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For a special class of truncated and screened Coulomb potentials, some analyticity properties of the phase shifts are
deduced as functions of B, the truncation and screening parameter. Use of these properties and scale transformations
leads to analytic expressions for the phase shifts, which are valid in the region of small 5.

1. INTRODUCTION

The scattering phase shifts are essential for the
analysis of the interaction between particles.
Apart from providing an expression for the colli-
sion cross sections, they serve as an important
source of information'*? regarding the nature of
the interaction in general, and the bound states
and resonances in particular. For example, a
negative phase shift near the threshold implies
either a repulsive interaction or the existence
of the bound states. They play a dominant role
in probing the electronic configuration of the
atoms, and an analysis of their properties is nec-
essary for the understanding of the atomic struc-
tures.

For most of the potentials, the scattering phase
shifts cannot be obtained in closed forms, an im-
portant exception being the Coulomb potential for
which analytic phase shifts are available. It is
usually the case that the phase shifts have to be
evaluated numerically, or by making use of an
approximation method such as a perturbational
or a variational approach.® However, these cal-
culations do not elucidate the analytic structure
of the phase shifts.

Here, we analyze the analyticity properties of
the phase shifts for truncated and screened Cou-
lomb potentials, as functions of the truncation
and screening parameter 8. These analyticity
properties give us useful information about the
general behavior of the phase shifts. Indeed, since
they are singular at 8=0, a knowledge of their
analyticity properties is essential for obtaining
an analytic expression for §,(8), valid near g=0.
Specifically, for the truncated Coulomb potentials
which arise in the case of scattering by a nucleus
of finite size, we consider a class of potentials

Ve(r) =~ W—:/S—)m s 1)

while for the screened Coulomb potentials we con-
sider a class of potentials which have the form

1 1
V,(r)=—k(; - (7'7,_3)7’7)’ (2
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where » is a positive integer. It is shown that
the scattering phase shifts §, as functions of 8,
satisfy the Herglotz property and hence have no
poles or algebraic branch-point singularities with
negative powers in the complex cut plane -7
<phasef<w. It is also argued that 5,(8) have a
branch point at =0, which with the knowledge

of the imaginary part of 5,(8) near 3=0, allows
us to obtain their leading singular behavior at
B=0. We also obtain the leading terms in the
analytic part of 5,(8), so that together with the
singular part, we have expressions for §,(8),
which are valid in the neighborhood of 8=0. These
results are discussed in detail for specific cases
of potentials (1) and (2). They are compared with
the known results* of potential (2) with »=3.

In our earlier work® we had exploited the ana-
lyticity in B to obtain expressions for the bound-
state energies for small 8. The extension of these
considerations to the analysis of phase shifts en-
hances the utility of the analytical approach in
solving potential problems. We begin with a deri-
vation of some general results.

II. GENERAL CONSIDERATIONS
Consider a collision process described by the
Hamiltonian (in atomic units)
H=3p*+V (7). ®3)

The equation satisfied by u(») =rR,(r), where R,
is the radial part of the wave function, is

d2 2 l l 1_

U)oy D), o
with

(0) =0, (5)

u,(r)-»%sin(kr—%"m,) for 7 ~, (6)

and k%2=2E. We first obtain an expression for
Im§, in terms of ImV (7).
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A. ImSB)

Multiply Eq. (4) by u*(7), subtract from the
equation its complex conjugate and integrate by
parts, to obtain

d % |
(u}‘(r) _;‘11(’_"1 —uy(r) %}) .

= 2fwu’{('r)u,('r)[V(r) -V¥#»)lar. (1

On using Eqgs. (5) and (6), one gets

sin[2; Ims,(B)] = — 4ik f ”lu,('r)IzImV('r)dr, (8)

where the dependence of §,(8) on % is suppressed.
This relation leads to the result

1moy(8)~ =2 [ ()| v (rdr, ©

for 2— 0 or for Imv(»)~0. It also leads us to
the Herglotz property for 5,(B).

