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Analytic scattering length for potential scattering
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A formal, iterative perturbation series is developed for the inverse of the scattering length, in powers of the

coupling constant 2, . An analysis of the series is carried out for two examples of screened Coulomb potentials. It
allows us to isolate the nearby singularities and hence obtain the analytic continuations for the scattering length,

which are valid over a large range of values ofA, .

I. INTRODUCTION

The scattering length is an interesting parameter
in the collision of particles. It is important in the
description of low-energy scattering. Apart from
giving the total cross section at zero energy,

a(0) = 4'',
a being the s-wave scattering length,

= Um —tana, {q)),e-0 &

it gives information about the bound states of the
system. (The scattering length is often defined to
be equal to -a.) For example, if the potential is
attractive, a negative scattering length implies
the existence of bound states. ' It plays a particul-
arly significant role in the scattering of electrons
by the screened Coulomb potential of rare gases,
where it is related' to the Ramsauer-Townsend
effect.

For a given screened Coulomb potential one can
evaluate the scattering length directly by numeri-

'
cally evaluating 5,(q) and taking the appropriate
limit (2). Alternatively, one may calculate it from
the equation, '

da(r) = -2~V(r) Ir+ a{r)P,

equation for the scattering matrix T. It is pre-.
ferable to consider the series for a ' rather than
for a, since in most cases the series for Aa ' has
a larger radius of convergence. %'e analyze in de-
tail the specific case of the scattering length for
some screened Coulomb potentials which can be
written in the form

(4)

where r, is the screening parameter for which the
screening becomes significant when r & x,. It is
shown by a scale transformation that the scatter-
ing length for these potentials is a function essen-
tially of an effective coupling constant A.,

A. = Zy'o.

Then a study of the high-order coefficients in the
perturbation series in A. allows us to isolate the
nearest poles of a ' and hence obtain an analytic
continuation for a ', which is valid over a fairly
large range of values of ~.

As a possible application of these considerations
we discuss the scattering lengths for the collision
of electrons with rare gases. The screening para-
meter r, may in some cases be determined by re-
quiring that

a(0) = 0, a(~) = a,
or by using the Kohn-Hulthen variational proce-
dure. ' However, these calculations do not eluci-
date the structure of the scattering length, a struc-
ture which is rich in infinities and zeros when
there are many bound states. It would appeax that
a knowledge of the structure of the scattering
length as a function of the coupling constant can
provide not only a better understanding of its be-
havior, but also a practical means of calculating
the scattering length for potentials which are not
highly singular.

Re first develop a formal, iterative perturba-
tion series for a ' in powers of the coupling con-
stant X, by using the Noyes' form of the integral

where e is the polarizability of the atom. Vfe find
that the scattering lengths calculated for a typical
potential are in good agreement with the experi-
mental values for He and Ne.

II. GENERAL CONSIDERATIONS

Consider a collision process described by the
Hamiltonian

a= —.
' p'+ ~v(r).

%'e first write an integral equation for the scatter-
ing matrix which will allow us to obtain an iter-
ative perturbation series for the inverse of the
scattering length as a function of ~.
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A. An integral equation

The Lippmann-Schwinger equation for the par-
tial-wave projection of the T matrix is

P on f and q is suppressed. The function g(r„r,)
is related to the partial-wave Green's function, '
and is given by

with j,(r) being the spherical Bessel functions of
the first kind. For developing a pex turbation ser-
ies for the scattering length, it is convenient to
rewrite the integral equation in the Noyes' form.
For that one writes

T)(P q)= ~)(q q)f)(P q)

with ~, being the larger of the variables ~, and r»
and n)(r) being the spherical Bessel function of the
second kind. In terms of the above quantities, one
can write

B,((()=1—I dr, ar, r', u(r, )ger„r, )~,'s(r, l&(r,),
(21)

where the function E(r, ) satisfies the integral
equation

E(r2) = 1+— dr, dr r 4u(3r, )[g(r„r~)-g(r„r4)]
x r,'u(r, )E(r,) . (22)

The advantage of E(ls. (21}and (22) is that

with qcot6, =—ReD, (q)
(23)

f)(q, q) =1.
On substituting this in E(l. (8), we get

"I'du '(q' )~'( 'q} '

v, (u, q)
v')(q, q)

(14)

so that an iterative solution for ReD, (q) essentially
gives an expansion in powers of A. for q cot5, . One
can write

1
q cot5, = — b„k.",

n=p
where

dr, dr, r ',u(r, )g„(r» r, )r,'u(r, )E„(r,),

n&0. (25)

