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In this work we represent the static potential of an electron interacting with an atom by a sum of two Debye-
Huckel or Yukawa functions. We approximate the nonlocal exchange term by an attractive, velocity-dependent
potential using the effective-mass approximation with a regularized Yukawa form factor. This is transformed to an
approximate local but energy-dependent potential. We also include an imaginary term with a regularized Yukawa
form factor in the static potential. We apply this framework to a description of the bound and scattering states of
electrons interacting with atomic oxygen and electrons interacting with neon. The results suggest that a small degree
of velocity or energy dependence yields improvements with respect to the use of strictly static electron-atom
potentials. In applications to atomic physics the formalism which is economical in parameters should serve as a

simple parametrization of experimental data and as a means of extrapolation and interpolation of experimental
observations.

I. INTRODUCTION

The work of Green, Sellin, and Zachor (GSZ}'
and a number of subsequent studies' ' have shown
that all the single-particle energy levels of any
light- or middle-weight neutral atom or ion can be
generated quite precisely by the use of Schrodin-
ger's equation with an analytical potential of the
form

2 Z-g
r B(e"—1}+1 "j'

Here H and d are adjustable parameters, g=0 for
a negative ion, - q =1 for a neutral atom, g =2 for a
singly charged positive ion, etc. The work of
Darewyche et +l.' has shown that the energy levels
of heavy atoms are well described by Eq. (I}when
it is used in conjunction with the Dirac equation.

The ealeulations of Berg, Pureell, and Green
(BPG)' have shown that Eq. (I) with g = 0 realis-
tically represents the interaction of incident
electrons with a neutral atom. This is illustrated
by the differential elastic cross sections calculated
for electron scattering by the rare gases Ar, Kr,
and Xe as shown in Fig. 1. Here the boxes are
relative experimental cross sections which have
been normalized to agree with the corresponding
area under the theoretical angular distribution.
The parameters H and d were taken from the
bound-state parameters of QSZ without adjust-
ment. These impressive scattering results, ob-
tained over a decade ago, suggested that simple
analytic independent-particle models (AIPM)
for atoms can account for large bodies of experi-
mental data and provide a means of interpolation
and extrapolation from limited experimental data.
In nuclear physics AIPM have played a similar

role. ' '
The AIPM has already proved useful in studies

of electron energy deposition where the lack of
comprehensive experimental data has been a
major obstacle. Thus, systematic trends of in-
elastic and ionization cross sections have been
calculated using Schrodinger wave functions
generated with AIPM, 'o'2' The primary purpose
of the present study is to examine several refine-
ments of AIPM models for atoms, which might
improve the generation of differential elastic
scattering cross sections. These are particularly
needed for Monte Carlo calculation of spatial-
yield spectra (SYS)." In such calculations there
are tactical advantages to the use of a potential
which leads to analytic cross sections in the Born
approximation. These advantages have been dus-
cussed by Green, Schippnick, Bio, and Ganas"
(GSRG), who use a sum of two Yukawa or Debye-
Huckel functions as the bound-state potential for
0 and the optical potential for the scattering of
electrons by atomic oxygen. They also show that
a modified phase-shift formula based on the Born
approximation for the double Yukawa (DY) function
can serve as an accurate analytic representation
of the Schrodinger phase shifts when corrected to
satisfy Levinson's theorem. "'"

In the present work, we develop a unified bound
and scattering state model which goes beyond
simple static models. In particular, we include a
nonlocal or velocity-dependent part to the poten-
tial to represent exchange effects and an imagin-
ary component to represent inelastic processes.
We show that the improved model provides a rea-
sonable synthesis of the sparse data for electrons
interacting with oxygen (0) and a good synthesis
of the abundant data for electrons interacting with
neon (Ne).
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FIG. 1. Composite diagram of theoretical and experimental differential elastic scattering cross sections for Ar,
Kr, and Xe. The vertical axis is logarithmic. The energy of the incident electron is listed next to the curve {adapted.
from Berg et al. , Ref. 6).