B. Herglotz property

It can be easily deduced that for the potentials
V¢(r) and V,(r) given in Eqgs. (1) and (2), one has
for A>0,

Im Vy(7)
ImpB
Im V,(7)
ImpB

in the complex cut plane - 7<phasef<m, but Imp
#0. Therefore, we deduce from Eq. (8) that

Im5,(B)
Imp

>0, (10)

<0, (11)

<0 for V,(») (12)

and

Img,(8)

Tm8 >0 for V,(r) (13)

in the complex cut plane —7<phase<7, ImB+0.
Thus the phase shifts 6,(8) [or - 5,(8)] satisfy the
Herglotz property. This immediately implies

an important result that 5,(B) have no poles in the
complex cut plane —7<phasef<m, ImB+0, since
a pole would dominate in its neighborhood and
can have any phase depending on the direction of
approach to the pole. Similar arguments also
exclude algebraic branch-point singularities with
negative powers. These results are similar to
the corresponding properties for the bound-state
energies.®

C. Real and positive 3

.Consider Eq. (4) for two real potentials

1)
o (- - Mo, g

ds® (l+1
di:xz_ +<k2—2V2(7')- (r—2)>u§2’=0. (15)
Multiply Eq. (14) by «?’ and Eq. (15) by «*, and
integrate the dlfference by parts to obtain

2 )
Vodr oar /|,

=2 fo " ULV - v )dr. (16)

Using Egs. (5) and (6) one obtains

sin(6f? ~ o) =2 [ uPu{v,() - v, )ldr. (1)

We now take V,(») and V,(») to have the same
form, but differ only in the values of the para-
meter B, say B, and 8,. Then taking the limit
B,—~ B, one gets

aw) Zkf ) 5 (18)

This is analogous to the Feynman-Hellmann theor-
em for bound-state energies. In view of Eq. (6)
we then deduce that 86,(8)/08 exists if

f”BV

o 198

The above condition is satisfied by the potentials
V() and V,(#) in Eqgs. (1) and (2) for real and
positive definite 8. Therefore, one has the result
that §,(B) are analytic for real and positive 8 in
the sense that the first derivative exists in this
region. Furthermore, it is observed that since
3V (7)/9B>0 and 8V, (r)/8B< 0, for >0 and A> 0,
6,(B) are monotonically decreasing functions for
V,(7) and monotonically increasing functions for
Vs(7). It may also be noted that 5,(8) are real
for real and positive 8, and have an imaginary
part given by Eq. (8), for real but negative 8. This
suggests that §,(B) are singular at $=0.

dy <o, (19)

D. Dispersion and relations

We have shown that §,(8) for potentials V,(7)
and V,(r) have no poles or branch-point singulari-
ties with negative powers in the complex cut plane
—n< phasef<m. If this result is supplemented
with the assumption, indeed a serious assumption,
that milder singularities such as logarithmic sing-
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ularities are absent or unimportant, one can write
the dispersion relations,

e BY(B'=B)

where c; are the subtraction constants which would
be dictated by the asymptotic behavior of Im5,(8).
Actually, our interest in the dispersion relations
is primarily for separating out the leading singular
behavior at B=0, which is unaffected by the con-
tributions of singularities away from the origin

as also by the possible need for subtractions.

Gz(ﬁ) = i‘ CgB‘ +l% ° M)_ dap’, (20)
=0

E. Subtraction constants

When the subtraction constants are present,
they dominate the behavior of 6,(8) for 8-~ 0. They
can be calculated perturbatively.

