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Analytic phase shifts for truncated and screened Coulomb potentials
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For a special class of truncated and screened Coulomb potentials, some analyticity properties of the phase shifts are

deduced as functions ofP, the truncation and screening parameter. Use of these properties and scale transformations

leads to analytic expressions for the phase shifts, which are valid in the region of small P.

I. INTRODUCTION

The scattering phase shifts are essential for the
analysis of the interaction between particles.
Apart from providing an expression for the colli-
sion cross sections, they serve as an important
source of information" regarding the nature of
the interaction in general, and the bound states
and resonances in particular. For example, a
negative phase shift near the threshold implies
either a repulsive interaction or the existence
of the bound states. They play a dominant role
in probing the electronic configuration of the
atoms, and an analysis of their properties is nec-
essary for the understanding of the atomic struc-
tures.

For most of the potentials, the scattering phase
shifts cannot be obtained in closed forms, an im-
portant exception being the Coulomb potential for
which analytic phase shifts are available. It is
usually the case that the pha, se shifts have to be
evaluated numerically, or by making use of an

approximation method such as a perturbational
or a variational approach. ' However, these cal-
culations do not elucidate the analytic structure
of the phase shifts.

Here, we analyze the analyticity properties of

the phase shifts for truncated and screened Cou-
lomb potentials, as functions of the truncation
and screening parametex P. These analyticity
properties give us useful information about the

general behavior of the phase shifts. Indeed, since
they are singular at P = 0, a knowledge of their
analyticity properties is essential for obtaining
an analytic expression for 5,(P), valid near P = 0.
Specifically, for the truncated Coulomb potentials
which arise in the case of scattering by a nucleus
of finite size, we consider a class of potentials

It(r}= —(~+p)iyn ~

while for the screened Coulomb potentials we con-
sider a class of potentials which have the form

where pg is a positive integer. It is shown that
the scattering phase shifts 5, as functions of P,
satisfy the Herglotz property and hence have no

poles or algebraic branch-point singularities with
negative powers in the complex cut plane —m

& p haseP & v It is .also argued that 5,(P) have a
branch point at P =0, which with the knowledge
of the imaginary part of 5,(P) near P=0, allows
us to obtain their leading singular behavior at
P=0. We also obtain the leading terms in the
analytic part of 5,(P), so that together with the
singular part, we have expressions for 5,(P),
which are valid in the neighborhood of P = 0. These
results are discussed in detail for specific cases
of potentials (I) and (3}. They are compared with

the known results' of potential (2} with n = 3.
In our earber work' we had exploited the ana-

lyticity in P to obtain expressions for the bound-

state energies for small P. The extension of these
considerations to the analysis of phase shifts en-
hances the utility of the analytical approach in
solving potential problems. We begin with a deri-
vation of some general results.

II. GENERAL CONSIDERATIONS

Consider a collision process described by the
Hamiltonian (in atomic units)

The equation satisfied by u,(r) =re, (r), where &,
is the radial part of the wave function, is

(4)

with

u, (0) =0,

j. . gw
u, (r) - —sin ur ——+ 5 for rt

and k'= gg. We first obtain an expression for
Im5, in terms of ImI'(r).
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A. Im5jp) C. Real and positive P

Multiply Eq. (4) by ll~(y), subtract from the
equation its complex conjugate and integrate by
parts, to obtain

Consider Eq. (4) for two real potentials
' l",lis. sv(„) ( + ))„„, (14)

~~) «, ~
0

On using Eqs. (6) and (6), one gets

s)s[sirms, (p)I = —sis f l(r)l r,mv('r)rir, (s)

where the dependence of 5,(p} on k is suppressed.
This relation leads to the result

d' &'~""; ~ u -2V,(.) -"","~., =0. (1

Multiply Eq (1.4) by I,'" and Eq. (16) by u',", and
integrate the difference by parts to obtain

(,) du,"~ ~, )
d2'&

2'~u('~ V, ~ -y, r dr. 16
0

Using Eqs. (6) and (6) one obtains

)mS, ()r)- —sir J (r«(r)(*rmV(r)r)r,
0

for 0-0 or for ImV(r)-0. It also leads us to
the Herglotz property for 5,(P).

