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Analytic expressions are obtained for relativistic radiative-decay rates of transitions be-
tween the L and E shells of intermediate- and high-Z elements. These single-electron

I

transition rates in a central potential can be expressed as a power series in the atomic
scale parameter A. which characterizes a small-distance. expansion of the relativistic
screened atomic potential. Retardation effects and all multipole contributions of the radi-
ation field are included. With this approach it is possible to trace explicitly, both for the
point Coulomb potential and for screening modifications, the role of relativistic, retarda-
tion, and higher multipole contributions in modifying the corresponding nonrelativistic di-
pole transition rates.

I. INTRODUCTION

An inner-shell (here K-shell) atomic vacancy
may be filled by an electron from an outer shell
(here L shell) in a transition accompanied either by
photon emission (radiative decay) or by the Auger
effect (ejection of another atomic electron). Decay
by photon emission, which is considered in this pa-
per, results in the characteristic x-ray spectra. The
emission spectrum from an atom or ion can be
analyzed to provide a variety of information about
the emitting system and its environment. Such
analysis depends on precision of predictions for the
basic rates, so that relativistic corrections to the
usual nonrelativistio dipole calculations are often
needed. Our purpose here is to develop realistic
analytic relativistic expressions for these rates for
inner-shell transitions, permitting both a simple
characterization of photon emission and an under-
standing of the origins of its features.

There have been numerous calculations of rela-
tivistic radiative rates, including the works of
Massey and Burhop, ' Laskar, ' Payne and Lev-
inger, Asaad, Taylor and Payne, Babushkin,
Grant, "Garstang, ' Rosner and Bhalla, '3 Anholt
and Rasmussen, ' Lu, Malik, and Carlson, ' and
Scofield. '6 ' fhe more recent approaches are
based on computer-calculated Hartree-Fock self-
consistent many-electron wave functions. In this
paper, we follow closely the formulation of Sco-
field, ' ' who has reported the results from numer-
ical calculations of x-ray emission rates due to an
electron filling a single vacancy in either the K or
the L shell. Scofield's work is based on single-

particle states in a central potential given by the
relativistic Dirac-Hartree-Slater theory and yields
results which are in good agreement with experi-
ment.

The emphasis in many atomic calculations is on
transitions of outer electrons, for which the major
problem is the complexity of the treatment of
electron-electron correlations. In dealing with
inner-shell transitions, the importance of electron-
electron interactions is diminished in comparison
to electron-nucleus interaction; it is reasonable to
expect that simpler treatments will yield valid re-
sults and that perturbation techniques for effects
beyond the electron-nucleus interaction will be use-
ful. ' However, for inner-shell transitions in
higher-Z elements, relativistic effects and retarda-
tion corrections (due to the finite x-ray wavelength)
lead to important modifications. Further, higher
radiation multipoles, in addition to the dominant
electric-dipole term, play an increasing role as we
go to higher nuclear charge Z and to higher inner-
shell transition energies.

In this paper we report explicit analytic expres-
sions for the rates of transitions from the L to the
K shell, assumed to have initially a single vacancy.
We give fully relativistic closed-form expressions
for the first terms of a perturbation expansion in
the atomic scale parameter A, for Kai, Ka2, and
KL i emission as functions of Z. Our calculations
are based on a description for single-electron tran-
sitions between states of definite total angular
momentum and energy. With these analytic re-
sults, broad surveys are easily achieved, which oth-
erwise wou1d require extensive numerical calcula-
tions. Further, the dependence of the transition
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rates on relevant parameters such as Z and Z; (de-

gree of ionization} can be studied more readily.

The approach also allows the separation of the
consequences of different effects such as relativity,
screening, retardation, and presence of higher mul-

tipoles, and hence it can provide some physical in-

sight into the underlying mechanisms of the pro-
cess.

Our work utilizes the analytic wave functions

provided by the relativistic version of an analytic
perturbation theory {APT}for screened-Coulomb

potentials, as discussed by McEnnan et al. ,
' based

' on a series expansion of a smoothed screened atom-

ic potential in the interior of the atom. This
theory is known to give good approximate wave

functions and energy eigenvalues particularly for
inner-shell electrons. The present work represents

one of the first applications of the relativistic APT
in the calculations of atomic processes.

In Sec. II we discuss briefly the formulation of
the relativistic radiative transition matrix element

and the transition probability. In Sec. III (and in
the Appendix) we review the needed results of the
relativistic APT, presenting explicitly (up to the
third order in the expansion parameter A,) the wave

functions, normalization constants, and energy

eigenvalues. We also verify that these expressions

reduce to the proper nonrelativistic results in the
limit of small a—:aZ. Section IV gives the main

results of this paper, namely, the relativistic analyt-

ic transition rates. As one check of these results

we investigate the various limiting cases. We also
compare the predictions of our expressions with

the numerical results of Scofield; the good agree-

ment achieved is a further demonstration of the
validity of the analytic forms. In Sec. V we then
utilize the analytic expressions to study the inter-

play of relativistic, screening, retardation, and mul-

tipole effects in modifying the simple and familiar

nonrelativistic dipole hydrogenic transition rates.