The behavior of V,() and V,(r) for large » is
of the form

3 4

A
V(r)- __rl +%3 +-:—1 oo, (21)

where A, =A for V,(7) but x, =0 for Vs(r). Here
we have not shown the 1/72 term since it can be
absorbed in the angular-momentum term. Then,
the radial equation satisfied by the wave function
correct to first order in A5 and A, is
"d’R 2 dR . U(1+1) %)
— o+ = = -——+ R
@ Ty ar " (k r? v
- 2(—’% +1‘§) RO, (22)
r: v
with R being the solution for A;=1,=0. Substi-
tuting

X = Zik’}’, (23)
R(r)=e™* (2ikr}F(7),
leads to
d’F ar iy
X I +(21+2-x) i —<l+1+ % )F

. 2 .
=%—MMI+1+Z—A‘L,ZZ+2,I,
x? x3 k

(24)

where M is the confluent hypergeometric function

2
SIS R 2

M(@,b,x)=1+

SHEN
=
o

S
+
-
Z
]

The solution to this equation is

8k2)\

F=M+4ikA3F2-—6T2;
1 2_(1 1\,,
X[x2M+(1+b)(x +b>M
2a 6a
D) F‘+(1+b ‘2>F2]’ (26)
where
dx ’
1
Fl=m<Mln_x+%+2%>, @7
_ 1 1 2 ., 2a-b
F.= 5% <xM+bM+ B Fl), (28)

and the M functions are evaluated for a=1+1+ix,/k
and b =27 +2. The solution (26) was found essen-
tially by operating the operator P,

d? d ix
=5 2 —) 2 _ 1
P=x i +(21+2-x) I <l+1+ Z ), (29)

on dM/dx, dM/da, dM/db, MInx, etc., and using
the equations satisfied by them, i.e.,

M _aM _ &M
dx dx dx?’

aM
P =M,
am __aM
P " ax
P(M Inyx) =2 M +(b"1 —l)M, (30)
dx X )

M\ (2-b b-2a\, 2(dM _d&M
P(?)’(xz " Tox )M_b(dx ‘de)’

M\ (6-20 2 -4a\ 4 (dM _ &M
P(?)—( PER )M—bx (dx - dxz)’
P(l{lﬁ _(2-b —x)aM'+(2+2b—x <d_M _dzM

x dx ) bx? bx dx dx?® )’

Taking suitable combinations of these equations
then yields the solution (26) to Eq. (24).

For calculating the phase shifts, one takes the
asymptotic limit of Eq. (26) and identifies the
phase shifts 5, by requiring F to be of the form

F % sin(kr +Ak‘~ In(2ky) — %1 +6,) , (31)

where 1, is the angular-momentum quantum num-
ber which would be different from [ if an interac-
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tion of the form 1/72 is included. One finally gets 6(l)=argI’ (l+1 - %‘), (33)
6,=0(1) = 5 (1=1) = 4kr; By = 86, B+ -+, B.- 1
37 21(20+1)(21+2)
(32) [Eh T_4 34
x| % 2—d19(l))+(2l+1) , (34)
where and
J
1 1222\ /7 d 6
_ ey 2 =1 . 35
B s Du@i+ D@+ @+I) [(2“2“2)* )(z al 9(”) "2 (2“1)] (35)
The terms in Eq. (32) will be identified with the subtraction constants in dispersion relations (20).
r
. i 1
F. Scale transformations Vir)=- — (41)
Here we show by means of scale transforma-
tions, that the scattering phase shifts for poten- and
tials V,(r) and V,(r) given in Egs. (1) and (2), are 1
functions, effectively, of only one variable. To Vi(r)=- G pTE (42)

see this we write the potentials in Eqs. (1) and
(2) as functions of A and B, and subject Eq. (4)
to a Symanzik scale transformation®”

r—-wr. (36)

The resulting equation is

d?u - 1(i+1)
Er_zl + <k2w2— 2V, w,Bw™",7) - —-rz—)u, =0.

37

Since the phase shifts are the same for Egs. (4)
and (37), one obtains

8,(k, X, B) = &,(kw, Aw, Bw™"). (38)

Two specific values of A will be of interest. I
we take w=1/), one has

o0 =0, 1,07), 39)

so that effectively one has a function only of 2/x
and BA". Alternatively one could take w=B‘/" in
which case we have

6;(k, A, B) = 5,(kB" A" 1), (40)

This relation is also quite useful, especially for
B- 0 in which case we need to consider only the
case of the effective strength A"~ 0. In the
following sections we apply the results of this
section to specific examples of truncated and
screened Coulomb potentials.