Here, g,(r„r,} is the real part of g(r„r,),

The quantity which is of primary interest to us
is the function in the denominator of Eq (14), .
which we designate as D, (q). One can rewrite this
function in a form which is more useful for com-
putations by going over to the coordinate space.
We now define u(r), E(r), g{r„r,), and P as fol-
lows:

u(r) = V(r)[j,(qr)]',

f (~e) O' I ) (&~)&(~l&,(~b=(«)~'«, ()'))

f),'df), j ) (kr, ) ) (j,(kr, )

P= Nxr dr,

where the dependence of u(r), E(r}, g(r„r,), and

2xp 2p ~ " (28)

where the expansion coefficients should be evalu-
ated for

u(r) = V(r),

2
g,(r„r.) = ——

g,(r„r.)=2q. '(
2g kN'& J

and E„(r,) are calculated iteratively:

E,(r,)=1,

E„(r,)=— dr, dr, r',u(r, )[g„(r„r, ) -g„(r„r,)]
1

x r ~~u(r~)E„,(r4), for n & 1. (2V)

These relations are especially simple in the limit
of q- 0 for the s wave, and lead to
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P = drr2Vr .
0

(31)

B. Scale transformations

One can show that for the class of potentials

x)'(r)= -—„f(—),
0

(32)

the scattering length is a function, effectively, of
only one variable. To do this, we start with the
Schrodinger equation

Equation (28) is our main result. The coefficients
of the expansion series are obtained from Eq. (25)
with F„(r,) being evaluated from Eq. (27). The an-
alysis of the expansion coefficients b„ for large n
then allows us to obtain the analytic structure of
a ', and hence analytically continue it beyond the
nearby singularities.

In principle, one may consider the perturbation
series for a, which can be obtained, for example,
from Eq. (3). However, as A. increases, for most
potentials the scattering length first encounters a
pole (when a bound state appears} and then goes
to zero The. refore, it is advantageous to con-
sider a ' which has a larger domain of conver-
gence (after separating out the pole at X=O) than
a. Of course one could obtain the series for a '
by inverting the series for a. Since we are inter-
ested in terms of fairly high order in X, we prefer
to obtain the expansion coefficients directly from
Eqs. (25) and (27). While Eq. (27) appears rather
formidable, it has an advantage that the integrand,
having a difference of two terms, converges
rather rapidly.

III. TWO EXAMPLES

From specific applications of the results de-
rived in Sec. II B we consider two examples of
screened Coulomb potentials:

Z -r
A. V (r) = ——expI

0
Z rXv)(r)= ——)-, „,g ).r (r'+r, }

(38)

(39)

The first potential is the Yukawa potential which
provides a good representation of the static po-
tential for a system of an electron and a neutral
atom. The second potential has an asymptotic be-
havior:

Zrp
XV( ) 3r" (4O)

and hence is a candidate for the interaction be-
tween an electron and a polarizable atom.

A. Potential V&(r)

the variables here being the coupling strength and
the screening parameter. [The scaling relation
Eq. (37) can also be obtained directly from Eq.
(3).] Thus a(z, r,)/r, is a function of only Zr,'",
which therefore allows us to treat the scattering
length as a function effectively of one variable,
i.e. , Zr', ". Specifically, if we take n=1 for the
screened Coulomb potentials, the scattering
lengths for the same value of Zr, but different val-
ues of rp will be linear in r, . This property great-
ly simplifies the analysis of the scattering length
for the class of screened Coulomb potentials given
by Eq. (4).

—.'P2- —.f —
~

y(~) = Ey(~)
z

r, &

and subject it to a Symanzik transformation'

r-r r, p- —p.
0

(33)

(34)

~v, (r)=-- e ', (41)

where X= Zr, is the effective coupling constant.
For this potential, one has the exact results

As shown in Sec. II, it is sufficient to consider
only

The resulting equation is P=-1

b, = -1,
(42}

(43)
(35)

Since the phase shifts for Eqs. (33) and (35) are
the same, one gets

5, (q, z, r,) = 6, (qr„zr ', ", 1), (36}

a(Z, ro) = roa(Zr 2 ",1), (37)

the variables being the momentum, the coupling
strength, and the screening parameter. This equa. -
tion implies that the scattering length in Eq. (2)
should satisfy the relation

while the coefficients b„ for n& 1 have to be ob-
ta, ined numerically from Eqs. (25) and (27). They
are listed in Table I.