II. VELOCITY-DEPENDENT BOUND
AND SCATTERING STATE MODEL

1 I' 1 t

Qr) =-2Z —I;+ (1——~I'2 (2)

where

y =r &~ "~& y =r && &~&
1 2

s =d/(H+ 1). (4)

The scale factor relationship, given by Eq. (4),
insures that the static DY potential behaves like
the GSZ electron-atom potential. The GSZ poten-
tial has been demonstrated to be a convenient
AIPM which yields eigenvalues and wave functions
with precision comparable to those of the best
numerical Hartree-Pock IPM potentials. "' It
might also be remarked that the Debye-Hiickel or
Yukawa potential has been considered as a can-
didate for the electron-atom potential in a number
of earlier studies. "~ Although a single Yukawa

potential does not accurately approximate the
electron-atom potential, the two-parameter
generalization of the Yukawa function given by
Eq. (2), which reduces to a single Y function when
&= 1, can serve as an accurate model.

In the present work, to provide for nonlocal
exchange and correlation effects we assume that
the electron-atom system obeys an integro-dif-
ferential equation of the form'~

Following GSHG we assume that the static com-
ponent of the IPM (independent-particle-model)
potential may be represented by the double Yukawa

function

where the t:erm on the right-hand side is the
mathematical form of the exchange term. In
atomic structure studies Slater, "Gaspar, "Kohn

and Sham, "and Slater and Johnson ~ have used a
statistical model to reduce the nonlocal exchange
term to a static contribution to the electrostatic
Hartree potential. This procedure reduces the
many-electron problem to a static independent-
particle model (IPM), which is quite accurate and

has many convenient mathematical features. In

scattering studies the nonlocal term may be more
important, especially at higher bombarding ener-
gies. Here we treat this term by methods used in

nuclear physics where such terms are of major
importance and hence, have been subjected to in-
tensive analyses.

Following Frahn and Lemmer" we assume that
the nonlocal term in Eq. (5) may be expressed as

K(r, r') =K(r)+(s),
where

r =2(r+r') s =r —r',

n(s) =(sb')~+ e p[-x(s'/b')].

By expansion techiques" ~'9 which neglect terms
of the order of V' or higher we find

K r, r' P r' dr'=K r, p g r,
where
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K(r, p)N(r)

~K(r)g(r) +—[V K(r) +2VK(r) V+K(r) V ]P(r) .
16

(10)

The choice of K(r) must be made with care. If it
were taken to be proportional to V(r) as given by

Eq. (2), it would cause singularity problems in

the radial Schrodinger equation. The Wood-Saxon
or the Green-Wyatt functions used in nuclear
physics"' are constant near the origin and hence,
do not lead to this singularity difficulty. We can

avoid it in atomic physics by taking K(r) as a
regularized combination of Yukawa functions"

K(r) =-K ( Y, —Y,) =-K $(r),

a form factor which insures that K(r) is propor-
tional to the static potential gr) at large dis-
tances. The negative sign before K, is chosen
since theoretical studies of the exchange term" ~'
indicate that it makes an attractive contribution in
the complex atom. Inserting Eqs. (4) and (10} into

Eq. (5) we find that the Schrodinger equation be-
comes

8+ l()(rg= ),( ) — ' [o ((r)+2m((r)V+((r)V'))((r), (12)

where

V,(r) = P(r) +K(r) =-S,Y, - S, Y„

Sy +Ko, S2 = 2Z —S
2Z

(13)

(14)

M(r) = (15)

where (j) =-&$(r) with

6 =K,P'a'm/2k' = P'K, /4(R (16)

and P = b/a, . Then the Schrodinger equation be-
comes (see Ref. 9, p. 170)

We may combine the momentum-dependent terms
in Eq. (12) with the kinetic-energy operator by
defining the so-called effective mass

Eqs. (19) and (20) all lengths are in Bohr radii
(a,} and energies in rydbergs (g'/2ma, '). If we

go to the static limit of Eq. (20) (j) = 5$(r)-
= -&( Y, —Y,) vanishes and the effective potential
then becomes simply Eqs. (13) and (14). Thus the
static part of the potential in Eq. (20) is just the
DY potential given by Eq. (2) with extra terms
representing a static exchange effect. These
terms can readily be absorbed into the primary
static terms by a readjustment in the parameter
H.

