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A general procedure is proposed to treat a many-state atomic-collision problem involv-

ing both nonadiabatic radial and rotational couplings. The procedure is based on the

classical S-matrix theory in a new "dynamical-state" representation. The dynamical

states are defined as the eigenstates of a new Hamiltonian operator which is composed of
an ordinary electronic Hamiltonian and a Coriolis coupling term. The dynamical poten-

tial energies thus obtained avoid crossings even for the rotationally coupled states. At

these avoided crossing points the rotationally induced transitions predominantly occur,

which are delocalized in the ordinary adiabatic-state representation. The theory is applied

to certain two-state- and three-state-model problems, and is shown to work well. An in-

teresting catalytic phenomenon is found in a three-state problem. A certain transition is

enhanced by a rotational coupling not directly associated with that transition; besides, a

transition directly induced by that rotational coupling is not affected by the coupling re-

sponsible for the first transition. This phenomenon can be successfully explained and

reproduced by the theory. A condition is discussed for this kind of phenomenon to occur

in a general many-state collision problem involving rotational couplings.

I. INTRODUCTION

Among a variety of mechanisms the following
four represent the basic ones which govern the
various atomic and molecular dynamic processes:
{1)electron correlation {configuration interaction},
(2) nonadiabatic radial coupling, (3) diabatic cou-

pling between molecular Rydberg states, and (4)
nonadiabatic rotational coupling. The first one is
the mechanism responsible for the decay of
molecular-resonance states embedded in the elec-
tronic continuum. Penning ionization and a uni-

molecular decay of the superexcited states are the

typical examples of the relevant dynamic
processes. ' These processes can be treated, to a
good accuracy, by the local complex potential
method. The nonadiabatic radial coupling
represents the best known mechanism which is
responsible for the transitions between low-lying
excited-adiabatic-molecular states of the same sym-

metry. The transition is well localized at an avoid-

ed crossing of potential-energy curves. As is well

known, the Landau-Zener-Stueckelberg {LZS)
theory, and its extensions and modifications can be
successfully applied to the problem. If we use the
ordinary adiabatic-state representation, the transi-
tions involving molecular Rydberg states are also
governed by the nonadiabatic radial coupling. The
treatment on this line, however, is not very effi-

cient, since no avoided crossing exists between the
Rydberg states. A more elegant way of treating
the problem is given by the multichannel
quantum-defect theory (MQDT). 's Determination
of energy levels of the perturbed Rydberg states, '

autoionization of vibrationally and/or rotationally
excited Rydberg states, 6' and the dissociative
recombination involving Rydberg states as inter-
mediate ones have been quite successfully treated

by MQDT. The theory seems prospective for an
extensive use in the studies of various atomic-
collision processes.

Rotational coupling presents another important
nonadiabatic coupling which governs a transition be-
tween the adiabatic states of different symmetry.
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This coupling is known to play a derisive role in
high-energy ion-atom collisions. ' In general, how-
ever, the rotational coupling has been given less at-
tention compared to the radial coupling. For in-
stance, its role in chemical reaction systems should
be more carefully investigated. Also an efFort
should be paid more to derive analytical formulas
for the amplitude of a transition induced by this
coupling. It is desirable to develop a theory which
not only gives a useful analytical expression for the
transition amplitude, but also makes the transition
localized at a certain point such as a pseudocross-
ing point in the radial coupling problem. The lo-
calization of the transition is important, since it
would enable us to deal with a many-state collision
problem by a step-by-step treatment based on the
two-state co11ision theory. A theory which meets
these requirements was proposed recently" by us-

ing the dynamical-potential representation. ' The
theory was tested to work quite well in two-state
problems.