W,b
—— g fdQK [ (a

~

a e.e' '
~

b & [2' ]

where the initial and final atomic bound states are
labeled a and b, respectively; K is the photon
momentum and in the units used, It. =E,' —Eb
where E is the energy eigenvalue. [See Rose and

Brink' for a derivation of Eq. (1}.] We shall as-

sume that the initial subshell is completely filled

and the final subshell has only one vacancy. In
our general calculations we shall leave E as a free

parameter, so that for a given choice of gauge we

could explore the role of retardation separately

from relativity.
Making a multipole expansion of the radiation

field operator in the matrix element of Eq. (1}and

performing the angular integrals and the average
over the quantum numbers of the initial state (see
Scofield' },

fr (m)=n, B( KK& L)RL (—m)/K,

fL (e)=n,B(K,K&,L)RL (e)/K,

(3a)

{3b)

where

(21.+1)(21,+1)
B(K„K&,L)= L(L+1)

X C (1,1&,L;0,0)

W~ 2aK' g——[fL, (m)+f1.(e)],
L=1

where fL (m) is the oscillator strength due to the
2 -pole-type magnetic interaction and fL (e) is the

corresponding term due to the electric interaction.
Selection rules allow only a small discrete set of
terms from the infinite series in Eq. (2) for the case
of a bound-bound transition. The oscillator
strengths are given as

II. FORMULATION OF THE TRANSITION
RATES

We follow standard procedure and use the
Feynman-Dyson formulation of quantum electro-
dynamics. The atomic Geld, included in the unper-

turbed Hamiltonian, is assumed to be a central po-
tential. The transition probability W,b is obtained
from the matrix element of the S operator between

initial and Gnal states of the radiating system. Us-

ing natural units in which h =m, =c =1,

XD'(j „l.j&lb ,L), '—

K, K)0. 1, «0
K is the Dirac quantum number, C and D are angu-

lar factors (see Scofield' for the definitions), and

n, is the number of electrons in the initial subshell

(n, =2j+1 for a filled subshell). For a transition
between single-particle states in a central potential,
the radial matrix elements RL can be written in
terms of 'the radial wave functions f (large com-
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ponent), g (small component), and the spherical
Bessel. function jr. (Kr):

Rr (m)=(«, +«b) jL(Kr)P+(r)dr,
0

RL(e)= f jL, i(Kr)

X [(irb —«, )P+ (r}+LP (r) ]dr

+f jr (Kr)g (r)dr,

where

P+(r) =gb(r)f, (r)+fb(r)g, (r),

Q(r) =fb(r)f~(r)+gb(r)g, (r) .

(4a)

(4b)

sum converges rapidly and gives a good approxi-
mation to a smoothed realistic potential in the inte-

rior region of an atom. Energy eigenvalues and
normalization constants, as well as the radial wave

functions, can be expressed as a series in A, with

simple analytic coefficients; these expressions as
well as their nonrelativistic reductions are given in

the Appendix. %e will write our main results in
terms of the reduced functions F& and F2 rather
than f and g, where

' 1/2
—p r 1+Ecf =Nrre ' (F, +F2),

2

These are the basic objects to be computed.
There are other equivalent formulas as given by
various authors' ' who use other gauges. (See
the work of Grant" for a general discussion of the
dependence of the matrix elements on the gauge in

which the electromagnetic potentials are written. )

The radial wave functions satisfy the coupled dif-

ferential equation (Dirac)

' 1/2
—pr 1 —Ec

g =Nr~e ' (F) —F2) .
2

In Eq. (7), N is the screened normalization con-
stant, y=(« —a }' is the Dirac constant, E, is
the Coulomb eigenenergy, and pc =(E, —1)'

Figure 1 shows comparisons between analytic
wave functions for 2p&/2 3/2 bound states and nu-

merical calculations and relativistic and nonrela-

—+—f=(E+I Wg, —
dr r 0.40 1 I I I 1 I

(5) 0.32
Z =82

d K——+—g =(E —I —V)f,
r

and are normalized so that

f (f +g )dr =1 .

Note that f and g so defined are multiplied by r in
comparison to the forms often used.

III. WAVE FUNCTIONS

The relativistic version of the analytic perturba-
tion theory (APT) expresses the functions f and g
in terms of decaying exponentials and polynomials
in r. These provide series solutions in A, for the ra-
dial Dirac equations, Eqs. (5), in a screened central
potential expressed in the form

rV(r)= —a g V„(k.r) ", Vo—= I
n=0

where a =aZ, a is the fine-structure constant and
A, =A,(Z) is a small parameter (A,

' scales the size
of the atom). The coefficients Vn characterize the
atomic screening and can be chosen such that the
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FIG. 1. Radial part of relativistic 2p3/2 and 2p&/2

wave functions versus radial distance scaled by a =—az.
Solid lines represent large and small components, ob-
tained from our analytic expressions using the HFS
(Liberman) potential with the Kohn-Sham exchange
term and the Latter tail correction, broken lines

represent nonrelativistic Coulomb radial wave functions.
Relativistic Coulomb values (o ) and numerical screened
relativistic values ( x ) are also shown.
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tivistic wav'e functions. Other cases were shown
previously. ' We see that the APT provides a good
approximation for these relativistic screened wave
functions.