For small but nonvanishing |) the energy depen-
dence of V,(r, E) in Eq. (20) occurs through the
term EP/(I + (j)) = -&E(Y, —Y2). Accordingly,
for small degrees of velocity dependence we would

expect to be able to approximate V, (r, E) in linear
form by

k~( 1
~ 2 V V+ I )(') ((i) + )'lr)((r)1 V (r, E) = —C,(E) Y, —C2(E) Y2,

where

(21)

= Eg(r) . (17)

Wyatt, Wells, and Green, "after reducing this
equation to its radial form, solved for bound and

scattering wave functions using the Runge-Kutta
method. A more frequently used approach in the
more recent nuclear literature is to introduce the
transformation of Green"

(18)

Ci(E) = Si + 5E,

C2(E) =2Z-'S, —6E.

(22)

(23)

At this point there are four possible adjustable
parameters in the velocity-dependent optical
potential: d, s, S„and &.

To allow for absorptive effects we add iW(r, E)
to V,(r, E) in Eq. (21), where we choose

which changes the Schrodinger equation to W(r, E) =-W (E)( Y, —Y,). (24)

-v'X+V. (r, E)X=EX,

where

V~(r) + ~ V ((t) 1
I+ (j) 4 I+ P I +(t)

(19)

(20)

is now a local but energy-dependent potential. In

This regularized Yukawa function should provide a
reasonable average transition density function to
characterize the inelastic processes which are
simulated by the imaginary term. We have no
simple basis for determining the form of W, (E)
other than to expect that W(r, E)=0 for E below
the threshold (T) of the first excited state of the
atom. Additionally, we might expect W, (E) to
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asymptotically go over to the form of high-energy
inelastic cross sections, i.e. , W(E)-E 'lnE.
A suitable form which satisfies these constraints
and has sufficient flexibility for fitting data from
high to the threshold energy T is~

&z
W,(E) = ur E ln n

~&

——1 + 1
la IW

where ~, a, and v are adjusted parameters.
At this point, we have developed all the pheno-

menological machinery needed for our work,
therefore, let us now turn our attention to some
simple applications.

(25)

III. APPLICATION TO THE e-O SYSTEM

Because of experimental difficulties the elec-
tron-oxygen scattering system has been the sub-
ject of many theoretical investigations'0~4 but
only a few- experimental studies" ~' of recent
vintage. The bound-state negative ion 0 has
been subjected to considerable examination as
summarized recently by Hotop and Lineberger. ~'

In addition, an accurate Hartree-Fock description
of 0 is available. 39 The magnitude of the eigen-
values obtained in this Hartree-Fock model are
listed in row 1 of Table I.

Independent-particle models of the bound states
of 0 have been studied recently by Qanas, Tal-
man, and Qreen. " The magnitudes of the eigen-
values obtained by the optimum method are given
in the second row of Table I. The eigenvalues
produced by use of the analytic GSZ potential'
adjusted to exactly give the electron affinity
(0.10'75) are given in row 3. The fourth row gives
the results of the static double Yukawa model of
GSHQ. The fifth rom gives the results of this
work, the velocity-dependent potential, which has
been adjusted to give perfect agreement to the
electron affinity and good agreement to the Har-
tree-Fock 1s and 2s states. Our objective now
is to examine to what extent the model defined by
the three adjusted parameters (d, H, and 5)

TABLE I. Magnitudes of eigenvalues (Ry) for 0 (g=S,
electron affinity = 0.1075).

change the predications of the purely static GSHG
model.