B. Herglotz property

It can be easily deduced that for the potentials
V, (r) and V, (r) given in Eqs. (1) and (2), one has
for A. &0,

Im V,(r)
ImP

Im V.(y)
ImP

(10)

Im5, (P) &0 for V, (r)

in the complex cut plane —m&phaseP& w, ImPWO.
Tllus the phase slllfts 5)(P) [or —5((P)] sa'tlsfy 'tile

Herglotz property. This immediately implies
an important result that 5,(P) have no poles in the
complex cut plane -m'& phaseP& w, ImP 0, since
a pole would dominate in its neighborhood and
can have any phase depending on the direction of
approach to the pole. Similar arguments also
exclude algebraic branch-point singularities with
negative powers. These results are similar to
the corresponding properties for the bound-state
energies. '

in the complex cut plane —w& phaseP& w, but ImP
e0. Therefore, we deduce from Eq. (6) that

Im5, (P) & 0 for V, (r)

sis(s(" —s[")=SSf «,
' (' [r«(rr)v-v, (r)]r(r. ()s)

0

We now take V, (r) and V,(r) to have the same
fox m, but differ only in the values of the para-
meter P, say P, and P,. Then taking the limit
P, -P, one gets

85'(P} 2I, "( }28Vdep, "' ep. '

This is analogous to the Feynman-Hellmann theor-
em for bound-state energies. In view of Eq. (6)
we then deduce that 85,(P)/8P exists if

8+—dg &~.
ap

The above condition is satisfied by the potentials
V,(r) and V, (r) in Eqs. (1) and (2) for real and
positive definite P. Therefore, one has the result
that 5,(P} are analytic for real and positive P in
the sense that the first derivative exists in this
region. Furthermore, it is observed that since
8V, (r)/8p&0 and 8V, (r)/8p&0, for p&0 and A &0,
5,(P) are monotonically decreasing functions for
V, (y) and monotonically increasing functions for
V, (r} It may .also be noted that 5,(P) are real
for real and positive P, and have an imaginary
part given by Eq. (6), for real but negative P. This
suggests that 5,(P) are singular at P = 0.

D. Dispersion and relations

We have shown that 5,(P) for potentials V, (v)
and V, (r) have no poles or branch-point singulari-
ties with negative powers in the complex cut plane
—m& phaseP& m. If this result. is supplemented
with the assumption, indeed a serious assumption,
that milder singularities such as logarithmic sing-
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ularities are absent or unimportant, one can write
the dispersion relations,

F =M +4ik&3F2-
Sk'p,

p" ' lm6, (P')
(20)

1 2 fl 1
x —,M+

i

—+ —M'
gx' (1+b}Ex b

where c& are the subtraction constants which would

be dictated by the asymptotic behavior of Im5, (p).
Actually, our interest in the dispersion relations
is primarily for separating out the leading singular
behavior at P = 0, which is unaffected by the con-
tributions of singularities away from the origin
as also by the possible need for subtractions.

E. Subtraction constants

where

2a ( 6a
b (1+b) ' gl +b

dM
d

F, =
b liM lnx+ +21 ( dM dM

da

(26)

(27)

When the subtraction constants are present,
they dominate the behavior of 5,(P) for P-0. They
can be calculated perturbatively.

The behavior of V, (r} and V, (r) for large r is
of the form

1 t'1 2, 2a —b

2 bl(-h™b
M'+

b
F (28)

and the M functions are evaluated for a = i+1+A,,/k
and b = 2l+ 2. The solution (26) was found essen-
tially by operating the operator P,

V(r) ~ +~ +~ + ~ ~
A. A.

r r' r' (21)
d' ( i~P=x, + (2l+2 —x) ——

i
l+1+

dx2 dx i k)' (29)

where A.,=X for V, (r} but A.,=O for V, (r). Here

we have not shown the 1/r' term since it can be

absorbed in the angular-momentum term. Then,

the radial equation satisfied by the wave function

correct to first order in A. 3 and A, 4 is

R R (g2
+ )

dr' r dr I!,
r' r )I

=2i~3 +~4 R"', (22)(x
r3 4

on dM/dx, dM/da, dM/db, Minx, etc. , and using
the equations satisfied by them, i.e. ,

dM dM d'M
dx dx dx

dM
=M,

dM dM
db dg

with &"' being the solution for A.3=A,4= 0. Substi-

tuting

x = 2ikr,

R(r) =e "(2ikr)'F(r),

leads to

P(M lnx} =2 + —1iM,dM b —1
dx x

/M t'2-b b —2ali 2 (dM d Ml
b ) b id d ')'

(30)

x, + (2l+ 2 —x) —
i
l+ 1+ iF.d2F dF ! zZ)

dx' dx i k)

2b-4 l 4 ifdM c'M
x' i x' bx' ) bx idk Ch'

t'1 dMI (2-b -x)a 2+2b -xl dM d'M

&x dx )i bx' bx )i dx Ch'

(24}

where M is the confluent hypergeometric function

Taking suitable combinations of these'equations
then yields the solution (26) to Eq. (24).