In Sec. II of this paper an analytical structure of
rotational coupling problems is reviewed in com-
parison with that of the radial coupling problems.
The dynamical-state representation is introduced in
Sec. III. The new representation tranforms the
analytical structure into the one the same as that of
the radial coupling problems, and thus enables us
to employ the conventional Landau-Zener-
Stueckdberg or Rozen-Zener (RZ} formulas. Sec-
tion IV demonstrates the usefulness of the theory
in the basic two-state problems. By merging the
theory into the path-integral formulation of a
scattering matrix, ' an application is also made in
Sec. V to a three-state problem which imitates a
vacancy migration from the 2p-shell to the 2s or 1s
shell in the Ne+-Ne system. This system involves
two rotational couplings: one between the 1m'„and
20„states, and the other between the lm„and 10„
states. The problem is shown to be successfully
treated by the path-integral formulation based on
the new dynamical potentials. The new potentials
are obtained by diagonalizing the 3&3 matrix, the
diagonal elements of which are the ordinary adia-
batic energies, and the ofF-diagonal elements of
which are the rotational coupling terms. An in-
teresting catalysis efFect of the 2o.„state on the
transition 1m„~lo„was found. This efFect can be
reproduced well by the classical S-matrix theory
based on the dynamical potentials. A prescription
is discussed to treat a general many-state collision.
problem involving both rotational and radial cou-
plings. For simplicity the linear-trajectory-impact-

parameter method is employed throughout the pa-
per. Thus the internuclear distance R is given as

g 2 p2+ ~2t2

where p is the impact parameter, u the collision
velocity, and t is time. Atomic units are used
throughout the paper.

II. ANALYTICAL PROPERTIES
OF NONADIASATIC ROTATIONAL

COUPLING

As is well known, the complex zero R» =R (t» }
of the difFerence he(R) of adiabatic potential ener-
gies play an important role in the nonadiabatic
transitons induced by radial coupling. The real
part of R, is roughly equal to the avoided crossing
point where

~
he

~

becomes minimum on the real
axis of R. Since R as a complex variable can be
expanded in a Taylor series at t =t„

R=R, + (t —r, )+ ~ ~,dE.

dt

and he(R) is proportional to (R —R, )'~ around
R =R», the zero of he(R } is of the order one-half
with respect to t,

The nonadiabatic radial coupling V,d can be
shown to have a pole of order unity there, '

~fp2 i
V d

——R (pi (r r»)——
BR 4

where yj (j = 1,2} are the electronic eigenfunctions
of adiabatic states. This analytical property under-
lies the derivation of the closed expressions for the
scattering matrix, ' ' namely, the Landau-Zener-
Stueekelberg formula and the Rozen-Zener {or the
Demkov) formula. Basic difFerential equations to
describe these two cases can be reduced to an equa-
tion satisfied by the parabolic-cylinder {Weber)
functions. The comparison equation method'
and the Zwaan-Stueckelberg phase-integral
method' are the fundamental mathematics em-
ployed to derive these analytical formulas. The ap-
parent difference in these two (LZS and RZ) for-
mulas comes from the-difFerence in the asymptotic
expressions of the Weber functions.

In the case of nonadiabatic transitions induced
by rotational coupling, the following three cases are
considered to be the basic two-state problems:
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(a) potential curve crossing at the finite internu-

clear distance (R =R„), (b) degeneracy at the
united-atom limit (R =0), and (c) no curve cross-

ing. In case (a) there exists a real curve crossing at
R„=R(t„), and he has a zero of order unity with

respect to t at t =t„. In case (b) he(R) can usually

be approximated as

Ae(R) ~R for R-O. (4)

Since R (not R itself) is an analytical function of
t around t =t, where R (t, )=0, R cannot be ex-

panded in a Taylor series there, but is proportional
to (t —t, )' . Thus he has a zero of order unity
with respect to t at t =t, . The simplest model to
case (c) is constant energy difference (b,a=const),
for which no zero exists. On the other hand, ir-

respective of functional form of he(R), the rota-
tional coupling term V„„[seeEq. (17)] has a pole
of order unity with respect to t at t =t„since
R ~ (t —t, )' at t t, . The analytical properties
mentioned above are summarized in Table I. So
far, the above three cases (a) —(c) have been dis-

cussed separately because of the difFerence in the
analytical properties. ' ' ' It is desirable to
develop a theory which can handle all the cases at
the same time in a unified way. Throughout this

paper the electronic angular momentum matrix ele-

ment Vo [see Eq. (17)] is assumed to be constant.
In reality Vo is, of course, generally a function of

R. If Vo vanishes faster than R when R~0, then
the pole of V„, at t =t, becomes a removable
singularity. As explained below, however, the
essential qualitative features of the theory
developed in this paper would remain unchanged
even with an R dependent Vo.