The striking thing to be observed in Table I is
that after the first few terms, say, for n ~ 3, the
series approaches a geometric series with the
ratio of successive terms approaching the value
0.4489. This strongly suggests that the nearest
singularity of the function represented by the ser-
ies is a pole. We may therefore analyticaQy con-
tinue the function beyond the pole by writing
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TABLE I. The b„are the coefficients of expansion g„=b„-A&+2)" & and d„=c„-B&(82)""
for potential Vz(~).

bn+i
fI

Cn+i

c„ dn R» dn+ i
ff

fI

1 -1.0000
2 -1.5093 x10 i

3 -5.7894 xlo 2

4 -2.4794 x10
5 -1.0953x 10 2

6 -4.8881 xlO 3

7 -2.1897 xl0 3

8 -9.8197x10 4

9 -4.4063 xlo 4

10 -1.9778 x10 4

1.5093xlo i

3.8358xlo ~

4.2827x10 i

4.4176xlo i

4.4628xlo i

4.4797 xlo i

4.4845 xlo i

4.4872 x 10 i

4.4886 x10 i

-7.328x 10 i

-3.Q98 x 1Q
-4.O5O x 1O-'
-6.24 xlo 4

-1.03 x10 4

-1.75 x10 5

4.228x 10 2

1.307xlo i

1.54 xlo i

1.65 xlo i

1.70 x10 i

-6.098x 10 1.65x 10
-1.007 x 10 4.9 x 10-2
-4.95 x 10 4

(44)

where A =0.4489, and P c„X"' has a larger do-
main of convergence than ~X

~

& (0.4489) '. The
quantity A, is determined by noting the relation

b„= A, (A,)" (45)

which implies that A, = -0.2672, so that we can
identify the location of the nearest pole and its
residue. A similar analysis can be carried out
for the function represented by g c„k." ' whose
coefficients are obtained from

c„=t„-A,(A,}"' (46)

and are given in Table I. Since c„for large n are
not very accurate, having small differences be-
tween two nearly equal numbers, they are given
only for n= 1, . . . , 6.- It is again observed that the
ratio of successive values of c„approaches a con-
stant value of about 0.1VQ indicating that the near-
est singularity of the function represented by Q
c„X"~ is again a pole, thus allowing us to write

I+X Qb„X" '=0 (51}

under which condition the scattering length be-
comes infinite. Using Eq. (49), we find that the
first bound state appears at the critical value

and the scattering length from Eqs. (28) and (42)
1s

a= 2A.
(50}

1+Xg b„k"~

The position of the third pole is not accurately de-
termined so that Eqs. (49) and (50} are expected
to give a good analytic continuation of the scatter-
ing length for X & 7, i.e., just beyond the second
pole in Q„"~ b„X"~ The .predictions for a, for
some typical values of X, are given in Table II,
along with the values obtained by numerically
solving the Schrodinger equation using Numerov's
method. (The numerical value given for X=0.5 is
from the summation of the perturbation series. }

One can also calculate the values of A or Zr, at
which the first two bound states appear by requir-
ing that

gc„&" = ' +gd„iP',
2

(47) X, =0.840, (52)

where B, = 0.170 and Q d'„3P~ has a larger domain
of convergence than that of Q c„X"'. Then, the
quantity B, is determined by the condition

TABLE II. Predictions for the scatteri, ng lengths a&
for potential Vz(t') along the numerical values a„.

0„= B,(B )" (48)

0.206
049&

—Oy4038 y (49)

which gjves the result that B,= -0.123; We can
now similarly proceed with g d „X"~ but with
much less accuracy. We finany obtain

0.26V2 0.123
1 —0.4489K, 1 —0.1VOX

0.5
1.5
2.5
3.5
4.5
5.5
6.5

2.207
-2.122

1J.5
-9.87
-2.83
-0.90

2.64

2.207
-2.128

1.11
-10.47
-2.95
-1.03

2.91
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and the second bound state appears at

x, =3.21. (53)

states appear, by requiring that

1+Xgb„X" '=0,
n=l

(57)

B. Potential V&&(r)

In this case, the arguments of Sec. II imply that
it is adequate to consider

for which the scattering length becomes infinite.
From Eq. (55), it is found that the first bound state
appears at

Xvi& (&) = 1 3 i/3y (r +1)

where X= Zr, is the effective coupling constant.
For this potential, one has

I
2 (54}

z, =1.226,

while the second bound state appears at

z, =4.85.