For calculating the phase shifts, one takes the
asymptotic limit of Eq. (26) and identifies the

phase shifts 5, by requiring F to be of the form

a x a(a+1) x'
b 1! b(b+1) 2!

The solution to this equation is

(25) S'sis~~Ss+~, ls(SSs) — ' +s,),( $pal

where l, is the angular-momentum quantum num-

ber which would be different from I, if an interac-



2916 S. H. PATIL

tion of the form I/r' is included. One finally gets k(l)=krgr(l+l —~k)' (33)

1r
5, = e(l) ——(l —l) —4k', B,—8k'g, B~+ ~ ~,

where

(32)

B3=
1

2l(2l+ I) (2l + 2)

x ' ———k(l))+(2)+2)
2A. 7T d

.K 2 dl
(34}

1 2A,,' ( d 'I 6A, ,
2(2f —1)2l(2l+ l)(2l+ 2)(2l + 3) k )iiP (fi ) k

The terms in Eq. (32}will be identified with the subtraction constants in dispersion relations (20).

(35)

F. Scale transformations

Here we show by means of scale transforma-
tions, that the scattering phase shifts for poten-
tials V, (r) and V, (r) given in Eqs. (1) and (2), are
functions, effectively, of only one variable. To
see this we write the potentials in Eqs. (1) and

(2) as functions of a and p, and subject Eq. (4)
to a Symanzik scale transformation6'

1
V,'(r) =-

r+P (41)

1
Vt (r) (rg+ p)1/2 2 (42}

where in view of relation (39) we have taken X = l.

r -wr.
The resulting equation is

(36)
A. Leading singular part of 5I(P) near P = 0

For obtaining the singular part of 6, (P) near
P = 0, we use Eq. (9) for real, negative P. Since

,' + k'(()' —2V„(X((),Pw ",y}—,iu, =0.

Since the phase shifts are the same for Eqs. (4)
and (37}, one obtains

imV', (r)=v5(r- [Pi },
1

ImV", (r) =
(i p

i
~,},/„r(

for P approaching the negative, real axis from
above, and

(43)

(44)

6((k, Z, P) =6,(kw, x((), Pw ").

Two specific values of A, will be of interest. If
we take w=1/A. , one has

6,(k, A.)P) =6, —,1,PA,
"

i,
k

g& t

gynic�)y

(38)

(39)

, (r) = 2'(l+ 2+ —r(2kr)'r'i'
()., I' 2l+ 2

x e '~M l+1+-,2l+2, 2ikr

we obtain

(45)

so that effectively one has a function only of k/A,

and PA,". Alternatively one could take w=P' " in
which case we have

[ I'(2l+ 2}}'

x P
(+ (2k) (kkeg/~ for V((r) (4(8)

6 (k ~ P) 5 (kP2/n ~P2/)2 1) (40}

This relation is also quite useful, especially for
P- 0 in which case we need to consider only the
case of the effective strength ~P' "-0. In the
following sections we apply the results of this
section to specific examples of truncated and
screened Coulomb potentials.

III. TRUNCATED COULOMB POTENTIAL

r- 2i I'(2l+ 2)i k

x p(lrl)(2k)2(kleg/0 for VII(y. ) (47)

On using the dispersion relations (20}, one ob-
tains for the leading singular term in 6, (P)

We consider two specific examples of truncated
Coulomb potentials, to illustrate the method of
approach. The two examples are

1 '2
5s(ai(p ) I'i I + 1+— (2k)'"'

i I'(2l+ 2)i' i k

g e( /i P (' lnP for V((~) (48)
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Rnd

(49)

1 Z62123(P) ( 1)1 1" l+ 1+ (2k}21»1
2I I'(2l+ 2)I' k

X e "/2'P1e'I+ fOr V11(r) .

with X, =1, and

1 Z

II'(2l+ 2)I, F l+ 1+k (2k)""e' '.
Similarly for V", (r) we have

(58)

B. Leading analytic part of 5~(p) near p= 0

For obtaining the leading analytic terms for
6, (P) near P = 0, we expand the potential in powers.fP Rnd

i
k, ((()=e(0)e()((ke)ke'e ('(1+— +O(k) (59)

r 1 P P2 P3
V'(r) = --+———+ ——~ ~ ~t r r2 r3 r4 '

7 (50)
6, (P)= 8(13) —2kpB, + (-1)'2p'"(lnp)B

+O(P'), for 13) 0 (6o)
V (r}=——+r 2r3 (51)

The P term in V', (r) is taken into account by re-
defining l as

where as before, 8(l,) is given by Eq. (33), B,
is given by Eq. (34) with X, =1, and B is given
by Eq. (58}.