IV. ANALYTIC TRANSITION RATES

A. Transition 2p3/2 ~1$1/q (Kai )

To illustrate our method we begin with the
derivation of the-analytic transition rate for the
Ka1 line of the characteristic x-ray spectrum. By
using the properties of the angular factor
B(K,Kb,L), we find that the nonvanishing value

1B(—2, —1, 1)= —, occurs in f](e) and

B(2,—1,2)=—„occurs in f2(m). The relevant ra-

dial matrix elements are

Jp =C((b( )u( + )[I]2 —I2) —Ig2 ] ,
(b) (a) (0) (0) (0)

J]I=Cp(~p(~)[I]2 +I2] +I22 ],(b) (a) (1) (1) (1)

(10)

J) —CP, ( )(b( )[—I]2 —Ig] +I22 ] &
(b) (a) (1) (1) (1)

J2 ——C[)(( )(I]p —Ip] ) )((+)I22 ](2) (2) (2)

where

lJ 0

These integrals can be written in terms of the re-
duced functions F1 and F2 defined in Eq. (7),

R ] (e) 2Jp+ J]f+J]g, R2(m)

where

Jp= fJpgb~&d"& J)f fI]fb~&d" &

J]g——fj]gbg, dr, J2 ——fj2P~d& .

(8) 1

p =p«+p, b, C =—,NbN, ,

)"(+)=( +
&: ) ~(+)=))](—)M(+)+P(+)((b( —) .1/2 (b) (a) (b) (a)

We have neglected I])' in Eq. (1) since it is of
order A, and we have retained terms only through
0(A,3). In general, F; is a series in A, having coefti-
cients which are simple polynomials in r. Conse-

quently, Ipj
' can be evaluated in closed form. We

utilize the formulas

1 (P) sinP((}
C~+ '

sin((}

f '(K) '~d =
2PC~+' sin P

sin(P —1)&)) sin(P+ 1)P
P—1 P+1

(12a)

(12b)

'(K) ]" ~d =
4PC~+' sin ((}

where C =(p +K )'~ and tan((}=K/p.
rate is

(12c)
sin(P —2)((& 2 sinPP sin(P+2)()|}

(P—1)(P—2) (P—1)(P+1) (P+1)(P+2)

The expressions for I;J
' are given in the Appendix. The transition

Wg~, ——2ak[R ] (e)+ —,R 2(m)] . (13)

B. Transition 2p 1/2 ~ 1$1/2 (Kcx2)

For the Ka2 line, all magnetic multipoles vanish
since Ka+Kb ——0. The only nonvanishing angular
coefficient is B(1,—1,1)= —, and the term that sur-
vives in Eq. (2) is the electric-dipole oscillator
strength f](e). The only radial matrix element
that has to be evaluated is

Jp= Jpfbg «.
0

In terms of integrals of the reduced radial wave
functions

Jlf=Cp(+)p(+)[I]] +I]2 +I2] +I22 ],(b) (a) (1) (1) (1) (1)

J]g——Cp( )(M( )[I]] —I]2 —I2] +I2g ],(b) (a) (1) (1) . (1) (1)

(16)

R1(e)=Jf+Jgg —JQ —3JQ (14)

where Jp, J]I, and J]g are defined in Eq. (8), while

Jp =C(M( )(u(~)[I]] +I]2 —I2] —I2g ]
(b) (a) (0) (0) (0) (0)

Jp =Cp(+)M( )[I]] I]2 +I~] —I22]-(b) (a) (0) (0) (0) (0)
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The I,J
' are given in the Appendix. The transition

rate is
[R((e)]„,„, ——,KM, M =J RbrR, rzdr,

W(r, ——aKR ((e) .

C. Transition 2$~q&~1$ pe (KL ))

The process we are considering here is the emis-
sion of a single M 1 photon (rather than two E1
photons) in an optically forbidden transition. The
relevant radial matrix element is

R((rn)=((r, +(rb )f j('P+dr

=—2C[~(+)(Izz —I(( +~(-((Iz( —1(z )I
(1) (1) (1) (1)

fKa&+fKa&=fNR ~ (22)

where fNR ———,KM is the familiar nonrelativistic
OOS. The transition rates of Eqs. (12) and (16)
reduce to

Ka) K

giving results in agreement with Kim et al. and
other authors. "' '

Also in this limit the optical oscillator strengths
(OOS) obtained from Eq. (3b) obey the relation

and the transition rate

WgL, aKR ——((rn) .

(18)
where K =KcS~, M =McS~. For Ka transitions,
the nonrelativistic Coulomb expressions are
Kc ——3a /8 and M~ ——2' ~ /3 ~ a, while the screen-
ing correction factors are

Sg ——1 —28Ap/3 —72A3,

S~ ——1 —23Ap/2 —3059A3/18,

D. Nonrelativistic (small nZ) limits
for Ea transitions

As one check of our analytic results, we extract
their nonrelativistic limits. First we consider the
optically allowed transitions 2p3y2, 2p)y2~1$)g2.
For small K, we find that the M2 contribution
R2(m) becomes small compared to the dominant
R((e) since

jI (Kr) -(Kr)~/(2L + 1)!!

and, in fact,

where we have used the identity (see Grant" and
Garstang' )

d Kg —Ky

d„(g»f fbgo)+ „(g—bf +fbi'o)

=«f»f. +gbg. ) .
Then letting a =uZ~ under the integral (which
is consistent with having kept only the leading or-
der in K) we may neglect g~g, and replace the
large component f by rR, where R is the corre-
sponding solution of the radial Schrodinger equa-
tion. In this limit 8 &(e) is proportional to the
nonrelativistic matrix element M,

with A„:—V„A,"/a". These nonrelativistic results
allow quick estimates of the magnitude of the
2p ~1s transition rates.