IV. AN APPLICATION

(58)

(59)

while the coefficients b„are obtained numerically
from Eqs. (25) and (27) and are listed in Table III.
We now proceed along the same lines as we did for
V, (r) to obtain

0.258 009 0.1279
1 —0.345 207k. 1 —0.130K

As a practical application of the results obtained,
we discuss the scattering lengths for the scatter-
ing of an electron by rare gases. ' The potential
for this scattering should have the property

~v(~)
Z

(60)
r~0

0.1711
1Q 035' 0.0372 (55) a/2

~v(r)
r

(61)

(56)

analogous to Eqs. (49) and (50) for V, (r). Here al-
so, the position of the third pole is not accurately
determined so that the analytic continuation for
the scattering length is expected to be good for A

( 9, i.e. , just beyond the second pole in Q„=, b„X" '.
The predictions for a, for some typical values of
~, are given in Table IV, along with the values ob-
'tained by numerically solving the Schrodinger
equation using Numerov's method.

One can use Eqs. (55) and (56) for calculating
the values of A. or Zr, at which the first two bound

0 2Z
(62)

which ensures that Eq. (40) has the same asymp-
totic behavior as Eq. (61). The required scatter-
ing length is then deduced by using Eq. (37),

(63)

where the right-hand side can be obtained from
Eq. (56), with X = Z(3a/2Z)'~'.

where a is the polarizability of the atom. One may
therefore take Xv»(r) as a good candidate for sim-
ulating such a potential, provided we take

TABLE III. The b„are the coefficients of expansion c„=b„-A&+2)"- and d„=c„-B&p2)"-
for potential Vn(~).

bn R =
n

n
Cn

Cn+1

cn

R+ dn+i
ff

1 -5.94245x10 i

2 -1.11656x10 i

3 -3.31175 x10-2
4 -1.09004x10 2

5 -3.70049x10 3

6 -1.269 58 x10 3

7 -4.372 4g x10 4

-1.50808x10 4

9 -5.20423 x10 ~

10 -1.79631x10 5

11 -6.200 71 x10
12 -2.140 50 x10

1.878 96 x10 i

2.g6602 x10 ~

3.29144x10 i

3.3g481x10 ~

3.43084x10 i

3.44404 x10 i

3.449 01 xl0
3.450 91 x10 i

3.451 64 x10 i

3.451 g2 x10
3.452 03 x10

-3.3624 x10 '
-2.2590 x10-2
-2.3711x10 3

-2.8657 x10 4

-3.651 x10 5

-4.749 x10 6

-6.197 x10 7

6.718 x10- -2.0834 x 10 2.856 x10
1.050 x 10 -5.9495 x10 3.5 x10
1.209 x10 -2.096 x10
1.274 x10 i

1.30 x10 i

1.30 x10 i
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TABLE IV. Predictions for the scattering lengths a&
for potential Vzz(r), along with the numerical values a„.

a„

=18 so that it is outside the range of validity of
Eq. (56). In any case, the structure of these atoms
is complicated and it is not realistic to describe it
in terms of only its polarizability.

4.07
-1.38

0.14
2.35

-18.3
-2.34

0.74
0.31
1.43

4.06
-1.40

0.1
2.3

-20
-2.5

0.8
0.4
2.0

For He, Z=2, a=1.36, and the corresponding
value of ~ is

X„=2.0. (64)

Hence, by using Eq. (56}or Table IV, and Eq.
(63), we get

a„,= -1.38, (65)

which compares favorably with the observed value'
of a„,=-1.19. Similarly for Ne, Z=10 and a= 2.65,
so that

X„,=7.35.

Then using Eqs. (56) and (63), one obtains

a„,= —0.26,

(66}

(67)

which is in good agreement with the experimental
value' of a„,= -0.24. However, the agreement in
these cases should be regarded as encouraging but
inconclusive since we have omitted all the exchange
and polarization effects.

For heavier rare gases such as Ar, Kr, and Xe,
the effective value of X is quite large, e.g. , A.„,

V. DISCUSSION

We have developed a formal, iterative perturba-
tion series for the inverse of the scattering length,
in powers of the coupling constant 4 This series
is analyzed in detail for a class of screened Cou-
lomb potentials. The large-n behavior of the se-
quence of the coefficients of the series allows us
to isolate the nearby singularities as a function of
X, and hence obtain an analytic continuation for
the scattering length which is valid over a. fairly
large range of values of X. This technique can, in
principle, be used to obtain the analytic contmua-
tions of the scattering length as a function of the
coupling constant, for other potentials as welL

Our sequential method of the analytic continua-
tion of the scattering length is simiIsr in spirit
to the Pade-approximant technique. However,
since the region of interest extends into the region
of singQaxities the major concern of the sequen-
tial method is to stabilize the parameters of the
nearby singularities, which in the cases consid-
ered, are the positions of the poles and their res-
idues. It is likely that if the Pade approximant
for the perturbation series converges, it wQI
give for n- , the same result as the sequential
method.
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