III. DYNAMICAL-STATE
REPRESENTATION

Expanding the total wave function 4 of the sys-
tem in terms of a certain orthonormal complete set
of basis functions I l(J j,

(5)

and inserting this expansion into the time-
dependent Schrodinger equation

we have the following coupled differential equa-
tions:

iflg(gk —')-, A, .

TABLE I. Analytical properties of nonadiabatic couplings.

Coupling scheme Potential-energy
difference

Coupling term

Radial:
R —R, ~(t —t, )

t», R» . complex
Rotational: case (a)
R —R ~(t —t„)
R ~(t —t, )'~'

t„: real, t, ; complex
Rotational: case (b)
R ~(t —t, )'

t, : complex
Rotational: case (c)
R ~(t —t, )'~'

t, : complex
Rotational: dynamical-state

representation
[see Eqs. (18) and (19)]
R —R, ~(t —t, )
t», R». complex

me~(t —t, )'"

he~(t —t„)

5e~(t —t, )

he: const

bE~(t —t )'

V„q ~(t —t»)

V„,~ (t —t, )

V„, ~x: (t —t, )

V, , ~(t —t, )

W'~(t —t, )
'
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Since the operator on the left-hand side of Eq. (12)
is Hermitian, the eigenvalues EJ(R) are real.
Equations (13) have exactly the same form as the

bas
equations obtained in the radial co 1' bl

ased on the ordinary adiabatic-state'representa-
tion. Since the nuclear angular mot'o ion is incor-
porated in the basis functions QJ of Eq. (12), we

s ates. n this newca11 the new states "dynamical" states. In
representation eigenstates of H, &

(ordinary d' b
'

ary a ia atic

p ay, in a sense, a role of the conventional
diabatic states, and f 's play a role of th e conven-

'
n a ia atic states. The new energies and cou-

structures as those in the conventional radial cou-

p ing problems [see Eqs. (18) and (19) and T bl

0. If theee collision system we are interested in is

then t
composed only of the states of th e same symmetry,

value
t en t ere is no rotational couplin and the
va ue problem (12) simply reduces to the ordinary

ng ea ia aticeigenvalue problem of determinin the adi b
energies for which the noncrossing rule holds. If
there are the states of difFerent symmetry with real
curve crossings, then the dynamical states obtained
as the solutions of Eq. (12) avoid th

us the dynamical-state representation en-

t eories to aables us to apply the LZS and RZ the
gener collision problem involving both radial and
rotational cou lin s.p

'
g . This representation makes all

the (rotational as well as radial) transitions local-
ized at the coa e complex crossing points of the d nami-
cal potentials.

e ynami-

at
more explicitly, let us consider the simplest ca f

wo (X and II)-state problem. I.et e d
case o

e adiabatic energies and eigenfunctions, i.e.

H„qx=e„q„(A=X,II). (14)

Here r represents the totality of electron coordi-
nates, H, ~

is the electronic Hamiltonian of th
,, If."~~ s are the eigenfunctions of H th
E s. (7) ive

ebs

q . give the conventional coupled equations in

the adiabatic-state representation. If we use a
transformation,

8 ' 8 l
Q Sg 8

a~= aR -S" ' ae

=R ——8L
BR

(8)

we can rewrite Eqs. (7) as

dA» Bi(IJ.

d
— ~ fk ~R TAJ

J

——„' g(y„~ H„—OL„~ y, )-, A, , (9)

where 8 is the an ulg ar velocity of the internuclear

lar
axis, L„ is that component of the electrec ronic angu-
ar momentum operator which