Figure 2 illustrates the velocity-dependent
potentials as defined by Eq. (20) for this work.
The curves labeled 1s and 2P show the effective
potentials acting in these bound states. For
practical purposes the latter may be viewed as
the potential at zero energy. The other two cur-
ves illustrate sample positive-energy effective
potentials. Also shown on this diagram-are the
optimum (OPT) potential and the static exchange
potential in the OPT model of Talman. ""

The numerical calculations for e-0 were car-
ried out with the parameters listed in Table I.
These correspond to a weak energy dependence as
compared to that involved in nuclear physics
where the effective mass, a reduced mass, goes
to about O.vm near the center pf a nucleus.
Here the form factor t(r) approaches the value
2.224 as r-0 so that the effective mass, an en-
hanced mass, goes to about 1.1m, near the atomic
center.

The elastic cross section and angular distribu-
tion data available for e-O scattering are very
sparse. Figure 3 illustrates the resultant values
for the differential elastic scattering cross section
obtained using the analytic velocity-dependent po-
tential (AVDP) model, as compared with measure-
ments of scattering of 15 eV electrons by O. One

to

0+io

4 )oI
LU

I-
V
)~+ lO

LU

HF 42 40.396 1.6265 0.2585
2 OPT 22 37.259 1.3416 0.2540
3 082' 22 36.757 1.140S 0.1075 0.8860 1.9607
4 DY 23 36.698 1.1391 0.1071 1.0562 2.2700
5 VDP T%' ~ 40.270 1.2915 0.1075 1.0862 2.2491

~Denotes this work with the velocity-dependent pa-
rameter p=0.1554 and f5 =0.03979 where Xo has been re-
placed by Sq for calculation purposes. S~ = 6.5866, 82
=9.4133, d=1.086, and s=0.3167.

4 I I I

IOO I I IO

RADIAL DISTANCE (aa)

FIG. 2. Curves representing V~/, E) given by Eq. (2)
for &(1s), EQP ), E = 1 and 2 keV. The solid points de-
note the potential for 0 given by the optimum method
of Talman and the open circles show the corresponding
static exchange potential . .
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FIG. 3. Experimental differential cross sections for

total scattering from oxygen measured by Dehmel et ul.
(crosses) and theoretical cross sections based upon
AVDP model (solid curve).

notes that the agreement is reasonable even though
we have not included an imaginary term. We
could, of course, further improve the fit by in-
cluding %0, but in the case of scattering by 0 the
data are simply too sparse to make the effort
worthwhile.

Figure 4 shows the angular distributions cal-
culated with the static potentials of GSRG and the
velocity-dependent potentials of this work. One
sees that the changes are small over this limited
range of energies.

IV. APPLICATIONS TO e-Ne SCATTERING

In contrast to the e-0 system, there are no
bound states of e-Ne but there is an abundance

v l ~ g I ~ I { $ I
i I y

of scattering data. Accordingly, we have con-
centrated our efforts on fitting scattering data.
with our velocity-dependent-potential model.

The total elastic and inelastic cross sections
were taken from the compilation of de Heer
et al." At low energies absolute DESC (dif-
ferential elastic scattering cross section) data
were obtained from William and Crowe. From
106-500 eV we used absolute data from William
and Crowe, Jensen, "and Bromberg. " A

weighted average based on the assigned absolute
error was calculated for data which overlapped.
Relative DESCs were not used.