II. TRUNCATED COULOMB POTENTIAL

We consider two specific examples of truncated
Coulomb potentials, to illustrate the method of
approach. The two examples are

where in view of relation (39) we have taken A=1.

A. Leading singular part of §,(8) near =0

For obtaining the singular part of §,(8) near
B=0, we use Eq. (9) for real, negative 8. Since

ImVi(r)=76(r - |B|), (43)
1
ImVI‘x(r)=(|B| EPEIYEY r< ’Bl (44)

for B approaching the negative, real axis from
above, and

—_——— 1_ 1 7/2k
u,(r)ﬂ‘0 T 2)I‘<l+ 1+k)r(2k'r) e

x e"*’M(vl+ 1+-’§ ,20+ 2, 2ikr) , (45)
we obtain
m i\| 2
Imﬁ,(ﬁ)a. [ Ir(2l+ 2)|2 r(l+ 1+];)
x B22(2k)21*e" /X for Vi(r) (46)
and
\ T i\|?
Imél(ﬁlﬁo 0. 2' r\(2l+ 2)' 2 r I+ 1+;

X B(lu)(zk)zluer/k’ for V{l(’r) . (47)

On using the dispersion relations (20), one ob-
tains for the leading singular term in 5;(8)

i
I‘(l+ 1+k)

x er/mwg2ieeng - for Vi(r) (48)

1 2
5’tns(ﬁ)= - T (Zk)zbl

21+ 2)12
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and
LT Sy Ju—— r(1+ 1+i) 2(2k)2'*1
! 21T(21+2)12 k
X e/ Mg for VII(r). (49)

B. Leading analytic part of §,(8) near =0

For obtaining the leading analytic terms for
5,(8) near B=0, we expand the potential in powers
of B:

1 8 B B8
Vl’(r)=-;+13—13+’;§—”. , (50)
1 8
It E R Rk -3 AP
Vi (r)——r+ 273 . (51)

The B term in V}(r) is taken into account by re-
defining [ as

1+ 1)=1,(I,+ 1)+ 28, (52)
where [; is the angular-momentum quantum num-
ber, which gives

2B 432 1633

Bt 1~ @, 1 T e+ 17

—ee. (53)

The 32 and 33 terms in the potentials, are treated
perturbatively as in Sec. IIE, and the results are
given by Eq. (32) with A,= =% and 2,=83, i.e.,

28 4 1633)
21,+17 (21,+ 17" (20,+ 1)

m

otzee)=00) -5

2

+4kB?B, - 8k%8°B,+ ..., for VI(r) (54)

where 6(1) is given in Eq. (33), and B, and B, are
obtained from Eqs. (34) and (35) with x,;=1.

For ViI(r), the B term is treated perturbatively
as in Sec. IIE, and the result is given by Eq. (32)
with A,=38, A,=0, i.e.,

61%%B8)=06(1,) — 2kBBy+ ... , (55)

with 6(1,) given by Eq. (33) and B, given by Eq.
(34) with A, =1.

C. §,(B) near =0

Combining the results for the singular and ana-
lytic parts of §,(8), we get an expression which
is valid near f=0. For V/(r) one has

50(8)= 6(28) — B — 282(InB ke’ *

><|1"<1+;i>

61,(8)= 6(1) = 5(1 ~ 1,) + 4kB°B, — 8K6°B,

o

2
+0(B?), forl,=0 (56)

- B2'e*2(In8)B + O(B%), for I,> 1 (57)

where 4(I) is given by Eq. (33), I is given by Eq.
(53), B, and B, are given by Egs. (34) and (35)
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with A, =1, and

1

B T@ir o

y 2
r<l+ 1+,k£> l (2k)21+1e1/h . (58)

Similarly for V{(») we have
i
1+
1"( + k)
and

8,,(8)= 8(l,) = 2kBB, + (~1Y$B***(InB)B

‘0@ (59)

8o(B)=6(0)+ B(InB)ke"/*

+0(B?) , for1,>0 (60)

where as before, 6(l,) is given by Eq. (33), B,
is given by Eq. (34) with X, =1, and B is given
by Eq. (58).