'
is perpendicular to

t e plane of the collision trajectory (see Fig. 1).
These quantities are explicitly defined as

(10)QH =Up/R

and

L = , (L++L }—,

where L and L d+ denote the raising and lowering
~ ~

operators for azimuthal angular momentum alon
the internuclear axis.

men um ong

at ~~J s are the eigenfunctions ofIf we assume that ~ '

H, &

—QL„, i.e.,

HdyDQJ'(Hsi SL»)1(J EJ(R)QADI (12)

then we have from Eq. (9)
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(13}

C9

IJJ
Z
LU

FIG. 1. Geommetry of the collision system.

INTERNUCLEAR DISTANCE

FIG. 2. &chematic diagram of adiabatic- and
adiabatic statesynamical-potential energies.

e~, ———. dynamical states EJ.
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Expanding the dynamical eigenfunction P~ in

terms of these adiabatic wave functions as
energies e;, and

X IISj=&g vx+CJ (pn (j=1,2)

we obtain the following secular equations from Eq.
(12): ~el'Pi ~i %i

(ex—E)c*+v...c"=o,

v„,cx+(e„—E)c"=o,

x x n n
Ci CZ +C]&2M

rot d A6'dV

dt dt
EE),

and

~Z =Z, —Z, =[(~e)2+4V2.,]'".

From these equations we have as usual,

E, ,=—,
' [ex+en+[(ae)'+4V,'.,]'"j,

(16a)

(16b)

By this diagonalization procedure the avoided

crossings between the adiabatic states of the same

symmetry remain avoided, and the real crossings
between the adiabatic states of difFerent symmetry
become avoided (Fig. 2). Once we obtain a
dynamical-potential-energy system, we can apply
the path-integral formulation of the scattering ma-

trix or the classical S-matrix theory, ' assuming a
localized transition at a new avoided crossing
point. Localization of the transitions at the new

avoided crossing points will be demonstrated in the
subsequent sections. It is interesting to note that
since rotational coupling is delocalized, even a ro-
tational coupling not directly associated with a
transition we are interested in, could largely afFect

that transition. This phenomenon would occur
most efFectively when an avoided crossing associat-
ed with the transition we are interested in is locat-
ed at small internuclear distances. This is because
a rotational coupling has always a pole at 8 =0
unless the angular momentum matrix element Vo

vanishes there. An example of this interesting

phenomenon is shown in Sec. V.

It should be noted that the difFerence of the
dynamical-potential energies depends on the col-

lision velocity as well as the impact parameter.
The energies given by Eq. (18) corresponds to the
"dynamical-adiabatic" representation proposed by
Crothers. ' A similar representation, angular dia-

batie representation, was discussed by Smith. ' As
mentioned before, we call here the states gz
dynamical states, since the potentials depend on

the velocity, and the expression adiabatic is con-

sidered not to be pertinent. The energy difference

LE and the coupling 8' can easily be proved to
have the analytical structure shown in Table I ir-

respective of the functional forms of he(R) [cases
(a) —(c)]. These analytical properties of EE and IV

are not afFected by a possible R dependence of Vo.
Since a new coupling 8' is proportional to (AE)
8' always has a pole at exactly the same position
a" the zero of ~.

In a general many-state collision problem, the
dynamical states are obtained by diagonalizing a
matrix (e+ V„,), where e is a diagonal matrix
whose elements are the ordinary adiabatic potential

IV. BASIC TWO-STATE PROBLEMS

and

&Lzs(U, p) =4e (1—e )sin~/,

+Rz(U, p) =sech 581n 0'

=4 1 — sin o,1 1.
1+e-" 1+e-"

In this section the theory developed in the previ-

ous section is applied to the typical two-state prob-

lems (a) —(e) Inentioned before. The theory is test-

ed by comparing the results on the transition pro-

babilities and the cross sections with the exact ones

obtained from a numerical solution of the coupled

equations. Some of the results cited below were re-

ported before. The analytical formulas employed

to estimate the transition probabilities are
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and