It is interesting to examine the first corrections
to the nonrelativistic decay rates. If the next order
contribution in a =aZ is kept, we get in the
Coulomb case

W(r, ——(2 aa "/3 )[1—az( —„+ln32—in27)/2]

=291.0(1—0.231a )a eV/A,

W(r~
—(2 aa /3 )[)+a ( ~ +ln9 —ln8)]

=145.5(1+0.133a )a eV/fi,

(24a)

(24b)

which gives the order a corrections due to rela-
tivity and retardation (higher multipole contribu-
tions do not enter in this order). The coe%cients
are small, so that nonrelativistic dipole approxima-
tion remains fairly good even for high-Z elements.
Note that the shifts are in opposite directions so
that there is further cancellation when we consider
the total transition rate.

8'(2p ~1s)
=(2'aa /3')[1 —a'( —„,+ln256 —ln243)/3]

=436.5(1—0.113a )a eV/A .
This provides another illustration of the extended
validity of the nonrelitivistic dipole approximation.
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E. Nonrelativistic (small nZ) limit
for KL i transition

WI(L, =+a' /432=5. 62X10 Z' sec (25a)

One must be careful in taking the "nonrelativis-
tic limit" of the KL ~ analytic transition rate. As
mentioned previously, this transition is optically
forbidden (being of the M 1 type). Breit and Tell-
er ' have pointed out that this rate vanishes in the
nonrelativistic limit. However, it is still possible to
extract the leading term in an expansion in aZ.
The contribution of the leading term in the small-
K expansion for the spherical Bessel function

j ((Kr) vanishes identically in the nonrelativistic
limit because of the orthogonality of the Coulomb-
Schrodinger radial s-state wave functions. Conse-
quently, in order to correctly obtain the leading
nonvanishing contributions in the small-a limit,
higher-order terms in both j ((Kr } and the Dirac
wave functions must be considered. However, es-

timating the 2s ~1s transition rate in hydrogen,
Garstang' made the replacement ji(Kr) ~Kr/3
while keeping relativistic corrections in the wave
functions and obtained the result

This ignores the next term in j&(Kr) which gives a
contribution of the same order in a. By contrast
Grant, in his review article, gave another estimate
(which he cautioned was not based on an adequate
calculation)

W+L, ——aa' /3888=0. 613X10 Z' sec

(25b)

R((m)=C(A(+P +A( &B), (26)

where

obtained by retaining the two leading terms of
j&(Kr) but only the leading term of the wave func-
tions. The correct lowest-order result, in fact, lies
between these two values.

In taking the sniall-a limit for this transition, we
simplify the discussion by keeping only the point
Coulomb term (i.e., we set A2 ——A3 ——0). Then from
Eq. (17),

C= 2N&N, [y—(r)' 1)]', A—(+~ ——a(r)'+2+r)')/rl'(rl'+2)'

2 =[(2(y+1)G(2y) 2aG—(2y+1)/ )']7/(g'+1), 8 = —G(2y),

G( )= j,(K) ' d=K + )F +, +;—; K
0 3 p&+2 2 2 2 p2

and F is the hypergeometric function. Equation
(26) is equivalent to the closed-form result given by
Johnson. Now for small K,

I

terms to get R((m },an expression which is two or-
ders higher in a =aZ will result and therefore both
terms in Eq. (27) must be included.

G(x)~—K Ax+2}
1 ——„(x+2)(x +3) K

3 pz +2
p

2

(27)

so that with the replacements K + , a (1+—,a )—, —

p~ —,a(1+ —,4a ), y~l ——,a2, and 7)'~2 ——,a
we have

R((m)~ —2'~ a "/27,

Wzz ~aa' /972=2. 4958X10 Z' sec

(28)

in agreement with the result obtained by Johnson
and alsp by pther authors. Npte that
Garstangs's limit Eq. (25a) corresponds to retaining
only the leading term of G (x) in Eq. (27). Howev-
er, one can verify that in combining the leading

F. Comparison with numerical calculations

In order to further establish the validity of the
analytic approach and the correctness of its calcu-
lation, we compare our results with Scofield's nu-

merical calculations. ' ' The graphs shown in
Fig. 2 show the relative transition rates (a relative
transition rate is obtained by taking the ratio of the
rate to the corresponding nonrelativistic Coulomb
rate WNRC ——2 aa /3, 2 aa /3, aa' /972 for
Kai, Ka2, KL &, respectively) as functions of the
nuclear charge Z. Data for representative elements
are also shown in Table I. All the Coulomb results
of course approach the WNRC values for small a;
we see that, in agreement with Eq. (28), W(r ap-

proaches from below and W~ approaches from

above. The screened Ka rates also merge to a
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0 ~ & ~ Numerical ( Scof ~eld )

/ I

KLl/

I.2—

l.0

0.8— PT

/06 /i 8
/ 8

20 40 60 80 IQQ

cornrnon nonrelativistic case for small a. As one

would expect, screening causes larger effect for
small Za than for large Za, where the shells are
more interior and Coulomb-like.

FIG. 2. Transition rate, 8' normalized by the corre-
sponding small-a limit Coulomb values, 8'NRc as a
function of the nuclear charge Z. The solid lines

represent our relativistic analytic screened results while

the broken lines represent relativistic Coulomb results.
The dash-dotted line corresponds to the nonrelativistic
screened (APT) results. Circles, squares, and triangles
are the numerical results of Scofield for Kab Ka2, and

KLI transitions, respectively, to be compared with the
solid lines.