l(l+ 1)= l,(l, + 1)+ 2P, (52) IV. SCREENED COULOMB POTENTIAL

where l, is the angular-momentum quantum num-
ber, which gives

We will consider two specific examples of
screened C oulomb potentials

2p 4p2 16p3

2l, + 1 (2l, + 1)' (213+ 1)' (53)
1 1

V', (r}=--+
r+p (61)

The p' and p' terms in the potentials, are treated
perturbatively as in Sec. IIE, and the results are
given by Eq. (32) with X3=-p' and X»= p', i.e. ,

w 2P 4P' 16P3

2 213+ 1 (213+ 1) (2l + 1)'/

Rnd

1 1
V, (r)=--+( 3 p),

where in view of Eq. (39) we have taken X = 1.

A. Leading singular part of t}I(P) near P = 0

(62)

+ 4kP'B, —8k'P'B, + ~ ~ ~, for V,'(r) (54)

where 8(l) is given in Eq. (33), and B, and B, are
obtained from Eqs. (34) and (35) with X, = 1.

For V", (r), the P term is treated perturbatively
as in Sec. IIE, and the result is given by Eq. (32)
with A,3=&p, X4=0, i.e. ,

ImV', (r) = 1/6(r —IPI —),
sin@ j3

ImV, (r)=
(IpI 3)1/3 r& IPI

(63)

(64)

In order to be able to use Eq. (9) one notes that
for real negative P,

61 (P)= 8(13)—2kPB, + ~ ~ ~,
with 8(l,) given by Eq. (33) and B, given by Eq.
(34) with X, = 1.

C. 5I(P) near P=0

(55) with P approaching the negative real axis from
above, and

u, (r)3 =,

(
I'(l+ 1}r(2kr)'

Combining the results for the singular and ana-
lytic parts of 61 (P}, we get an expression which
is valid near P = 0. For V,'(r) one has

6,(P) = 8(2P) vp —2P'(l-nP)ke' '

x e ""M(l + 1,2l+ 2, 2ikr) .

We then get from Eq. (9)

Im6 (p) =
I 2 2

I

I I'(l+1)I'

(65)

i~ 1+— +0(p'), for l, =0

6, (P) = 8(l) ——(l —13)+ 4kP'B, —8k'P'B,

P21()'2(tnp)B—+ O(p'), for 13~ 1 (57)

where 8(l) is given by Eq. (33), l is given by Eq.
(53), B3 and B» are given by Eqs. (34) and (35)

Rnd

x P21e2(2k)21»1 for Vl(r)

where

(s in)1 /3)
Im6, (P)(k ' II'(2l+2}I, I-F(l+1}I'

x (2k)21k1P2()k1)/3I fo1 V11(r) (67)
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j. ~214 2

I&=
(1 3)z~edx. D4=

4(2l -1)(2l+ 1)(2l+ 3)
' (78)

On using dispersion relations (20) one gets the
leading singular term in 6,(P):

For V,"(r), the P term is treated perturbativeiy
as in Sec. IIE, and the result is given by E|1. (32)
arith X,=O and X,=-3P, i.e.,

and

(P}= F,) I'(1+ 1))'(2k}s"1

x Pa'+'inP for V'(t )

6, (P) = ak'PD, + ~ ~ ~,

where D, is given in Eq. (78).

C. BI(P) near P =0

(79)

x(2k}~ 'I,J,(p), for V"(r) (70)

We noir combine the results for the leading
singular and analytic parts of 6, (P) to get an ex-
pression which is valid near P= 0. For V', (r) one
obtains

g (P}-PRA+1)js for l 0 3 6

= -P ""~' for i=1 4 7

6,(P)= wP+ 2P'(inP)k+ O(P'),

6, (p) = ——(l —lo) —4kP'D, + Bk'p'D,

+ p"0"(inP)D+ O(p') for 1,& 0

(80)

(81)
P"""~'1pnfor l-2 5 8 (71)r

8. Leading analytic part of 5&(P) near P= 0

For obtaining the leading analytic terms in 6, (P)
near P = 0, the potential is expanded in powers
of P

P 'O' P'
V'(r) = ——+———+ ~"

(82)

Similarly, for VP(r) we have

60(p) = kp'i'+ O(p)

where l is given by Eq. (75), D, and D, are given
by Eqs. (77) and (78), andD=, ) 1'(1+ 1}['(2k)"".1

(&) 4+ ~ ~ ~

The P term in V', (r) is taken into account by re-
defining it as

6((p) = fk'PD. + I(~((p }D+O(P'),

where I, is given by Eg. (68), J,(P) is given by
Eq. (71}, and D is given by Eg. (82}.