Our optical-model computer code was coupled
to a nonlinear least-square ILLS) code. Initial
parameter guesses of Cy d, and s were used
based upon the systematics of static potentials.
The parameters were adjusted iteratively to
optimize the fit of the calculated DESC to avail-
able data at each energy. Using these parameter
values we calculated a well strength Parameter"

r, rdr = C, d-s +2Zs
0

(26)=(S, +&E)(d —s)+2Zs.
Despite large fluctuations in C„d, and s we

found that S(E}conformed quite well with a linear
relationship for C,(E} [Eq. (22}], but with 5 having

an opposite sign as compared to the 0 system. The
results are illustrated in Fig. 5. Using the S(E)
line as a constraint we found it possible by itera-
tion to arrive at fixed values of S„d, s, and 6

(see Table II}, which gave very good DESC. The
values of C,(E) and C,(E) given by Eqs. (22) and

(22) are also shown on Fig. 5.
During the final parameter searches we re-

quired that the inelastic reaction cross section
o~, produced by the optical model, match avail-
able experimental values. This was accomplished

-88.7
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FIG. 4. Relative magnitudes of differential cross
sections for velocity-dependent AIPM model (solid
curves) and static model of GSRG.

FIG. 5. Graphs of functional dependence of Yukawa
coeP'icients C&(E) and C2+) and associated Sg) used
in modeling neon for both bound and scattering energies.
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TABLE II. Parameters for double Yukawa velocity-
dependent-potential model (T = 16.85).

40.0

Parameters Numerical value

Sg
6
d

13.00
-0.01

0.5956
0.3438

21.96
0.01
1.788

1.0-

TABLE III. Comparison of calculated and pseudoex-
perimental total inelastic reaction cross section (units
are ao).2

S (eV)
Reaction cross section

Calculated Experimental

30
40
50

100
150
200
300
400
500
750

1000

0.827
1.41
1.83
2.74
2.93
2.92
2.69
2.41
2.15
1.59
1.23

0.754
1.35
1.85
2.92
3.05
2.98
2.62
2.30
2.05
1.60 L

1.31

~ Interpolation.

by allowing W,(E), the coefficient of the imaginary
potential, to establish its own energy dependence
once we had set d and s. The calculated and ex-
perimental values of the inelastic reaction cross
section are given in Table III. The corresponding
values of W,(E) are presented in Fig. 6. A fit of
W,(E) using Eq. (25) with the parameters &u, a,
and v given in Table II is also shown.

The final fits of our model to the e-Ne DESC
data are presented in Fig. 7. It is gratifying that
the systematics. of the experimental data are well
represented by this analytical energy dependent
IPM. Also shown on this figure are results of the
optical model of McCarthy et al. Table IV gives
a gross comparison of the g' statistic for these
two models at energies and angles for which
McCarthy et al. presented numerical data. From
the viewpoint of the intended applications it is
gratifying that our simple analytic velocity-depen-
dent-potential model compares favorably with
their more elaborate optical model. By local ad-
justment of parameters one can fit the data almost
exactly.

Having set the energy dependence of the scat-
tering potential we may consider the system of
the neon atom and incoming electron to approxi-
mate a Ne ion with its associated bound states.

100 1000
E(ev)

FIG. 6. Values of W, used in NrLs fit to obtain the
inelastic reaction cross section 0+ for neon. The solid
line represents the analytic fit based on Eq. (25).

We have calculated the bound-state eigenenergies
for the initial Ne system by simply using the
potential model and associated parameters. These
are presented in Fig. 8 along with the correspond-
ing eigenenergies of neighboring negative ions. "
It is pleasing to see that the bound states fall into
a reasonable pattern. It is also gratifying that the
Ss state does not bind since no negative ion of
neon exists.

V. SUMMARY AND CONCLUSION

We have presented a convenient velocity- or
energy-dependent analytic independent-particle
model which describes the bound states of 0
and gives a reasonable account of differential
elastic scattering cross section (DESC) data using
a semiempirical IPM potential. We have also ad-
justed this model to the DESC data for the e-Ne
system from 20-1000 eV. In this case we have
also required cross section for the same range of
energies. The model provides a good synthesis
of the large body of data available for this system.