The analytic perturbation-theory results agree
very well with those of Scofield, within 1% for
Kai, Ka2 and within 3% for KL

&
in the medium-

and high-Z elements. (Improved predictions are
obtained for the analytic KL

&
rates if numerical

rather than analytic norrnalizations are used, as
shown in Fig. 2. This appears to occur because the
transition is characterized by distances for which
screening enters primarily through the 2s normali-

zation, which is relatively slowly converging within
APT). Significant deviations from the numerical
values occur only for the light elements (for which
APT wave functions are not accurate). We thus
verify the adequacy of the analytic perturbation
theory for the prediction of these inner-shell transi-
tion rates. We may therefore use the analytic
forms to explore the role of various mechanisms
(screening, relativity, retardation, higher mul-

tipoles, etc.) in determining the rates.

V. DISCUSSION OF RESULTS

Knowing the accuracy of the APT transition
rate formalism, we may then employ it (as well as
numerical calculations) to identify those features of
the calculation that are important in determining
the observed rates. We may study the effects of
such features as (i) screening, (ii) relativity, (iii) re-
tardation, and (iv) higher multipoles in the radia-
tion field. As we will discuss subsequently, (ii) and
(iii) are linked through the choice of the gauge.

TABLE I. Sample results for transition rates (in eV/A) of atoms filling a vacancy in the K shell.

Relativistic results Nonrelativistic results
Analytic perturbation-theory Numerical Analytic perturbation theory

ZTransition with V„I with V„,„„I (Scofield) Coulomb with V„I with V„,„„I Numerical Coulomb

92 Kai 44.66
Xaz 27.95
KL I 0.105

82 Kai 28 71
Ka, 17.10
KL I 0.0280

46.17
28.66
0.109

29.62
17.55
0.0292

44.19
27.61
0.103

28.49
16.95
0.0277

52.00
31.11
0.128

33.88
19.45
0.0352 .

50.69
25.35

31.63
15.81

52.30
26.17

32.57
16.29

51.08 59.11
25.54 29.56

0.0714

31.72 37.31
15.86 18.65

0.0226

50 Kai
Ka2
KLI

3.897
2.079
0.128( —3)

4.001
2.133
0.132( —3)

3.890 4.994 4.072
2.080 2.620 2.036
0.127( —3) 0.186(—3)

4.168
2.084

3.994 5.157
1.997 2.579

0.160( —3)

26 Kai
Ka2

0.2525
0.1284

0.2566
0.1306

0.244
0.1248

0.3739
0.1893

0.2639
0.1318

0.2672
0.1336

0.2371 0.3771
0.1190 0.1880
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We may begin to explore the consequences of
(i) —(iv) by obtaining from our analytic expressions
the transition rates corresponding to relativistic
screened and Coulomb and to nonrelativistic
screened and Coulomb calculations. [The nonre-
tarded dipole approximation, with exp(iK r) re-
placed by ( ]+iK r ) and only the lowest nonvan-

ishing order in K kept, is assumed in all nonrela-
tivistic results. ] Table I gives the results of these
calculations. Note that all the features (i)—(iv) are
included in our complete relativistic calculation
whereas all of them are omitted in the simplest ap-
proach, the nonrelativistic nonretarded Coulomb
dipole approximation. Screening tends to decrease
the rates; relativity and retardation, as already not-
ed, increase Ka2 and decrease Kai. The higher
multipole effect (iv) is of minor importance. In
high-Z elements the reductions due to screening
and effects due to retardation and relativity are of
comparable magnitude (canceling for Ka2 and ad-
ding for Ea~), while in lighter elements the screen-

ing effects are more important. These can be seen
in Fig. 2.

As noted above, screening causes a reduction of
the Coulomb rates, similar in character in both the
relativistic and nonrelativistic cases (refer to Table
II). Evidently, the relativistic corrections to
screening effects are a secondary consideration,
which we will discuss later. (There is a larger frac-
tional change due to screening in the rates of
lighter elements since for a given transition, given
inner-shell electrons experience a potential which is
more and more Coulomb-type with increasing Z.)

We can therefore begin our discussion of the in-

fluence of screening with the simpler nonrelativistic
dipole calculation. This is quite sufficient in

understanding the origins of the dominant screen-
ing effects of the relativistic cases as well. Both
the Coulomb transition energy and dipole matrix
element for the 2p ~1s case are significantly re-
duced by screening. Analytic and numerical re-
sults show that the change of the dipole matrix ele-
ment M is smaller than what would follow from

the change in normalization constants alone. This
is because wave-function shape terms lead to an in-
crease in M. Figure 3 shows the ratios of the non-
relativistic screened and Coulomb wave functions
as functions of the distance from the nucleus. The
value at the nucleus (ar=0) gives the ratio of
screened to Coulomb normalization. Lighter ele-
ments are more affected by screening, but not the
scaled position (in ar) at which screening changes
from decreasing to increasing the wave function.
We also note from Fig. 3 that the 2p wave func-
tion is affected much more by screening (in other
words, the 1s wave function is more Coulomb-like);
the screening effect on M is determined largely by
the behavior of the 2p wave function. At small
distances the screened wave function is smaller
than the Coulomb wave function (normalization ef-
fect) while at large distances the screened wave
function is larger (since reduced binding energy in
the screened case leads to a slower exponential de-

cay rate, despite the fact that except for n =l + 1

extra powers of r in the asymptotic Coulomb wave
function must be compensated).

For the nodeless 2p wave function, the crossover
from decrease due to screening to increase due to
screening occurs at ar -6 while the maximum in
this wave function is at gr=4. The change with
screening in the value of the matrix element sug-
gests that the dominant distances of the integrand

TABLE II. Fractional change of point Coulomb transition rates due to screening for sam-

ple elements. (a) Using a nonrelativistic self-consistent potential (Herman-Skillman with the
Slater exchange term and Latter tail correction) and (b) using a relativistic self-consistent po-
tential [Lieherman (Ref. 30) with the Kohn-Sham exchange term and Latter tail correction].