IV. SCREENED COULOMB POTENTIAL

We will consider two specific examples of
screened Coulomb potentials

1 1
10 )= — =
Vi) 1‘+T+B (61)
and
Vilr)= -l+ ————~—7—1 (62)
S v (y3+ﬁ)1 3

where in view of Eq. (39) we have taken A=1.

A. Leading singular part of §,(8) near =0

In order to be able to use Eq. (9) one notes that
for real negative 8,

ImVi(r)=-ms(r -181), (63)
ImV?("F"(I;;;E%?WE’ r<|Bl (64)

with 8 approaching the negative real axis from
above, and

u, )z T+ 1) (2kr)

1
T'(21+2)
x e M1+ 1,20+ 2, 2ikr). (65)
We then get from Eq. (9)

Imd, (B)z=3: mz IT(I+1)2
x B22(2R)#*1  for Vi(r) (66)
and
ImG,(B)R—_;;_-'lE.S(lz—nZT_{%EIF(Z+1)lz

X (Zk)m'lﬂzu’l)/s[, , for V;l(‘i’) (67)

where
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1 leoz
I,: A a—_-xmdx. (68)

On using dispersion relations (20) one gets the
leading singular term in 6,(8):

1 2]+
5'4“(3)=m'§ IT(1+ 1)1 2(28)2+

x B2+21ng8, for Vi(r) (69)
and
1
dnggy- -
=TT T DI
X (2kY*J,(B), for Vi(r) (70)
where

J,(B)=p2"1 /3 for 1=0,3,6...

= =p2/3 for 1=1,4,7,...

:1
=522 lg2 0 /oing, for 1=2,5,8,.... (T1)

B. Leading analytic part of §;(8) near §=0

For obtaining the leading analytic terms in §;(8)
near $=0, the potential is expanded in powers
of B:

B B> B°
V‘,(r)=—17+;5—7+... , (72)
V“(r):——-—ﬁ +ooe (73)

s I :

The B term in VI(r) is taken into account by re-
defining it as

(I+1)=1,(l,+1)=28, (74)

where [, is the angular-momentum quantum num-
ber, which gives

1=1, -2
TT2l+1T 21,417
168°

~GATF (75)
The B2 and B° terms in the potentials are treated
perturbatively as in Sec. IIE, and the results

are given by Eq. (32) with A,=8% x,=-8%, and

A, =0, ie.,

(e 1)
55 8)=3 (zz,,+ 1Y @+ 17" (2,+ 1P

- 4szD3+ 8k2ﬁ3Dq+ cen, for Vi(r) (76)

where

1

Ds=5iGi7 9y’

(77)

m
T3@I-1)(21+ 1)(21+3)°

For VI!(r), the B term is treated perturbatively
as in Sec. IIE, and the result is given by Eq. (32)
with ;=0 and A,= -3 B, i.e.,

O(B)=RR%BD 4+ -+ (79)
where D, is given in Eq. (78).

D, (78)

C. §,() near =0

We now combine the results for the leading
singular and analytic parts of 5,(8) to get an ex-
pression which is valid near 8=0. For Vi(r) one
obtains

8,(8)=mB+ 28%(InB)k+ O(B?) , (80)
81,(8)= =5 (1 = 1;) - 4%8°D + 81°6°D,

+B%o*3(InB)D + O(B*) for 1,> 0 (81)

where [ is given by Eq. (75), D, and D, are given
by Eqgs. (77) and (78), and

D=m|r(z+ 1)1 2(2R)211 . (82)
Similarly, for VI}(r) we have

54(8)=EB*3+0(B) (83)
and

6,(8)=2%%8D ,+ I,J,(BD + O(B?), 1>0 (84)

where I, is given by Eq. (68), J,(8) is given by
Eq. (71), and D is given by Eq. (82).