Sg
o+i5= — Ltdz, z, =vt,

v
(26)

1.0

P P5

5 5 5 . 5
t()s —————+ —ln ——argI' 1+i

4 m m

(27)

0.0 I

r I

I

h
I lv r I I

0.0
R- P (a.u. )

1.0

mrs =2tr J dpP(u, p}p. (28)

Here ~ is the difference of the dynamical poten-
tials [Eq. (21)] and t» is the zero of ~ closest to
the real axis in the first quadrant of the complex t
plane. The total cross section is calculated by

FIG. 3. Transition probabilities vs internuclear dis-

tance [model (29), u =0.5, p=0.6]. Left (right) of the

point R —p=0 corresponds to the incoming (outgoing)
channel. : exact numerical calculation based on
the dynamical-state representation, —~ —~ —:LZS ap-
proximation based on the assumption of a localized
transition at R =Re(RR ) [Eq. (23)], ———:exact nu-

merical calculation based on the adiabatic-state represen-
tation.

A. Curve crossing at the finite internuclear
distance (R =R, )—case (a)

B. Degeneracy at the united-atom limit—
case (1)

The following model is used:

he=2. 71(1/RK —1/R ) R„=1.5

The model used here is

kE' Oe 1Z gR 536R9R y Zeg 8R56

and

Vp ——0.71. (29) Vp ——1.0 . (30)

This simulates the two-state (lu „and 2tr„) prob-
lem in the Ne+-Ne system. '9 22 Equation (23) was
shown to well reproduce the impact-parameter
dependence of the transition probabilities as well as
the velocity dependence of the cross sections (see
Fig. 1 and 2 of Ref. 11}. Equation (24) is not a
good approximation in this case. The transition
mechanism is not that of the perturbed symmetric
resonance. Figure 3 demonstrates how localized
the transitions are. The step functions shawn in
the figures represent the approximation af the
path-integral formulatian based on the assumption
of a localized transition at R =Re(R, ). The value
of this step function in between the two points
R =Re(R, ) (on the way in and on the way out) is
simply equal ta exp( —S), a transition probability
for one passage of the avoided crossing point. The
asymptatic value for R & Re(R» ) on the way out
equals Pt zs given by Eq. (23), an overall transition
probability after collision. This figure clearly indi-

cates the effectiveness of the new representation
compared to the ordinary adiabatic representation.
At large impact parameters, however, the localiza-
tion becomes somewhat worse. This is because the
two pairs of transition points (one on the way in
and one on the way out) came close ta each other.

3

lt)
Al
C)

Z
O
I-

2

l l l '] I I I

Q2 Ol 0$ Ge &.0 &.2 &.a &.6 ~8

COLLI SION VELOCITY (a. u. )

FIG. 4. Total cross sections as a function of collision
velocity [model (30)]. : LZS approximation [Eq.
(23)], ———:exact numerical calculation, —o—o —..
RZ approximation [Eq. (24)).
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0.6

0.5

compared to that of he, and Eq. (24) overestimates
the transition probabilities. Figure 6 demonstrates
the localizability of the transitions in the
dynamical-potential representation.

I-
0.3

O
~ 02

0.1

0.0 Ql

[ MPAC T PAR AME T E R {a. u. )
0.2

FIG. 5. The impact-parameter dependence of the
transition probabilities [model (30), v =0.9]. The mean-

ings of the curves are the same as Fig. 4.

C. No curve crossing —case(c)

The simplest, but the most typical case of
be=const is employed. The model can be scaled
with use of reduced velocity U =U/he. The angu-
lar momentum matrix element Vo is assumed to be
0.5 a.u. The results are shown in Figs. 7—9. As
is expected, Eq. (24) makes a good approximation.