Nonrelativistic

2p ~1s Ka)
Relativistic

Ka2 KLI

(a) 92
82
50
26

(b) 92
82
50
26

—11.5%
—12.5
—19
—29
—14%
—15
—21
—30

—11%
—13
—20
—32
—15%
—16
—22
—35

—8.0%
—10
—18.5
—31
—11%
—13
—20
—33

—15%
—17
—29

—20%
—21
—32
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FIG. 3. Ratio of nonrelativistic screened radial
bound-state wave function R, to the corresponding
Coulomb wave function R„ for 1s and 2p, versus radial
distance scaled by a =aZ. for nuclear charges Z =26,
50, and 82. The maximum in R,(2p) and the dominant

region in the integrand of the 2p-1s matrix element are
indicated.

are neither large nor small, generally before the 2p
maximum and definitely before the crossover to
screening enhancement of the wave function. In
the Coulomb case we can make an easy estimate of
this dominant region in the nonrelativistic length-
form dipole matrix element. Integration from
ar=O to ar=6 indeed gives 95% of the total value,
and we can therefore see how screening reduces the
matrix element. (Note that screening need not
cause a decrease in all such matrix elements M.
For example, the screened matrix element for the
same-shell transition, 2p~2s is larger than the
Coulomb matrix element. Here the dominant re-
gion is farther out from the nucleus than for
2p~ls and the crossover of 2s, with a substantial
screening effect, occurs still earlier than for 2p.
Consequently, while considering the cancellation
effects of the 2s node, in the important region of
integration the screened wave functions are greater
than their Coulomb counterparts. Of course the
Coulomb rate for 2p~2s vanishes, since screening
is needed to remove the Coulomb degeneracy of the
levels and produce a finite transition energy. )

There is a larger fractional decrease due to

screening in the KL ~ transition rates compared to
those of the other two transitions. This appears to
reflect the importance of a dominant region closer
to the nucleus for the 2s&&2~1s~~2 matrix element.
In such a region the normalization effect predom-
inates, and indeed we get improved results by using
more accurate normalization constants. However,
due to the node in the 2s wave function, so that, in
fact, the nonrelativistic Coulomb radial dipole ma-
trix element vanishes, as well as due to the general
vanishing of the nonrelativistic dipole matrix ele-
ment from angular momentum considerations, it is
more difficult to give a simple and gauge invariant
discussion of the important regions in the deter-
mination of the matrix element.

The screening effects on both the transition ener-

gy and the length form of the dipole matrix ele-
ment must be considered simultaneously. The
spacing between these inner-shell levels is decreased
by screening [as predicted in APT, where the
2p~ ls transition energy is
(3a /8)(1 ——, A2 —72A3)] and hence transition en-2 28

ergies become smaller (except, as already noted,
those involving levels belong to the same shell).

This can be understood from the same type of ar-

gument as for the matrix element, as -the 2p energy,
given as the expectation value of the Hamiltonian,
will be determined where the wave function is

large, i.c., where screening causes reductions in

both the wave function and the Hamiltonian. The
nonrelativistic results of Eq. (24) indicate, with the
choice of gauge leading to the length form of the
matrix element, that comparable screening effects
come from the matrix element and from the transi-

tion energy.
If now we try to understand the differences be-

tween screening effects on the nonrelativistic rates
and screening effects on the relativistic rates, one
part of the difference arises from the fact that we
are dealing with different screened potentials in the
two calculations. This corresponds to the well-
known relativistic contraction of the charge distri-
bution of inner-shell electrons. This type of differ-
ence in screening effects on relativistic and nonrela-
tivistic rates can be identified by performing the
complete relativistic calculation of the single-
electron transition for relativistic wave functions in
the nonrelativistic rather than the relativistic
screened potential, and vice versa. Comparative
data from such calculations are included in Tables
I and II. These results indicate that the difference
in potential causes a small change (roughly propor-
tional to Z) amounting to approximately a 3% in-
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FIG. 4. Same as Fig. 3 but with large and small

component bound-state wave functions, for the 2p3/2 and
2p lq2 (Z =82) cases. The corresponding nonrelativistic
2p case is also shown, both as obtained with the nonrela-
tivistic and with relativistic potentials.

crease in the rates of high-Z elements when a non-
relativistic rather than a relativistic self-consistent
central potential is used. Within the analytic per-
turbation theory, this change in potential is mani-
fested as a change in the scale parameter A, , with
little change in the potential shape or, equivalently,
in the V coefFicients. Since A,„j& A, ,~, the change
is a contraction in scale. Increasing A, (as in the
switch to the relativistic potential) provides more
screening, which for these K-L transitions reduces
rates.

