed in terms of continued fractions of the ab-
sorption and emission operators of a photon. In
the basis of atomic states, the calculation of the
probability still involves infinite summations over
the complete set of atomic states. Up to now,
most of the calculations have proceeded via inver-
sion of matrices of finite sizes. Such a technique,
in which one considers only a limited number of
states, gives satisfactory results when few levels
contribute to the probability (resonant transitions).
It cannot be used when the whole spectrum of the
atom must be taken into account. Typical exam-

ples of these problems are encountered in the
HOPT approach of resonant multiphoton ioniza-
tion and in multiphoton absorption processes above
the ionization threshold (ATI).

The aim of this paper is to show how the impli-
cit summation technique, extensively involved in

LOPT, can be extended to the calculation of the
resummed expressions of the probability ampli-
tudes provided by HOPT. Our approach, whose

general principles are enunciated elsewhere, ' is
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ln Eqs. (1), H is the free Hamiltonian of the sys-
tern atom-plus field, z is a complex variable,
V =Da, and V+ =Da; D is the atomic dipole
operator and a and a are the destruction and the
creation operators of a photon, respectively.

It is convenient to eliminate the field operators
in Eqs. (l). To this end we define any averaged
operator over the field states by '"'0 = (n

~
0

~

n ).
In applying successively the operators z —H—R+ —R and z —H —R to the left of
6' '

~

a ), we obtain the following set of hierarchi-
cal equations:

called GIST (generalized implicit summation tech-
nique). We show below how it enables to complete
the exact calculation of nonperturbative expressions
of any transition amplitude. As an example, we

consider the case of two-photon ionization. Within
the resolvent formalism" we have to calculate the
matrix Gb,

' ——( b
~

6' '
~

a ), where
~

a ) =
~ g )

8 [n) and (b)= (f) 8 (n —2); (g) and [f)
being the initial and the final atomic states, respec-

tively, and
~

n ) and
~

n —2) the corresponding
field states.

As a result of the resummation of the perturba-

tion series, 6' ' is given by
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The matrix element Gb,
' is given in terms of
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The kets appearing in-Eqs. (2) are given by
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Vs"'), and
~

Vs" )='"6 ~g). For
shortness we have set R =R++R . In the polar
coordinate representation, the H 's contain the ra-
dial (differential) Schrodinger operator but the cor-
responding equations cannot be handled like ordi-

nary differential equations of a single variable.

One of the reasons lies in the presence of the
operators R which come from the resummation of
the perturbation series (we note that within the
lowest-order theory these operators are lacking}.
The other reason is that each H includes the orbi-

tal momentum operator L . In what follows, we
describe a method which enables to put Eqs. (2) in

a fully tractable form involving only radial dif-

ferential operators. We note that in Eqs. (2) each
unknown ket is the solution of an inhomogeneous

equation, the ket in the inhomogeneous term being

given by the next equation, etc. Thus each equa-
tion can be discussed separately.

Let us consider Eq. (2c) with R iterated once ac-
cording to Eq. (lb). One has
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where
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By iterating many times the operator R, each equa-
tion of (2) is replaced by a set of coupled equations
which are infinite in number. However, this set
can be truncated. The truncation is governed by
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the contribution of the expectation values of the
operators RG D

~ Vs ) which are calculated for
each iteration. For example, to solve the set of
Eqs. (3) one neglects the last term in the left-hand
side of Eq. (3b).

To eliminate the angular momentum operator L
in Eqs. (3), we express all the operators in the basis
of the eigenstates of L . In this representation, the
operators H and D are expressed by matrices of
Gnite size, each matrix element being an operator
of radial coordinates only. For clarity, we consider
two values of the orbital quantum number, i.e.,
I =0, 1. By taking into account the selection rules,
we have to solve the following four coupled dif-
ferential equations:
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to get the components
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V0) and
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Vl ) of
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In this simplified notation,

~
W0) and

~
W, ) are

the components of
~

Ws" +"),
~ g ) is any atomic S

state and

(k) d 2 I (I + 1)
I d2r2P'

E& being the photon energy.
Since the same discussion holds for Eqs. (2a) and

(2b), we observe that our method enables one to
calculate the components of

~

Vs" ') by solving a
set of coupled second-order differential equations of
a single variable r. Thus, the problem of the dou-
ble summation has been formulated in a fully tract-
able form. The number of equations to be solved
depends on the order of the process, on the number
of iterations for R, and on the range of variation of
I. For the sake of brevity, only the case of two-
photon ionization has been considered but the
method can be generalized to arbitrary order.
Such a generalization as well as a quantitative dis-
cussion about the merit of this method will be
presented in a more expanded account.
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