V. PATH-INTEGRAL APPROACH TO A
THREE-STATE PROBLEM

This simulates the coupling between the 1n.„and
10„states of the Ne+-Ne system. ' It should be
noted that the linear-trajectory approximation is
good only at high velocities (v )0.5). As is seen
from Fig. 4 the total cross sections are reproduced
well by Eq. (23}even at high velocities. At small
impact parameters, however, Eq. (24) is better than
Eq. (23} (Fig. 5). For instance, the LZS result in
Fig. 5 shows an improper small peak at small im-
pact parameter. The failure of the LZS formula at
small p is more remarkable in the case of Coulom-
bic trajectory in which a kinematical sharp peak
appears at small p." Equation (23} fails to
reproduce this peak. This is because the rotational
coupling V„, varies rapidly at small R compared
to the energy difference he, and a transition
mechanism in the close (small p) collisions becomes
that of the perturbed symmetric resonance. In case
of large impact-parameter collisions, however, a
variation of V„, with respect to R becomes smaller

66I2=6I —62=2.71(1/Rx 1/R ) Rx =

heI3 ——536.9R,

VI2 ———Vo' 'Up/R, Vo =0 71

VI 3 ——Vo vp/R, Vo' ——1 .0.

(31)

As an example of a three-state problem to test
the applicability of the theory developed in Sec. III
combined with the path-integral formulation of the
scattering matrix, we have chosen a system shown
in Fig. 10 which imitates a vacancy migration
from the 2p shell to the 1s or the 2s shell in the
Ne+-Ne system. There are two rotational cou-
plings: one between the 1m„(t.I) and 2e„(e2)
states, and the other between the lm„(eI) and 10„
(e3) states. The model potentials employed are as
follows [see Eqs. (29) and (30)):

1.0

P QS—

Q6
I-

G4

O
a2

I l I

0.3 0.2 0.1 0.0 Q1

R- P (a.u. )
0.2 Q3 GO 05 1.O

IMPACT PARAMETER (a.u. )
FIG. 6. Transition probabilities vs internuclear dis-

tance [model (30), v =0.5, p =0.01]. —"—"—:RZ ap-
proximation based on the assumption of a localized
transition at R =Re(R+). The meanings of other curves
are the same as Fig. 3.

FIG. 7. The impact-parameter dependence of the
transiton probabilities (const he and v/he=0. 5).

RZ approximation [Eq. (24)], ———:exact
numerical calculation.
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The dynamical-potential energies El -E3 obtained from Eqs. (31) are

El ———,(el+e2+e3)+a' +p'

E (e +e +e } (al/3+pl/3) 1.(al/3 pl/3)

E3 , —(—el—+e2+e3) , (—a—' +p' )+ i(a' p—.
' ),

(32)

where

=-, l —e+(e'+4P')'"j, (33}

(«„)'+(«3)'+(«3 )'
p +3Vi2+3V)3 (34)

e==„'[(«12)(«23 «31)+(«23) («31 «12)+(«31}(«12 «23)+9(«12 «23)1'13

+9(«23—«31)~12). (35}

Here the method of Cardano was used to solve a third-order algebraic equation. The dynamical-potential
energy differences 4&~2 and dEE~3 are shown in Fig. 11.

According to the path-integral formalism the probabilities for the transitions 1~2 and 1~3 can
be expressed as

P

Pl 2=4'(1 PA) {1—P—a)»n ~12dz+a2+Ns —4. + 2+ +»sin ~ d23+za+2( s
Zg

A B ZB B B
v v

1 z~
A B+pepsin

— bE12dz+o2+ltls —$3+ —,1

X sin — EE»dz+ —f bE12dz+a2+ps+2o, +ps+ —,r2 Z~
A B B

(36)

t'

Pl 3 4P„ps(1—Ps)s——in — dE23dz+a2+ps
1 B B
v

(37)

1 1 5AB 1
4s = — 4,s+ 4,sin —«gl 1+—5a,s4 m. '

m
' m.