For both substances we have found it helpful to
include an energy-dependent term of the form
&E(Y, —Y,), which is expected to follow from any
small nonlocal term in the electron-atom inter-
action. The value of & which was assigned on the
basis of the bound-state data in 0 came out
small and positive. The value of & assigned on
the basis of the e-Ne scattering came out small
and negative. This might represent nonlocal
exchange effects which conceivably might reverse
sign between 0, which may be viewed as a hole
in a complete shell and Ne which has a particle
beyond a complete shell. Alternatively we might
be mocking uP polarization, relativistic, or cor-
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FIG. 7. DESC for. neon. The symbols represent experimental data, and the solid line represents our current optical
model. The dashed lfine represents the optical model of McCarthy et uE.

relation effects which are not explicitly included
in the static potential.

It is encumbent upon us to compare this AIPM
model with the work of McCarthy et ul."which
treats elastic scattering of electrons from the
rare gases by a more iheoretioal formalism
which starts with tables of Hartree-Fock wave
functions. These are used to generate a screening

potential which together with the potential due to
the nuclear- charge provides the static potential
acting upon the incoming electrons. They add an
equivalent energy-dependent local exchange po-
tential based upon the approximation of Furness
and McCarthy, 4' Percy and Buck, 4' and a local
WEB approximation. They also include a static
polarization potential based upon the work of
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TABLE IV. Gross comparison of presented optical
model and optical model of McCarthy et al. X~ based on
limited set of angular values.

S (eV) Model
X values

McCarthy

20
3Q

40
50

100
15Q
200
300
400
500
750

1000

0.845
0.537
0.315
0.709
1.19
0.308
0.869
0.934
0.775
0.591
0.301
0.243

0.142
0.207
0.174
0.336
1.57
0.150
0.234
0.225
0.266
0.599
0.869
0.935

10.0-

1.0—

Temkin and Lamkin" and the approximate imagin-
ary optical-model potential of Furness and
McCarthy. They achieve very good descriptions
of DESC for the rare gases from 20-3000 eV
essentially with only the adjustment (at each en-
ergy) of the imaginary strength parameter. When
a negative ion exists the present analytic velocity-
dependent-potential model starts with a very good
and very convenient analytic approximation to the
Hartree-Fock potential, whose parameters are
adjusted to accurately represent the electron

affinity of the negative ion (which HF does not
achieve"), and give reasonable inner bound-state
properties. An exchange or nonlocal term is
treated by the effective-mass approximation to
transform it into velocity- (or momentum-depen-
dent) terms. These are then transformed away to
arrive at an effective local but energy-dependent
potential. The procedure is different from the
Furness-McCarthy approximation and the exchange
potential approximations used by Bransden et al."
While slightly less economical in the parameters
adjusted to the scattering data, this AIPM model
is much simpler to apply and to communicate the
essential results (e.g. , the potential parameters).
Indeed, the energy-dependent AIPM model is al-
most as simple to apply as the static GSZ potential
which, as shown by Berg et al. ', provides excel-
lent fits to relative data on elastic scattering of
electrons by the rare gases without any adjust-
ment of parameters. The extra flexibility afforded
by this energy-dependent model makes it possible
to do better yet, and to fit the absolute data which
is now available with a quality comparable to and
sometimes better than that achieved by McCarthy
et al." Accordingly, we believe the present model
can serve a useful role in atomic physics in
facilitating the discovery of the nature of inter-
actions by noting the values of the parameters
fitted to data and observing consistent trends for
varying energies and targets. The fact that we
are here using Yukawa potentials which have con-
venient Born approximation transforms should
further facilitate such studies.

Finally, it should be noted that the velocity-
dependent methodology used here has been used
rather extensively in nuclear, "'""nucleon-nu-
cleon, ""and particle physics. " " In the nuclear
case the use of Eqs. (9) and (10) turned out to be
much better approximations than originally ex-
pected because important velocity- or momentum-
dependent potentials actually arise out of the basic
nucleon-nucleon interaction, "" in addition to
those arising from the nonlocal exchangelike terms.
Accordingly, it should be expected that the further
development and application of velocity-dependent
potentials in the context of atomic physics, a
better understood area of physics, might well
prove helpful in the understanding of nuclear,
nucleon-nucleon, and particle physics.
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