Even in the same potential, Table II shows that
there is some difference in the screening effects on
relativistic and nonrelativistic transitions. One
feature is that for high-Z elements there is a
lessened importance of screening on the Ea2 rates,
as compared to the Ka~ which exhibit screening ef-
fects similar to those of the nonrelativistic 2p~ls
rate. In order to understand this we show in Fig. 4
the screening effects on the large and small com-
ponents of the 2p3/g ]/p wave functions, as well as
on the nonrelativistic 2p wave function in the same
relativistic self-consistent central potential. (We
should not expect to easily understand difFerences
in relativistic and nonrelativistic rates from com-
parisons of the curves, as they enter into different
matrix elements. ) The contraction and greater
screening of the atom (increase in A,) would tend to
decrease relativistic normalizations more than
screening decreases the nonrelativistic values. The
increase in A, also means that screening reduces the

larger relativistic Coulomb binding energies more
than the smaller nonrelativistic Coulomb binding
energies. However, in comparison to 2p3/2

2p~/2 wave function is pulled in (particularly for
large Z) by its r~ behavior at small distances, so
that its dominant region occurs at a smaller dis-
tance where the potential is more Coulomb-like
and hence its normalization differs less from the
Coulomb case. The 2p&/2 wave function also
makes the transition to enhancement by screening
much sooner, and so for a similar dominant region
screening has less effect on the rate than in the

2p3/2 case. The very different effect of screening at
small distances on the small components in the
two cases is related to the presence (and shift with
screening) of a node -in the 2p&/2 small component.
Asymptotically, the ratio of small to large com-
ponents is [(1 E)/(1+—E)], where E is the
Coulomb or screened binding energy. Since the
screened binding energy is less than the Coulomb
binding energy, it follows that asymptotically the
ratio of screened-Coulomb small components is
smaller than the ratio of screened-Coulomb large
components.

Next we proceed to consider, for a given choice
of potential (Coulomb or screened), the difference
between the usual nonrelativistic dipole calculation
without retardation and the full relativistic mul-

tipole calculation with retardation. The easiest as-
pect of this comparison to discuss is the role of the
higher multipoles, since for bound-bound transi-
tions only a few multipoles of the radiation field
are allowed by the conservation rules for transi-
tions between states of definite n, j, and l. In fact,
for KL transitions, only Ea& has a higher mul-
tipole (M2) contribution to the transition rate,
negligible for low Z and only reaching 1% (addi-
tive) by Z =92. The magnitudes of higher mul-
tipole contributions can be estimated readily by
realizing that there is no interference between mul-
tipole matrix elements in a transition rate (as con-
trasted to an angular distribution or polarization
correlation). When K is small, the next multipole
gives a matrix element of relative order K, and so a
contribution to the rate of relative order
K =O(a ). Even for uranium (Z=92) this con-
tribution is sma11 since with a =0.67, X-3a /8
for the KL transition, and K -0.03. Hence, even
for inner-shell transitions of heavy elements, higher
multipoles give minor contributions except in the
case of forbidden transitions. [For photoeifect the
sarge argument suggests that higher multipole con-
tributions to the total cross section generally be-
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TABLE III. Ratio R of relativistic to nonrelativistic transition rates and scaled deviation

5, R—:1+5a2 and shown as R (5), for sample elements. The same relativistic potential was
used in the screened relativistic and nonrelativistic rates.

Transition Ka~
Screened Coulomb

Transition Ka2
Screened Coulomb

92
82
50
26

0.881( —0.264)
0.908( —0.258)
0.957( —0.323)
0.958( —1.16)

0.880( —0.266)
0.908( —0.257)
0.968( —0.237)
0.992( —0.236)

1.102(0.228)
1.081(0.220)
1.021(0.160)
0.980( —0.69)

1.052(0. 116)
1.043(0. 120)
1.016(0.119)
1.006(0. 167)

come large only for photon energies above 150 keV

(E-0.3) while for the angular distribution, such
effects become large for E above 25 keV
(K-0.05), i.e., even down to threshold for the K
and L shells of high-Z elements. ]

Although we have written an expression for the
radial matrix element in a fashion which seemingly
would permit an investigation of retardation in-

dependently of relativistic effects, it must be real-
ized 'that, in fact, gauge invariance provides a con-
nection between these two featur@. As a result dif-
ferent forms of the matrix element (see, for exam-

ple, Refs. 11, 13, and 16) are physically equivalent,
though they would not be if one took nonretarded
(small-10 or nonrelativistic (small-a ) limits in-

dependently. If we simultaneously expand for
small retardation and for nonrelativistic wave func-
tions (see Grant" ) we are led to nonrelativistic di-

pole matrix elements. Grant has shown, in gen-
eral, that the first corrections are of order a and
not of order a. We have given in Eqs. (24a) and
(24b) these corrections in 0 (a ) for the Ea transi-
tions in the Coulomb case, while in Eq. (24c) we
have summed the rates to see the correction to the
nonrelativistic value. We have shown the numeri-
cal ratios (Coulomb and screened) of relativistic
and nonrelativistic rates in Table III and have ob-
tained the deviations scaled with a . While the ef-

fects are indeed of 0 (a ), unlike those from higher
multipole contributions, the coefficients are relative-

ly small, so that even for the high-Z inner-shell
transitions the nonrelativistic dipole approximation
remains fairly good. This same feature, that for a
multipole matrix element relativistic and retarda-
tion effects (combined) remain small, has been ob-
served in s-state photoeffect and other processes.
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APPENDIX

A. Analytic wave functions,
energies, and normalizations

for the K and L shells

The radial wave functions, f (upper or large
component) and g (lower or small component) are
written in terms of the reduced radial functions F~
and F2 in Eq. (7). In the following discussion we
will write the reduced radial functions, energy
eigenvalues and normalization constants in the
forms

F~(r) =F~,(r)+Az(r)A2+A3(r)A3

F2(r) =F2,(r)+Bz(r)A2+B3(r)A3

E=E,—a (A~+e2A2+e3A3),

N =N, (1—n2A2 —n3A3),

where A„=V„A,"a ". We also let t =y+1 and
s =2y+1 where y=(n —a )'