(381}

and

where

A, BZ~' =XA,B+lyA, B

~A,B™~]2,23(~ =~A,B,y)dy

(38a)

(38b)

B l
r = —, tan

25B

5B+ ln

'2 1/2 '

5B+4 (38g)

p„=exp{—25~ },

ps ——exp( —25s),
zA, B

5~ s Im fo
——~— 12 23dz,

{38c)

(38d)

(38e)

Numerical results in comparison with the exact
ones are shown in Figs. 12—15. These figures
clearly indicate the usefulness of the theory. Tran-
sitions between 1m„and 1'„occur dominantly at
smaller impact parameters compared to the transi-
tions between 1m.„and 2cr„. Since pB is small at
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3
tg

X
O

UJ
O

-1

IZ
LU
Z
w —5

o 10
K

LIJ

LJJ

Q5

I I

10 L5

I NTKRNUCLEAR OISTANCE (a.u. )

I

20

FIG. 10. The electronic energy diagram of the 10„,
1m„, and 20„states of the Ne+-Ne system.
Energies calculated from the variable screening model
(Ref. 22 ), : model potentials used in this paper.

I I I I

0.0 Q6 Q7 Q8 Q9 1.0 1.1 1.2 13

SCALED COLLISION VELOCITY

FIG. 8. Total cross sections as a function of collision
velocity (const 4e). See the caption of Fig. 7.

those impact parameters which contribute much to
the transitions between l~„and 2o.„,the main
contribution to PI 2 comes from the first term of
Eq. (36). Similarly, p~ is almost equal to unity at
those impact parameters for which the transitions
between l~„and 1o.„occur dominantly, and PI 3
is expected to be nearly equal to the probability in
the two-state problem.

Figures 12—15 also indicate an interesting
phenomenon of a catalysis effect of the 2'„state
on the transition from l~„ to lo.„. The dotted
lines in the figures represent the exact results in the
relevant two-state approximations. The transition
1~2 is not affected at all by an inclusion of the
1o.„state. The transition 1~3, however, is
enhanced a lot by an inclusion of the 2o.„state.
This enhancement was confirmed not to be affected

by changing the location of the crossing point
R =R„,but to diminish with smaller Vo' '. Since
pz cannot be larger than unity, this phenomenon
seems to give us a puzzle [see Eq. (37)]. It should
be noted, however, that the energy difference ~23
includes the influence of the rotational coupling
VI2 between the 1m.„and 2o„states. That is, the
deformation of ~23 at R -R& due to the coupling
VI2 can explain the catalysis effect of the 2o„state
on the transition 1~3 (see Figs. 11, 14, and 15).
It is true that the energy difference EEI2 at R -Rz
includes the effect of the coupling VI3, but this ef-
fect is negligible, since the rotational coupling de-
cays as R increases. This interesting phenomenon
leads to the following conclusion: Rotational cou-
plings not directly associated with the transitions
we are interested in, may affect these transitions if
the avoided crossing points corresponding to the
transitions are located at small R, and if the angu-
lar momentum matrix element Vo of the couplings
are not very small there. This phenomenon can be
reproduced by our theory based on the dynamical
states obtained by diagonalizing the matrix
(E+v„I ) at one time [see Eq. (22)].

1.0

VI. DISCUSSION

P 0.5

0.0
0.3 0.2 0.1 QO 0.1

R- P (+-&. )

0.2 0.3

FIG. 9. Transition probabilities vs internuclear dis-
tance (const he, v =0.5, p=0. 1). —~ —~ —~: RZ ap-
proximation. The meanings of other curves are the
same as Fig. 3.

The nonadiabatic radial coupling is known to be
well localized at an avoided crossing point in the
ordinary adiabatic-state representation. The nona-
diabatic rotational coupling, on the other hand, is
not localized at all, since it is proportional to R
Because of this fact an analytical solution of a
many-state collision problem involving rotational
couplings has been left untractable so far. The
dynamical-state representation discussed in this pa-
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FIG. 11. Dynamical potential energy difference [Eqs. (32)]. (a) EEu Es E2——, E—i ~e'(1Tr„), ER~e(2o„) (R ~ oo )'.