(84)

l(l+1)= l,(l,+1)—2P, (74) V. COMMENTS

4kp'D, + 8k'P'D, + ~ ~ ~, for V', (r) (76)

1
2l(2l+ 2) ' (77)

a&here E, is the angular-momentum quantum num-
ber, which gives

2P 4P'
2lo+ 1 (2l, + 1}'

16P3

(2lo+ 1)'

The P' and P' terms in the potentials are treated
perturbatively as in Sec. IIE, and the results
are given by Eg. (32) with X, =p', X,= P', and-
X~ = 0 i.e.

v f 2P 4P' 16P'
'0 2 ~g21, + 1+ (2l, + 1)' (2l, + 1)')

We have obtained analytic expressions for the
scattering phase shifts for special classes of trun-
cated and screened Coulomb potentials given in
Egs. (1) and (2), in the region near P= 0, where
P is the truncation or screening parameter. These
expressions include the leading singular terms and
the analytic terms which correspond to the sub-
traction constants in the dispersion relations.
We end our discussion with a few comments.

(1) In the cases considered, the phase shifts
have either logarithmic singularities or algebraic
branch-point singularities at P = 0.

(2) Though the detailed expressions for the phase
shifts have been given for A. = 1, the phase shifts
for arbitrary values of X can be obtained by using
relation (39) which foHows from the scale trans-
formation.

(3) Truncated Coulomb potentials come into
play for scattering by a finite charge distribution.
In particular, for scattering by a uniform spheri-
cal charge distribution, the potential near r = 0
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is simple harmonic and is Coulombic for large
r. Such a potential is well simulated by V~((r)

. given in Eq. (42).
(4) For the scattering of an electron by a polari-

zable atom, the potential for large r is given by

(85)

They become

I' 1+16~(P) = (2k)"+'I,Z, (P),

where

~2&+2

(1 &5}1/5

(88)

For this case O' Malley et al.' have given expres-
sions for the phase shifts for k-0. Since V", (r)
has an asymptotic behavior

and

J {P} P(2t+2)/5 f r Ig 4 9
sin —', v(l+ 1)

(86)

We compare our results for P = ~a, with th'ose of
O' Malley et al.' The results are in agreement
for I & 0 and for I = 0, our expression (83) gives
the leading approximation for the Scattering length.
This is indeed an interesting coincidence since
our results are valid for P -0 whereas those of
O' Malley e,t al. are valid for k-0. However, it
can be shown that in the limit of k- 0, the terms
which are higher order in P vanish and hence the
two results are consistent. Thus the results of
O' Malley et af.' for 5, (p), I & 0 are not only valid
for k-0, but also for finite k with P -0. It is
interesting to note that the wave function we have
obtained in Eq. (26) is different from the solution
of O' Malley et al. in terms of Mathieu functions.
This is because we treat the 1/r' part of the po-
tential perturbatively. However, both the solu-
tions differ in their behavior near r = 0, from
the behavior required for the solution to the po-
tential VP(r) in Eq. (62).

(5) In the case of potentials for which the r -~
behavior is dominated by terms smaller than 1/
r', Eq. (22) for obtaining the subtraction terms,
needs to be modified. For example, if

V(r)= +
(

5 pp/s

P (2!+2)/5lnP for $ 4 9
1
7r

For l = 0 and 1, this is the dominant term in the
limit P 0, whereas for l &1, the subtraction
terms are more important.

(6) The explicit expressions for 6, (P) allow us
to calculate the Boltzman sum' of phase shifts.
For example, for V//(r) the Boitzman sum Ga is

Ga =- Q (2l+ 1)5,

27r 2= ka ——Pk'
9

2w 2" 1
3 ~ (2l —1)(2l+ 3)

(89)

Ga = ka+ O(k'), (90)

which allows us to calculate G~ in terms only of
the scattering length a to a good approximation.

(7) Finally we note that the analysis we have dis-
cussed can be applied to other forms of screened
Coulomb potentials such as

(91)

where the first two terms are the contribution
from the s wave with g being the scattering length. '
It can then be shown that

p
5x' ' (87) It is also applicable to partially screened Coulomb

potentials of the type
the term on the right-hand side of Eq. (22) should

be replaced by —5Pr~R"'. The solutions to the
equation are considerably more complicated now.
However, the singular terms are still relatively
simple and can be obtained from Eqs. (9) and (20).

r jr"+p ' "' (92)

which might be relevant for the scattering of elec-
trons by ionized atoms.
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