1. %shell (Isq~2), n= —1, x =2ar We have.
the following:

c=0, A2 =px/4, A3 =A2(t +x/2),

F~ p, B2—— A2 (b———yx—/2),

83 — A 2 (bt —x /2 —yx /6 )

where p=2y'r and b =2y +y —2. Also,

E, =y, e2 ——s/2, e3 ——st/2,
(2a )s/2

n2 ——(2—y)e3/2,
Ju, [r( )]'" '

n3=(9+6y —4y )e3/6 .
2. L,j, L2 subshells (2sq&2, 2pqqz), ir=+1,

x =2ar/g', rl'=(2t) ~2. [Upper (lower) signs refer
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to the L q (L
& ) subshell. ]

We have

F„=—w, Az ———tx(op+aux)/4w,

23= t —x(bp+b&x+bzx )/2w,

where

w =(r)'+1)'~',

ap ——+(11+3y—6y )+(7—5y —6y )ri',

a, = {y+3) r't+t,

bp (9+ 2——y 4y )rt—'

'+( l l —loy —8y')t,

bi ——4y+7+2g', bg ——(yf-4+rt'/2)/3 .
Also,

F~=(t —x)/w,

Bg —— tx(c—p+c~x +cgx )/4w,

B3=—t x (dp+d]x +dqx +d3x 3)/2w,

where

cp =12/+ 16y —7y —13+2tri'

c~ ——2(1 4y)t+rt', —cz ——t,
dp=(8$+ 14y —3y—12)g'+(6y+ 1 )t,
d

&
——+3y—(4y+ 5)g'y,

dp ——(5—2y)g'/6, d3=ri'/6 .
Also,

E, =rt'/2, e, =[(6y+5)g'+2]/4,

e3 ——{4y +9y+5+3r)'/2)t,

(2a /g')*r
[2g'I'{s)]

n& ( 8y +——8y—+37y+17+3 )'y7)t/4,

n3 =[—20y +30y +149y+84

+3(8y—9)q'/2]t'rt'/6 .

3. L3 subshell (2p3/s ), a = —2, x =ar, y= (4
—a ) r. We have the following:

E),——0, Ap ——2m,

A3 2——rx(2t+x), r=2(2y)'

F„=,, B,=-~,(p-y /4).

B3— Ag—(2Pt —2x yx ~/6)

P=y +y/2 4. —

Also,

E,=y/2, ez ——s, e3 ——2st,

a s/2

N,=,r~, ng ——(8+y—y )s,
2[2yl'{s)]'r

n3 ——4(18+3y 2y )s—t/3 .

4. Nonrelativistic limits. In the nonrelativistic
limit (a « 1), these radial wave functions and en-

ergy eigenvalues reduce to the corresponding solu-

tions derived by McEnnan et al. in the nonrela-

tivistic version of the APT. One can verify that

f~rR and g~(d/dr +a/r)rR /2, where R is the
radial solution to the Schrodinger equation.

B. The integrals I'~'

Consider

I(L) f ~ (K )
&as+&cb &a+rbF(b)F(&) d

lJ Jp JL re r r .

We let

C' '=a" jl(Kr)e r ' ' dr
0

which can be evaluated directly for any n and
L =0,1,2 (the only ones that are needed in this cal-
culation) by using the formulas given in Eq.
(12a)—(12c). One gets the explicit results shown
below (keeping up to order A, and following the
notation in the Appendix, Sec. A).

I. Transition Kaq(2psrz~lsqrq) We have th.e following:

I() ——()I, ), Ipg' 2a[CI 'Ag+——(CI tb+Cg ) A3], o=(2y, yb)', Ig)' go[CI 'Ag+——(2CI ' +tCg ')A3],

Izz' 4rI Cp ————[2y s +ybsb —18)CI ' —(y +yb)Cz ']A&

——,[4(y,s, —8)t, CI '+(ybsb —2)tbC'~ ' —9Cz ' —2(y, +yb)C3 /3]A3] ~
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2. Transitions Ka2, KLt (2ptn, 2str2~1sta}. [Upper (lower) signs refer to the Ka2(KL, ) transition ]:

It2 =—[(st)'C't ' 2C—2 ')A2+[stt)'CI ' —(2t —t)'s)Cz ' —2C3 ]A3],
U

I I

I' '= —2u C' '+~( C[L]+ C[L')A +~( C' '+ C' '+ C' ')A

where

qt —— (6y +—5y 7}t (—2y +—y 2)(t)'+—1)+(6y —3y—11)t)'/2, q =(2y+3)t)'+s

[(8y +20y 13)t)' +(gy +6y —21y—20)]s, rz 2(4y +——1 ly+7)+1+(1+4t)t)',

r, =2[2(y+2)t)'+s]/3 .

Also,

I22 = — [2(2Ct —t) sCc ) +(QtCt +Q2C2 +Q3C3 )A2 +(R t CI +R2C~ +R3C3 +R4C4 )Ag]

where

Q t ——(12y'+ 16y —7y —13}t—[(2y +y —2)s+2t']rt',

Q2 ———(10y +7y 2)t)' 2(2y —+y 2—)+2t, —Q3 ——Zs,

R) =(16y +48y +26y —33y—26)t +2(6y+1)t

R, = 2t(8y'+20y'—+lly —2—3yt)'), R, = —,[3—(4y —2y —5)t)t], R =4s/3 .
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