V. COMMENTS

We have obtained analytic expressions for the
scattering phase shifts for special classes of trun-
cated and screened Coulomb potentials given in
Eqs. (1) and (2), in the region near 8=0, where
B is the truncation or screening parameter. These
expressions include the leading singular terms and
the analytic terms which correspond to the sub-
traction constants in the dispersion relations.

We end our discussion with a few comments.

(1) In the cases considered, the phase shifts
have either logarithmic singularities or algebraic
branch-point singularities at 8=0.

(2) Though the detailed expressions for the phase
shifts have been given for A=1, the phase shifts
for arbitrary values of A can be obtained by using
relation (39) which follows from the scale trans-
formation.

(3) Truncated Coulomb potentials come into
play for scattering by a finite charge distribution.
In particular, for scattering by a uniform spheri-
cal charge distribution, the potential near »=0
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is simple harmonic and is Coulombic for large
r. Such a potential is well simulated by VI*(r)
given in Eq. (42).

(4) For the scattering of an electron by a polari-
zable atom, the potential for large r is given by

V(r)---"‘rf2 for 7~ . (85)

For this case O’Malley et al.* have given expres-
sions for the phase shifts for £~ 0. Since ViI(r)
has an asymptotic behavior

Vir)- —67/3 for r - . (86)
We compare our results for B=3a, with those of
O’Malley et al.* The results are in agreement

for I >0 and for I=0, our expression (83) gives

the leading approximation for the Scattering length.

This is indeed an interesting coincidence since
our results are valid for 8 -0 whereas those of
O’Malley et al. are valid for - 0. However, it
can be shown that in the limit of 2~ 0, the terms
which are higher order in 8 vanish and hence the
two results are consistent. Thus the results of
O’Malley et al.* for 5,(8), 7> 0 are not only valid
for -0, but also for finite # with 8~ 0. It is
interesting to note that the wave function we have
obtained in Eq. (26) is different from the solution
of O’Malley et al. in terms of Mathieu functions.
This is because we treat the 1/»* part of the po-
tential perturbatively. However, both the solu-
tions differ in their behavior near »=0, from
the behavior required for the solution to the po-
tential VI!(r) in Eq. (62).

(5) In the case of potentials for which the » -«
behavior is dominated by terms smaller than 1/
r*, Eq. (22) for obtaining the subtraction terms,
needs to be modified. For example, if

1 1
V)= BT

- —%g , Y= (87)
the term on the right-hand side of Eq. (22) should
be replaced by —28»™R (. The solutions to the
equation are considerably more complicated now.
However, the singular terms are still relatively
simple and can be obtained from Eqs. (9) and (20).

They become

1"(l+ 1)

o )= | L arprang, ), (88)

where

1 x2102

I= A W)Trgdx
and

sinm /5

=R(21+2)/5
J1(8)=# sinen(i+ 1)

for 1#4,9,...

=lB<2“2>/51nﬁ for I=4,9,....
m

For I=0 and 1, this is the dominant term in the
limit B—- 0, whereas for I > 1, the subtraction
terms are more important.

(6) The explicit expressions for §,(8) allow us
to calculate the Boltzman sum?® of phase shifts.
For example, for V¥ (r) the Boltzman sum Gy is

Gp=Y (21+1)p,

=ka —2—ﬂBk2

+—ﬁk2;m O(%®), (89)

where the first two terms are the contribution
from the s wave with g being the scattering length.*
It can then be shown that

Gy =ka+O(R?), (90)

which allows us to calculate Gy in terms only of
the scattering length a to a good approximation.

(7) Finally we note that the analysis we have dis-
cussed can be applied to other forms of screened
Coulomb potentials such as

Vir)= _E(lﬁ)". (91)

Y\r+

It is also applicable to partially screened Coulomb
potentials of the type

Vir)= }‘ (T.:%FT;,, A, <A (92)

4

which might be relevant for the scattering of elec-
trons by ionized atoms.
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