AeI2 ——e(2o.„)—e(1r„), ———:up=0. 51, —~ —.—:vp=1. 03, - - -: vp=3. 24. The crosses represent the
dynamical states obtained with V()' ' put equal to zero. The circles are the dynamical states obtained by diagonalizing
the 3X3 matrix [Eqs. (32)]. (b) BEST EE23=E———3 E2, E3—~e('lrr„) (R~oo). : hag —e(ISr„)+e(lo„),

up=0. 01, — —.—:up=0. 05, - - -: vp=0. 31. The crosses represent the dynamical states obtained with
Vo"' put equal to zero. The circles are the dynamical states obtained by diagonalizing the 3X3 matrix [Eqs. (32)].

per localizes even a rotationally induced transition
at a new avoided crossing point; and enables us to
treat a many-state collision problem involving both
radial and rotational couplings by the classical
scattering matrix theory based on the path-integral
formulation of quantum mechanics.

An interesting catalytic phenomenon such as the
one discussed in Sec. V is expected to take place
generally in a many-state collision problem involv-

ing rotational couplings, if the relevant transitions
predominantly occur at small internuclear dis-

tances. In order to reproduce the phenomenon it is
necessary to diagonalize a multidimensional matrix
(e+ V„„}at one time. If a transition occurs at
large internuclear distances, however, a catalysis ef-
fect of other states can be negligible and it may be
all right to diagonalize locally the relevant two-
dimensional matrix corresponding to the transi-
tions.

In the model calculations of Sec. V we assumed

16

1.0
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0,6—
tn

m 0.4
IX
O
n.

0.2—

12

ei 10
Z

8

v

QO Q5 1.0 1.5
IMPACT PARAMETER (a.u. )

2.0

FIG. 12. The impact-parameter dependence of the
transition probabilities PI 2 (1m„~2o„)at v =0.9.

Path-integral approximation [Eq. (36)],
exact numerical calculation. The two-state

results are practically the same as these.

0.0 0.5 10 1.5

COLLISION VELOCITY (a.u. )

20

FIG. 13. The total cross sections nI 2 (1m„~2o„)
as a function of collision velocity (see the caption of Fig.
12).
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FIG. 14. The impact-parameter dependence of the
transition probability P] 3 (1m.„~lo.„)at U =0.9.

Path-integral approximation [Eq. (37)],
exact numerical calculation (three-state),

....: exact numerical calculation (two-state).
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Vo' ' to be constant. This is of course an approxi-
mation to the coupling in the real Ne+-Ne system,

and probably causes an overestimation of the ca-

talysis effect of the 2'„state. It is, however,

necessary to reinvestigate more carefully the transi-

tion from 1m.„ to 10„by using accurate informa-

tion on potential energies and couplings for the
Ne+-Ne system. Apart from the Ne+-Ne problem,
on the other hand, VQ' ' does not necessarily vanish

at R =0 all the time. In such cases

[Vo
' (R =0)~] the catalysis efFect is expected

to occur remarkably as in the present model calcu-

lations. Another interesting problem to be investi-

gated by the theory developed in this paper is

Li (2p)+Na+
Li++Na L.(2 )+N +

where the Li+-Na and Li'-Na+ states couple to
each other rotationally, and the Li+-Na aad Li-
Na+ states couple radially by the Demkov-type
mechanism.

In this paper we have employed the semiclassical

impact-parameter method for simplicity. Strictly
speaking, however, a transition through rotational

j

I I I I I I I

02 0.4 Q.6 Q.8 1.0 1.2 1.4 1.6 1.8
COLLISION VELOCITY (a.g. )

FIG. 15. Total cross sections 0] 3 (1m„~lo.„)as a
function of collision velocity (see the caption of Fig. 14).

coupling induces a change of the angular momen-

tum of the relative motion of heavy particles, since
the electronic angular momentum changes by unity
in the transition. In the semiclassical impact-
parameter treatment, which is not bad in the case
of heavy-particle collisions, this change is neglected
and the angular momentum quantum number is re-

placed by Mup/A, where M is the reduced mass of
the collision system. In order to look into the de-

tailed quantum effects in the transitions, we

should, of course, rely on the exact quantum-
mechanical treatment. '
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